Contents lists available at ScienceDirect

Journal of Equine Veterinary Science

journal homepage: <www.j-evs.com>

Original Research

Influence of Dietary Supplementation of Ensiled Devil Fish and Staphylococcus saprophyticus on Equine Fecal Greenhouse Gases Production

E.D. Aguilar García ª, A. Khusro ^b, E.B. Figueroa Pacheco ª, Moyosore J. Adegbeye ^c, A. Barbabosa-Pliego ^d, B. Cruz Lagunas ^a, J.M. Castro Salas ^a, R. González Mateos ^a, C. Aarti ^b, Mona M.M.Y. Elghandour ^{d, *}

^a Unidad Academica de Ciencias Agropecuarias y Ambientales, Universidad Autonoma de Guerrero, Iguala de la Independencia, Guerrero, Mexico

^b Research Department of Plant Biology and Biotechnology, Loyola College, Chennai, Tamil Nadu, India

^c Department of Animal Science and Livestock Production, Joseph Ayo Babalola University Ikeji-Arakeji, Ilesa, Nigeria

^d Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico

article info

Article history: Received 2 May 2019 Received in revised form 24 May 2019 Accepted 31 May 2019 Available online 11 June 2019

Keywords: Devil fish Staphylococcus saprophyticus Equine Greenhouse gases Fermentation Gas production

ABSTRACT

The present context was designed to investigate the efficacy of devil fish (DF; Plecostomus sp.) silage and Staphylococcus saprophyticus on fermentation characteristics as well as greenhouse gases production mitigation attributes in horses. Four levels of ensiled DF at 0 (control DF0), 6 (DF6), 12 (DF12), and 18 (DF18) % were added into the diet. Moreover, three doses of S. saprophyticus (0, 1, and 3 mL/g dry matter [DM]) were used for in vitro fecal fermentation. The use of ensiled DF resulted in increased ($P < .0001$) pH during fermentation. The asymptotic gas production was the highest $(P < .0001)$ in DF6, whereas other supplementation caused lower production than that of control. Lag time for the asymptotic gas production decreased ($P <$.05) with increasing dietary DF doses. Inclusion of S. saprophyticus resulted in the lowest ($P < .05$) gas production and mL/0.5 g DM incubated and thus, the reduced gas production up to 23.17% than that of control. The interaction of DF \times S. saprophyticus showed the lowest gas production at DF18, whereas the highest production was estimated at DF6 without S. saprophyticus after 48 hours. The lowest emission of CO_2 ($P < .0001$) was observed in DF18 inclusion, which was 15.25% lower than that of control at 48 hours of fermentation. In contrast, the lowest hydrogen $(H₂)$ production was estimated in DF0, whereas DF18 exhibited the highest. Inclusion of DF12 and DF18 reduced ($P < .05$) methane (CH₄) emission by 58.24% and 59.33%, respectively. However, DF, S. saprophyticus, and DF \times S. saprophyticus interaction had no significant effect ($P > .05$) on CH₄ production. In conclusion, ensiled DF and S. saprophyticus could be supplemented in equine diet as promising alternatives to corn for mitigating the emission of greenhouse gases effectively.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Horses are monogastric, and hindgut fermenting herbivores where cecum and colon are the fermentative chambers for disparate microbiota. The microbial population present in hindgut are known for the stimulation of immunity, exclusion of pathogens, and detoxification of hazardous components [\[1\].](#page-6-0) The diet of horses is enriched with fibers; however, hindgut microbiota enables digesting fiber-based diets gradually due to the fact that the fiber is indigestible by secreted enzymes. However, alteration in feeding practices and activities of modern-day horses have led to an increased level of grain or starch and lowered levels of fiber in their diet $[2,3]$. This is done to provide quick energy release to meet the energy need of high-paced activity of equine [\[4\].](#page-6-0) However, such feeding practices lead to the leading causes of several disorders, namely gastric ulceration, hindgut acidosis, and endotoxemia [\[5\]](#page-6-0). In addition, feeding such diets may decrease the starch digestion trait in the small intestine and alter the microbial population as well as fibrolytic characteristics in the hindgut, thereby reducing the ability

Animal welfare/ethical statement: The research was performed in accordance with the ethical standard laid down in the 1996 Declaration of Helsinki and its later amendments.

Conflict of interest statement: The authors declare no conflicts of interest.

^{*} Corresponding author at: M.M.M.Y. Elghnadour, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50000, Mexico.

E-mail address: mmohamede@uaemex.mx (M.M.M.Y. Elghandour).

to use energy from the diets, as a result of alteration in hindgut pH [\[4,6\]](#page-6-0). However, pectin-rich by-product (lemon, tangerine, and pineapple) and agro-based by-product (sugar beet pulp and soybean hull) have been put forward to provide energy for horses without causing digestive disturbances or offset [\[4\]](#page-6-0). Still, there is an urgency to explore other resources for providing the energy demands, intestinal health, and enhance the athletic high-level performances of modern horses.

