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Abstract. Counting models for a two conjunctive formula (2-CF) F , a problem known
as ]2Sat, is a classic ]P complete problem. Given a 2-CF F as input, its constraint graph G
is built. If G is acyclic, then ]2Sat(F ) can be computed efficiently. In this paper, we address
the case when G has cycles. When G is cyclic, we propose a decomposition on the constraint
graph G that allows the computation of ]2Sat(F ) in incremental way. Let T be a cactus
graph of G containing a maximal number of independent cycles, and let T = (E(G)−E(T ))
be a subset of frond edges from G. The clauses in T are ordered in connected components
{K1, . . . ,Kr}. Each (G ∪ Ki), i = 1, . . . , r is a knot (a set of intersected cycles) of the
graph. The arrangement of the clauses of T allows the decomposition of G in knots and
provides a way of computing ]2Sat(F ) in an incremental way. Our procedure has a bottom-
up orientation for the computation of ]2Sat(F ). It begins with F0 = T . In each iteration
of the procedure, a new clause Ci ∈ T is considered in order to form Fi = (Fi−1 ∧ Ci) and
then to compute ]2Sat(Fi) based on the computation of ]2Sat(Fi−1).
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1 Introduction

Counting combinatorial objects is a challenging and relevant area of research in Math-
ematics, Computer Sciences, and Physics. Counting problems, being mathematically
relevant by themselves, are closely related to practical problems. Several relevant
counting problems are hard time-complexity problems. For example, ]Sat (the prob-
lem of counting models for a Boolean formula) is of special concern to Artificial
Intelligence (AI), and it has a direct relationship to Automated Theorem Proving, as
well as to approximate reasoning [1, 4, 2].

]Sat can be reduced to several different problems in approximate reasoning, for
example, in the cases of: the generation of explanations to propositional queries,
repairing inconsistent databases, estimating the degree of belief in propositional theo-
ries, in a truth maintenance systems, in Bayesian inference [9, 1, 2, 10]. The previous
problems come from several AI applications such as expert systems, planning, ap-
proximate reasoning, etc.

]Sat is at least as hard as the SAT problem, however in some cases, even when
SAT is solved in polynomial time, no computationally efficient method is known for
]Sat. For instance, 2-SAT (SAT restricted to formulas in (≤ 2)-CF’s) can be solved
in linear time. However, the corresponding counting problem ]2Sat is a ]P-complete
problem. Even though ]2Sat is ]P-Complete, there are instances of 2-CF which can
be solved in polynomial time [2, 10]. For example, if the graph which represents the
input formula is acyclic, then ]2Sat can be solved in polynomial time.

Recently, new upper bounds expressed in base of the number of variables, and
derived from exact deterministic exponential algorithms for ]2Sat have been found
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by Dahllöf [13], Fürer [7], and Angelsmark [9]. In other cases, other parameters
have been used in the determination of the computational complexity of ]2Sat. For
example, by considering the number of clauses [6], or considering the dual problem
of counting falsifying assignments [5], or considering a relative problem to ]2Sat as
is the counting of the number of independent sets [11]. Given that ]2Sat is a ]P-
complete problem, all of the above proposals have an exponential-time computational
complexity.

There are different methods for solving ]2Sat, for example, procedures based on
the Davis & Putnam decomposition and its adaptations [9, 13, 7], as well as to use a
k-tree decomposition on the constraint graph of the input formula [3]. In this work,
we propose a novel procedure with a bottom-up orientation that we consider adequate
to design a dynamic programming method for solving ]2Sat.

In this