Currently, the supplementation of diversified additives into the feeds is considered auspicious strategies to enhance the energy utilization in horses. Unfortunately, the perpetual emission of greenhouse gases (GHG), particularly methane $(CH₄)$ and carbon dioxide $(CO₂)$, from animals due to the fermentation is the colossal burden globally. These GHGs are considered not only environmental pollutants but also hazardous to human health, resulting in global warming [\[7\].](#page-6-0) The quest for auspicious natural alternative resources to mitigate the emission of GHG for cleaner society and sustainable environment has gained immense interest. For instance, distinct natural feed additives such as plant extract $[8]$, enzyme [\[9\],](#page-6-0) yeasts [\[7\],](#page-6-0) and lactobacilli [\[10\]](#page-6-0) had been used. Nevertheless, the exploitation of coagulase-negative staphylococci (CNS) as feed additive in horse nutrition for mitigating the emission of GHG is not evidenced yet. Staphylococcus equorum, S. hominis, S. cohnii, S. capitis, S. condimenti, S. succinus, and S. xylosus belong to CNS group [\[11\].](#page-6-0) In recent times, CNS have emerged as the prevalent heterogeneous group of bacteria and included under Qualified Presumption of Safety status by the European Food Safety Authority Scientific Committee on a case-by-case basis within a particular taxonomic group [\[12\].](#page-6-0)

In recent years, CNS have emerged as different group of fermented food-associated bacteria revealing probiotic properties [\[13\].](#page-6-0) In addition, CNS were reported as the predominant type of bacteria in some Korean fermented food $[14]$. This is an indication of the fermenting properties of CNS or its probiotic properties. Furthermore, devil fish (DF) (Plecostomus sp.) are included in animal's diet because of its abundance and maximum digestibility [\[15\]](#page-6-0). In addition, ensiling the fish could pave a way of improving its usage as feed ingredient. The proteolytic enzyme in the ensiled fish could improve feed digestibility. Besides, it is a well-established fact that fermented foods are enriched with health beneficial probiotic microbes [\[16\].](#page-6-0) The effect of DF has been studied in ruminant diet [\[17\]](#page-6-0) with a better response in fermentation kinetics. However, this kind of investigation is unexplored in equine.

Considering this, a further significant attempt was undertaken in this context to fill the gap of research by determining the fermentation kinetics and GHG production mitigation attributes of S. saprophyticus and DF in horses as ideal alternatives to feed supplements for a cleaner and ecofriendly product.

2. Materials and Methods

2.1. Substrate and Treatments

Substrate (diets) used in this study were dried at 60° C for 48 hours before in vitro incubation. The diet level was 0, 6, 12, and 18% of ensiled DF of diet dry matter (DM) and represented as DF0, DF6, DF12, and DF18, respectively. In addition, three doses (0, 1, and 3 mL/g DM substrate) of S. saprophyticus (SS) at 5×10^{11} CFU/g represented as SS0, SS1, and SS3 were used for in vitro fermentation. Diet formulation and chemical composition of diets are shown in Table 1.

To ensile the DF, the fresh live fish was obtained from the Tuxpan lagoon municipality of the city of Iguala Gro. The fish was washed with water to remove the soil and particles stuck to the

Table 1

Ingredients and chemical composition of the diets with different levels of ensiled devil fish used as substrates. $\dot{\mathbf{z}}$

^a Addapted form Abrego Salgado [\[18\].](#page-6-0)

^b Cu: 21.18 ppm, Fe: 4971.66 ppm, Zn: 343.75 ppm, Ca: 9.96%, Mg: 0.2495%, K: 0.8895%, Na: 1.296%, Pb: 0.0029%, P: 14.395%, S: 3.125%.

fish. After milling process, 5 kg of fish were mixed with 14 L of molasses and 1 L of natural yogurt in a bucket with a capacity of 20 L in which an airtight lid was placed to avoid leaks and air entrances, and then it was kept for 30 days. The cuvette was opened after 30 days and mixed with the ingredients as mentioned in Table 1.

2.2. In Vitro Incubation

Horses were fed the compounded diet (substrate) ad libitum and provided fresh water for 7 days before collection phase. Fecal content (inoculums source) collected from the rectum were obtained from four Azteca horses (aged 5–8 years, 480 \pm 20.1 kg). Culture broth was added to the fecal contents in a ratio of 4:1 and kept under $CO₂$ environment throughout the entire in vitro incubation process (39 \degree C; 48 hours). All incubations were performed in triplicate, and either rumen fluid or fecal fluid was used as a blank. Data at 2, 4, 6, 8, 10, 12, 14, 24, and 48 hours using the pressure reading technique was used to estimate total gas, CO_2 , CH₄, and H₂ emissions [\[19\]](#page-6-0). CO₂, CH₄, and $H₂$ concentrations were also measured in the headspace of the bottles up to 48 hours using the gas detector (AIR QUALITY MONITOR YesAIR, Critical Environment Technologies Canada Inc, Delta, British Columbia, Canada). Furthermore, pH was measured, and DM degradability (DMD) was estimated after filtration [\[20\].](#page-6-0)

2.3. Calculations and Statistical Analyses

Kinetic parameters of gas production (mL/g DM) were calculated according to France et al. [\[21\]](#page-6-0) using the NLIN option of SAS [\[22\]](#page-6-0). The DMD was calculated according to the methodology of Menke et al. $[23]$. Fecal fermentation data were estimated as a completely randomized design as per PROC GLM option:

$$
Y_{ij}\,=\,\mu\,\,+\,\,B_i\,\,+\,\,\epsilon_{ij}
$$

where, Y_{ij} = observation obtained with ith level of LAB; B_i = level of LAB (I = 1-4); μ = general mean; ε_{ij} = experimental error. Linear and quadratic polynomial contrasts were implied to assess responses for increasing concentrations of S. saprophyticus. Turkey's test was used to calculate multiple comparisons among means. Significance level was estimated at $P < .05$.

3. Results

3.1. In Vitro Gas Kinetics

Figs. 1 and 2 showed the effect of ensiled DF and S. saprophyticus on horse fecal total gas, CH_4 , CO_2 , and H_2 production. Inclusion of S. saprophyticus had no significant effect ($P > .05$) on total gas, CH₄, $CO₂$, and H₂ production. Furthermore, [Table 2](#page-3-0) showed that ensiled DF had a linear effect ($P < .0001$) on the asymptotic gas production $(P = .031)$, rate of gas production, and lag time $(P < .0001)$. The DF6 showed the highest asymptomatic gas production and $CO₂$ production, whereas the DF18 exhibited the lowest gas production and CO₂ emission. Interaction of DF \times S. saprophyticus had no effect (P $>$.05) on CH₄, CO₂, and H₂ except for the asymptotic gas production $(P = .0017)$ and the lag time $(P = .039)$.

3.2. Fecal Fermentation Parameters

The DF supplementation showed a linear effect ($P < .0001$) on the pH and gas production at 24 and 48 hours. The DF12 and DF0 showed the highest and the lowest pH values, respectively. Furthermore, DF6 and DF18 doses resulted in the highest and the lowest mL gas/0.5 g DM at 24 and 48 hours. Similarly, S. saprophyticus had a linear effect ($P < .05$) on gas production, but it had no effect ($P > .05$) on fecal pH. There was a linear decrease ($P <$.05) in gas production in a dose-dependent manner at 24 and 48 hours. DF \times S. saprophyticus estimated linear effect (P $<$.002) on gas production (mL/0.5 g DM incubated) at 48 hours of incubation. The DF, S. saprophyticus, and DF \times S. saprophyticus interaction

3.3. Fecal Greenhouse Gas Production

[Table 4](#page-4-0) showed that DF doses, S. saprophyticus concentrations, and DF \times S. saprophyticus interaction had neither linear nor quadratic effect ($P > .05$) on mL CH₄/0.5 g DM incubated, mL CH₄/ 0.5 g DM degraded, and proportional CH4 production. At 8 hours of incubation period, there was complete absence of in vitro fecal CH4 production. However, DF and S. saprophyticus doses revealed quantitative reduction in $CH₄$ production ([Fig. 2\)](#page-3-0).

[Table 5](#page-5-0) showed that DF doses had linear effect ($P < .05$) on mL $CO₂/0.5$ g DM incubated and mL $CO₂/0.5$ g DM degraded but showed no effect on the proportional $CO₂$ production. The DF6 and DF12 revealed the highest mL $CO₂/0.5$ g DM degraded and mL $CO₂/$ 0.5 g DM incubated, whereas DF18 exhibited the lowest mL $CO₂/$ 0.5 g DM degraded and mL $CO₂/0.5$ g DM incubated at 24 and 48 hours of incubation. Furthermore, DF \times S. saprophyticus interaction had a linear effect ($P < .05$) on the mL CO₂/0.5 g DM degraded and proportional $CO₂$ production with DF6 exhibiting the highest, whereas DF18 revealing the lowest $CO₂$ production. However, S. saprophyticus estimated no significant ($P > .05$) impact on CO₂ emission ([Fig. 2\)](#page-3-0).

[Table 6](#page-5-0) showed that DF doses had a linear $(P < .02)$ influence on the proportional H_2 production. The DF18 produced the highest H_2 , whereas DF0 quantified the lowest H_2 production. S. saprophyticus doses and DF \times S. saprophyticus interaction had no significant $(P > .05)$ impact on mL H₂/0.5 DM incubated and mL H₂/0.5 g DM degraded. In contrary, S. saprophyticus doses and DF \times

Fig. 1. Horse fecal total gas, CH₄, CO₂, and H₂ production (mL/0.5 g DM) at different incubation periods as affected by the dietary inclusion of ensiled devil fish (DF) at 0% (DF0, control), 6% (DF6), 12% (DF12), and 18% (DF18) of the diet DM. DM, dry matter.

Fig. 2. Horse fecal total gas, CH4, CO₂, and H₂ production (mL/0.5 g DM) at different incubation periods as affected by the dietary inclusion of S. saprophyticus (SS) at 0 (SS0, control), 1 (SS1), and 3 mL (SS3) of the diet DM. DM, dry matter.

S. saprophyticus interaction exhibited linear effect ($P < .03$) on mL $H₂/0.5$ DM incubated at 12 hours (Fig. 2).

4. Discussion

At present, improving the nutrition through the use of unconventional ingredients of crops or animal sources, novel additives,

and microorganisms are the most common practices of researchers and farmers. In addition, reducing GHGs productions are also an important factor in equine nutritional interventions. Total gas production is an indication of feed digestibility or degradation. In this context, total gas production was estimated to be increased because of the supplementation of DF. The increment in the total gas production by DF6 with respect to the control may be attributed

Table 2

Effect of SS as feed additives on in vitro fecal total gas, CH₄, CO₂, and H₂ kinetics^a of diets at different doses of ensiled DF.

DF Doses	SS Doses	Total gas			CH ₄			CO ₂			H ₂		
		b	\mathcal{C}	Lag	b	с	Lag	b	с	Lag	b	\boldsymbol{c}	Lag
DF ₀	Ω	128.6	0.008	4.439	10.4	0.001	5.908	89.7	0.004	4.409	15.8	0.011	6.750
		132.8	0.003	6.042	11.9	0.001	6.941	78.1	0.001	4.844	18.2	0.007	6.695
	3	128.5	0.010	4.989	12.7	0.001	7.662	90.2	0.001	4.692	23.6	0.027	6.913
DF ₆	0	143.8	0.009	3.764	20.4	0.023	7.990	88.6	0.011	4.265	28.5	0.007	6.206
		132.8	0.005	4.370	13.7	0.001	7.761	91.8	0.012	2.957	23.1	0.020	5.815
	3	135.8	0.005	1.965	18.0	0.020	8.098	81.2	0.004	3.800	30.9	0.013	5.279
DF12	0	136.3	0.003	2.072	16.3	0.001	6.882	88.0	0.009	4.278	25.5	0.016	9.479
		133.3	0.004	6.276	4.8	0.001	7.560	97.1	0.006	3.643	21.0	0.013	5.712
	3	91.8	0.009	1.724	3.0	0.002	8.837	77.1	0.003	3.930	13.5	0.007	6.859
DF18	0	88.9	0.001	1.753	7.5	0.011	8.220	60.2	0.012	4.460	24.6	0.020	6.848
		98.9	0.004	1.632	7.6	0.001	5.079	62.8	0.010	3.988	24.1	0.018	6.070
	3	105.3	0.002	1.917	28.4	0.005	9.203	62.0	0.005	3.087	24.0	0.009	6.416
P values													
DF													
Linear		< .0001	.0307	< .0001	.8301	.446	.3764	< .0001	.0307	.2095	.1949	.8764	.6646
Quadratic		.1532	.6781	.8436	.6575	.7236	.3636	.0012	.9366	.5882	.6087	.4613	.2863
SS													
Linear		.0557	.4179	.5026	.3539	.6908	.0721	.2886	.0455	.3868	.854	.9329	.1695
Quadratic		.252	2624	.0008	.2567	.1087	.0787	.3884	.6551	.5872	.5476	.8841	.1988
$DF \times SS$.0017	.3773	.0392	.3405	.6714	.2263	.1323	.9699	.8475	.4522	.2551	.5215

Abbreviations: DF, devil fish; GP, gas production; SS, S. saprophyticus.

b is the asymptotic GP (mL/g DM); c is the rate of GP (per hour); Lag is the initial delay before GP begins (hour).

Effect of SS as feed additives on in vitro fecal fermentation parameters as well as total GP at different incubation periods using different doses of ensiled DF.

Abbreviations: DF, devil fish; DMD, dry matter degradability (%); GP, gas production; SS, S. saprophyticus.

to the enzymatic activities such as protease and lipase from the DF, which enhanced the growth of microbes. It could also be due to the fact that the high protein content leads to more availability of ammonia nitrogen, which enhanced their growth. Makkar et al [\[24\]](#page-6-0) reported that protein fermentation produced lesser gas compared with carbohydrate. Hence, in contrary to our study, the highest protein supplementation resulted in reduced gas production. Velazquez et al [\[25\]](#page-6-0) stated that Lag time is a measure of the time required for feed digestibility by gut microbes to initiate digestibility. In this investigation, Lag time was reduced during ensiling due to the fermentation process. The lower Lag time with DF supplementation may be attributed to the ability of microbes to adapt or reveal probiotic traits [\[16\]](#page-6-0). Therefore, it could be stated that DF had some probiotics properties, which led to quick adherence and colonization of feed particles compared with the control.

In this study, total $CO₂$ emissions from horses were reduced in the presence of high doses of DF. The highest total $CO₂$ production in DF12 and its similarity with DF6 could be due to the fermentation process. However, the lowest total $CO₂$ in DF18 may be attributed to the high crude protein content of DF. The similar pattern was observed in mL $CO₂/0.5$ g DM incubated and degraded too ([Table 5](#page-5-0)). Velázquez et al $[26]$ demonstrated that the lower $CO₂$ production may be influenced by the high protein content in a diet. In addition, the ammonia–N nitrogen accumulation in the medium might have prevented the release of $CO₂$ in the bottle [\[27\]](#page-6-0).

Faniyi et al [\[28\]](#page-6-0) reported that pH is a fermentation parameter that quantifies the state of acidity and alkalinity in the gut and

Table 4

Table 3

Effect of SS as feed additives on in vitro fecal CH₄ production at different incubation periods^a using different doses of ensiled DF.

DF Doses	SS Doses		mL CH ₄ /0.5 g Dry Matter Incubated			mL CH ₄ /0.5 g Dry Matter Degraded		Proportional CH ₄ Production			
		12	24	48	12	24	48	12	24	48	
DF ₀	$\bf{0}$	0.8	3.2	11.8	0.6	2.4	8.7	1.7	4.1	9.1	
		1.3	4.0	12.8	1.0	3.1	9.9	3.0	5.4	9.8	
	3	0.6	3.2	14.1	0.4	2.4	10.7	1.4	4.4	10.4	
DF ₆	0	0.8	4.5	19.0	0.6	3.5	14.8	1.5	5.2	12.5	
		0.4	3.2	14.5	0.3	2.5	11.3	0.8	4.0	10.4	
	3	1.0	4.6	19.1	0.7	3.5	14.5	2.2	6.1	13.9	
DF12	$\bf{0}$	0.7	4.2	17.2	0.6	3.2	13.2	1.6	5.2	12.6	
		0.6	1.8	6.1	0.5	1.4	4.8	1.4	2.5	4.5	
	3	0.5	1.2	3.9	0.3	0.9	2.9	1.2	2.0	3.8	
DF18	$\bf{0}$	0.9	2.4	8.1	0.7	1.9	6.3	2.1	4.2	8.0	
		0.5	2.1	8.5	0.4	1.5	6.2	1.3	3.6	8.3	
	3	0.3	2.3	11.3	0.2	1.6	8.1	0.7	4.1	10.7	
P values											
DF		.53	1.39	5.25	.42	1.11	4.13	1.14	1.68	3.71	
Linear		.2246	.0811	.1557	.2199	.0839	.1498	.2512	.4026	.6746	
Quadratic		.5725	.3876	.3511	.6307	.4802	.4475	.5462	.1393	.1267	
SS											
Linear		.3329	.1848	.3794	.3241	.1695	.3198	.4788	.4373	.5902	
Quadratic		.9467	.4069	.1772	.9143	.471	.2167	.8733	.36	.1645	
$DF \times SS$.4385	.3163	.1378	.4365	.3615	.1702	.3139	.2499	.1515	

Abbreviations: DF, devil fish; DMD, dry matter degradability (%); GP, gas production; SS, S. saprophyticus. No detection of CH_4 production before 12 hr of incubation.

Abbreviations: DF, devil fish; DMD, dry matter degradability (%); GP, gas production; SS, S. saprophyticus.

during fermentation. Similarly, the characteristics of a feed consumed by animal influence the pH. In another words, during in vitro assay, the fluid pH is influenced by the substrate characteristics. In the present investigation, pH value was increased due to the supplementation of varied doses of DF. The increase in pH with DF supplementation may be attributed to the high protein and low carbohydrate in the substrate fermented, compared with the control, which had higher ground corn in it [\[29,30\].](#page-6-0)

Elghandour et al $[31]$ reported that H_2 removal stimulates bacteria during digestion. This indicates that the higher proportional of H2 in DF18 throughout incubation period might have affected digestion. In contrast, the higher H_2 gas in DF6 could be an indication of production of more acetate and butyrate where H_2 is produced in the process $[32]$. The numerical reduction in CH₄ production at 24 hours of incubation by DF12 and DF18 may be attributed to the lower production of $CO₂$ and $H₂$ gas.

Borah et al $[16]$ had reported the antagonistic activity of some species of Staphylococcus. In the present study, we observed lower gas production (mL/0.5 g DM incubated and degraded) with increasing doses of S. saprophyticus. This indicates that S. saprophyticus had some inherent antimicrobial and growth inhibitory properties. Besides, Khusro et al [\[11\]](#page-6-0) reported that Staphylococcus sp. showed lack of amylolytic activity, which exhibited their inability to degrade starch. Therefore, the lower gas production encountered with S. saprophyticus supplementation may be attributed to the fact that bacteria are unable to degrade starch. Furthermore, Laukova' and Marekova' [\[33\],](#page-6-0) Sung et al [\[34\],](#page-6-0) and Khusro et al [\[13\]](#page-6-0) had reported that CNS strains are ideal producers of bacteriocins. Thus, the bacteriocin produced by S. saprophyticus might have inhibited the fermentative microorganisms. The supplementation of S. saprophyticus at distinct doses revealed reduction in CH_4 emission. Low CH_4 production with

Table 6

Effect of SS as feed additives on in vitro fecal H₂ production at different incubation periods using different doses of ensiled DF.

DF Doses	SS Doses	mL $H2/0.5$ Dry Matter Incubated				mL $H2/0.5$ g Dry Matter Degraded				Proportional H ₂ Production			
		8	12	24	48	8	12	24	48	8	12	24	48
DF ₀	0	0.11	4.22	7.77	16.89	0.09	3.14	5.78	12.55	0.33	9.00	10.0	13.00
		0.89	4.67	9.03	22.60	0.69	3.66	7.07	17.61	2.67	10.67	12.0	17.00
	3	0.75	4.34	8.48	23.99	0.56	3.26	6.37	17.97	2.67	10.67	11.6	17.67
DF ₆	0	1.24	5.91	11.85	29.48	0.96	4.58	9.19	22.87	3.33	12.00	13.6	19.67
		0.35	5.63	10.81	23.96	0.27	4.37	8.39	18.59	1.00	12.00	13.6	17.67
	3	0.34	6.47	14.38	32.17	0.26	4.93	10.96	24.52	1.00	15.00	19.6	23.67
DF12	0	0.36	5.56	11.79	26.69	0.28	4.25	9.02	20.45	1.00	11.67	14.6	19.33
		0.33	3.96	8.20	22.02	0.26	3.10	6.44	17.35	1.00	9.33	11.3	16.33
	3	0.27	2.78	6.30	14.86	0.21	2.10	4.76	11.21	1.00	8.00	10.6	14.33
DF18	0	0.30	6.56	12.49	25.68	0.24	5.12	9.76	20.08	1.00	16.33	21.6	25.67
		0.32	7.17	12.29	25.41	0.21	5.01	8.50	17.43	1.00	18.00	21.0	25.00
	3	0.32	6.06	10.76	24.52	0.23	4.34	7.88	17.89	1.00	14.00	18.6	23.00
P values DF													
Linear		.1937	.0279	.089	.3036	.1737	.0702	.1574	.4507	.1701	.0197	.0045	.0018
Quadratic		.4763	.0956	.4194	.5556	.5171	.1751	.5543	.7401	.4222	.02	.0485	.1252
SS													
Linear		.6329	.429	.5578	.8118	.5744	.3693	.4958	.6949	.895	.965	.8423	.9422
Ouadratic		.9496	.8646	.7878	.7869	.9532	.9041	.7604	.7697	1.000	.2672	.774	.7695
$DF \times SS$.0589	.787	.6738	.4525	.0599	.8652	.7372	.5049	.099	.236	.6734	.6997

Abbreviations: DF, devil fish; DMD, dry matter degradability (%); GP, gas production; SS, S. saprophyticus.

S. saprophyticus supplementation may be explained by their ability to reduce nitrate to nitrite [35,36]. Furthermore, the present study showed that S. saprophyticus supplementation had no significant impact on $CO₂$ and $H₂$ emission. The presence of staphylococci might have enhanced formation, which would serve as terminal electron acceptors during fermentation of feeds [\[37\].](#page-7-0)

Over the past few years, a significant attempt had been undertaken not only to improve the nutritional quality but also to reduce the emission of GHGs from livestock through the synergistic role of additives. In this regard, synergistic role of fibrous forages along with live yeasts and fibrolytic enzymes have been successfully investigated toward the improved fermentation as well as mitigation of CH₄ and CO₂ emission from equine [18,38,39]. The present investigation further filled the gap of equine research by evaluating the pivotal synergistic role of DF and S. saprophyticus as promising feed additives in the reduction of GHGs emission from horses.

5. Conclusions

Inclusion of DF at 6% of diet can improve feed gas production, without disrupting the gut pH. The supplementation of DF12 and DF18 reduced CH₄ production by 58.24% and 59.33%, respectively. DF18 reduced total $CO₂$ production by 15.25%, whereas SS1 and SS3 mitigated CH4 production by 50.54% and 58.24%, respectively. Similarly, the low gas production pattern with S. saprophyticus supplementation indicates its antimicrobial properties, suggesting good prospect in livestock nutrition. The DF and S. saprophyticus could be potential feed additives as alternatives to conventional antibiotics.

References

- [1] [Shepherd ML, Swecke JrJr, Jensen JrJr, Ponder MA. Characterization of the fecal](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref1) [bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref1) gene amplicons. FEMS Microbiol Lett 2012 ; 326 : $62-8$ $62-8$.
- [de Fombelle A, Varloud M, Goachet AG, Jacotot E, Philippeau C, Drogoul C,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref2) [Julliand V. Characterisation of the microbial and biochemical pro](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref2)file of the [different segments of the digestive tract in horses fed two distinct diets. Anim](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref2) Sci 2003:77:293-[304](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref2).
- [3] [Sadet-Bourgeteau S, Julliand V. Equine microbial gastro-intestinal health in:](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref3) [the impact of nutrition on the health and welfare of horses. In: Presented at](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref3) the 5th European Workshop Foujne Nutrition, FAAP Scientific Series: 2010. [the](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref3) [European Workshop Equine Nutrition, EAAP Scienti](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref3)fic Series: 2010. [p. 161](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref3)-[82. Cirencester, United Kingdom.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref3)
- [4] [Cipriano-Salazar M, Adegbeye MJ, Elghandour MMY, Barbabosa-Pilego A,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref4) [Mellado M, Hassan A, Salem AZM. The dietary components and feeding](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref4) [management as options to offset digestive disturbances in horses. J Equine Vet](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref4) Sci $2019:74:103-10$ $2019:74:103-10$ $2019:74:103-10$.
- [5] [Rowe JB, Lees MJ, Pethick DW. Prevention of acidosis and laminitis associated](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref5) with grain feeding in horses. J Nutr $1994:124:2742-4$ $1994:124:2742-4$ $1994:124:2742-4$.
- [6] [Mungall BA, Kyaw-Tanner M, Pollitt CC. In vitro evidence for a bacterial](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref6) [pathogenesis of equine laminitis. Vet Microbiol 2001;79:209](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref6)-[23](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref6).
- [7] [Elghandour MMY, Vazquez JC, Salem AZM, Kholif AE, Cipriano MM,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref7) [Camacho LM, Marquez O. In vitro gas and methane production of two mixed](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref7) rations infl[uenced by three different cultures of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref7) Saccharomyces cerevisiae. [J Appl Anim Res 2017;45:389](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref7)-[95](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref7).
- [8] [Cedillo J, Kholif AE, Salem AZM, Elghandour MMY, Vazquez JF, Alonso MU,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref8) [Barbabosa A, Chagoyan JCV, Reyna AG. Oral administration of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref8) Sauce iloron [extract to growing lambs to control gastrointestinal nematodes and](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref8) Moniezia spp. Asian Pac I Trop Med $2015:8:520-5$.
- [9] [Vallejo LH, Salem AZM, Kholif AE, Elghangour MMY, Fajardo RC, Rivero N,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref9) Bastida AZ, Mariezcurrena MD. Infl[uence of cellulase or xylanase on the](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref9) [in vitro rumen gas production and fermentation of corn stover. Indian J Anim](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref9) [Sci 2016;86:70](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref9)-[4.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref9)
- [10] [Elghandour MMY, Khusro A, Greiner R, Salem AZM, Lugo de la Fuente J,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref10) [Marquez-Molina O, Barbabosa-Pilego A, Montes-de-Oca Jimenez R. Horse](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref10) [fecal methane and carbon dioxide production and fermentation kinetics](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref10) influenced by Lactobacillus farciminise [supplemented diet. J Equine Vet Sci](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref10) 2018:62:98-[101](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref10).
- [11] [Khusro A, Aarti C, Barbabosa-Pilego A, Hern](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref11)á[ndez SR. Anti-pathogenic, anti](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref11)biofi[lm, and technological properties of fermented food associated](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref11) Staphylococcus succinus [strain AAS2. Prep Biochem Biotechnol 2019;49:176](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref11)-[83](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref11).
- [12] EFSA. Introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA1. Opinion of the scientific committee (question No EFSA-Q-2005-293). EFSA J 2007;587:1-16. [www.efsa.europa.eu/en/scdocs/doc/587.pdf.](http://www.efsa.europa.eu/en/scdocs/doc/587.pdf)
- [13] [Khusro A, Aarti C, Salem AZM, Rodríguez GB, Rivas-C](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref13) a[ceres RR. Antagonistic](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref13) trait of Staphylococcus succinus [strain AAS2 against uropathogens and](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref13) [assessment of its in vitro probiotic characteristics. Microb Pathog 2018;118:](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref13) $126 - 32.$ $126 - 32.$ $126 - 32.$
- [14] [Guan L, Cho KH, Lee JH. Analysis of the cultivable bacterial community in](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref14) [jeotgal, a Korean salted and fermented seafood, and identi](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref14)fication of its dominant bacteria. Food Microbiol $2011;28:101-13$.
- [15] [Avdalov N, Barlocoo N, Bauza R, Giacommeti L, Panucio A. Evaluacion del](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref15) [ensilaje biol](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref15)ó[gico de pescado en la alimentaci](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref15)ó[n de cerdos en engorde.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref15) [Montevideo, Uruguay: Instituto Nacional de Pesca. Segunda consulta de](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref15) [expertos sobre tecnología de productos pesqueros en America latina; 1989.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref15) $p. 88-98$ $p. 88-98$
- [16] [Borah D, Gogoi O, Adhikari C, Kakoti BB. Isolation and characterization of the](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref16) new indigenous Staphylococcus [sp. DBOCP06 as a probiotic bacterium from](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref16) traditionally fermented fi[sh and meat products of Assam state. Egypt J Basic](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref16) Appl Sci 2016:3:232-[40](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref16).
- [17] [Tejeda-Arroyo E, Cipriano-Salazar M, Camacho-Díaz LM, Salem AZM,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref17) [Kholif AE, Elghandour MMY, DiLorenzo N, Cruz-Lagunas B. Diet inclusion of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref17) devil fish (Plecostomus [spp.\) silage and its impacts on ruminal fermentation](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref17) [and growth performance of growing lambs in hot regions of Mexico. Trop](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref17) Anim Health Prod 2015:47:8[6](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref17)1-6
- [18] [Elghandour MMY, V](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref18) a[zquez Chagoy](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref18) [an JC, Salem AZM, Kholif AE,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref18) [Castaneda JSM, Camacho LM, Buendía G. In vitro fermentative capacity of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref18) ~ equine fecal inocula of 9 fi[brous forages in the presence of different doses of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref18) Saccharomyces cerevisiae[. J Equine Vet Sci 2014;34:619](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref18)-[25.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref18)
- [19] [Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref19) [production method using a pressure transducer to determine the fermenta-](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref19)tion kinetics of ruminant feeds. Anim Feed Sci Tech 1994:48:185-[97](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref19).
- [20] [Elghandour MM, Chagoyan JCV, Salem AZM, Kholif AE, Casta~neda JSM,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref20) [Camacho LM, Cerrillo-Soto MA. Effects of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref20) Saccharomyces cerevisiae at direct [addition or pre incubation on in vitro gas production kinetics and degrad](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref20)ability of four fi[brous feeds. Ital J Anim Sci 2014;13:295](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref20)-[301](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref20).
- [21] [France J, Dijkstra J, Dhanoa MS, Lopez S, Bannink A. Estimating the extent of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref21) [degradation of ruminant feeds from a description of their gas production](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref21) profi[les observed in vitro: derivation of models and other mathematical](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref21) $considerations.$ Br J Nutr $2000;83:143-50.$ $2000;83:143-50.$ $2000;83:143-50.$
- [22] [Statistical SAS. Analysis system. User's guide: statistics. Ver 9.0. Cary, NC: SAS](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref22) [Institute; 2002.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref22)
- [23] [Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. The esti](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref23)[mation of the digestibility and metabolizable energy content of ruminant](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref23) [feeding stuffs from the gas production when they are incubated with rumen](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref23) [liquor in vitro. J Agric Sci Cambridge 1979;93:217](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref23)-[22](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref23).
- [24] [Makkar HPS, Blümmel M, Becker K. Formation of complexes between poly](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref24)[vinyl pyrrolidones or polyethylene glycols and tannins and their implications](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref24) [in gas production and true digestibility in in vitro techniques. Br J Nutr](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref24) [1995;73:897](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref24)-[933.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref24)
- [25] [Velazquez AE, Elghandour MMY, Adegbeye MJ, Pilego AB, Vallejo LH,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref25) Salem AZM, Salazar MC. Infl[uence of dietary inclusion with corn and soybean](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref25) [oils, in combination with live yeast culture, on horse fecal methane, carbon](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref25) [dioxide and hydrogen production. J Equine Vet Sci 2019;74:42](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref25)-[50](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref25).
- [26] [Vel](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref26)á[zquez AE, Kholif AE, Elghandour MMY, Salem AZM, de Oca Jim](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref26)é[nez RM,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref26) Pliego AB, Odongo N, Bórquez JL, Cipriano M, Olivares J. Effect of partial [replacement of steam rolled corn with soybean hulls or prickly pear cactus in](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref26) the horse'[s diet in the presence of live](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref26) Saccharomyces cerevisiae on in vitro [fecal gas production. J Equine Vet Sci 2016;42:94](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref26)-[101.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref26)
- [27] [Cone JW, Van Gelder AH, Bachmann H. In](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref27)fluence of inoculum source dilution and storage of rumen fl[uid on gas production pro](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref27)files. In: Gas production: [fermentation kinetics for feed evaluation and to assess microbial activity.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref27) [Proceedings of the EAAP Satellite Symposium on gas production. Wagenin](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref27)[gen: The Netherlands Proc Br Soc Anim Sci; 2000. p. 15](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref27)–[6](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref27).
- [28] [Faniyi TO, Adegbeye MJ, Elghandour MMY, Pilego AB, Salem AZM, Olaniyi TA,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref28) [Adediran O, Adewumi MK. Role of diverse fermentative factors towards mi](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref28)[crobial community shift in ruminants. J Appl Microbiol 2019;30:1](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref28)-[10.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref28)
- [29] [Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, Duncan G,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref29) [Johnstone AM, Lobley GE, Wallace RJ, Duthie GG, Flint HJ. High-protein,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref29) [reduced-carbohydrate weight-loss diets promote metabolite pro](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref29)files likely to [be detrimental to colonic health. Am J Clin Nutr 2011;93:1062](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref29)-[72](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref29).
- [30] [den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref30) [The role of short-chain fatty acids in the interplay between diet, gut micro](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref30)[biota, and host energy metabolism. J Lipid Res 2013;54:2325](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref30)-[40](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref30).
- [31] [Elghandour MMY, Kholif AE, Salem AZM, de Oca RM, Barbabosa A,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref31) [Mariezcurrena M, Olafadehan OA. Addressing sustainable ruminal methane](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref31) [and carbon dioxide emissions of soybean hulls by organic acid salts. J Clean](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref31) [Prod 2016;135:194](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref31)-[200.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref31)
- [32] [Monteiro ALG, da Fonseca Faro AMC, Peres MTP, Batista R, Poli CHE, Villalba JJ.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref32) [The role of small ruminants on global climate change. Acta Scient Anim Sci](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref32) $2018;40:1-11.$ $2018;40:1-11.$ $2018;40:1-11.$
- [33] [Laukova](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref33) [A, Marekova](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref33) [M. Antimicrobial spectrum of bacteriocin-like sub](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref33)[stances produced by rumen staphylococci. Folia Microbiol 1993;38:74](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref33)-[6](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref33).
- [34] [Sung C, Kim BG, Kim S, Joo HS, Kim PI. Probiotic potential of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref34) Staphylococcus hominis [MBBL 2](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref34)-9 as anti-Staphylococcus aureus [agent isolated from the](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref34) [vaginal microbiota of a healthy woman. J Appl Microbiol 2009;108:908](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref34)-[16.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref34)
- [35] [Mauriello G, Casaburi A, Blaiotta G, Villani F. Isolation and technological](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref35) [properties of coagulase negative staphylococci from fermented sausages of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref35) [Southern Italy. Meat Sci 2004;67:149](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref35)-[58](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref35).
- [36] [Casaburi A, Blaiotta G, Mauriello G, Pepe O, Villani F. Technological activities of](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref36) Staphylococcus carnosus and [Staphylococcus simulans](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref36) strains isolated from [fermented sausages. Meat Sci 2005;71:643](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref36)-[50.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref36)
- [37] [Sakthivel PC, Kamra DN, Agarwal N, Chaudhary LC. Effect of sodium nitrate](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref37) [and nitrate reducing bacteria on in vitro methane production and fermenta](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref37)[tion with buffalo rumen liquor. Asian-Aust J Anim Sci 2012;25:812](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref37)-[7](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref37).
- [38] [Elghandour MMY, Kholif AE, L](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref38)ó[pez S, Mendoza GD, Odongo NE,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref38) [Salem AZM. In vitro gas, methane, and carbon dioxide productions of high](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref38)

fi[brous diet incubated with fecal inocula from horses in response to the](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref38) [supplementation with different live yeast additives. J Equine Vet Sci](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref38) [2016;38:64](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref38)-[71.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref38)

[39] [Kholif AE, Baza-García LA, Elghandour MMY, Salem AZM, Barbabosa A,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref39) [Dominguez-Vara IA, Sanchez-Torres JE. In vitro assessment of fecal inocula](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref39) from horses fed on high-fiber diets with fi[brolytic enzymes addition on gas,](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref39) [methane, and carbon dioxide productions as indicators of hindgut activity.](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref39) [J Equine Vet Sci 2016;39:44](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref39)-[50](http://refhub.elsevier.com/S0737-0806(19)30396-X/sref39).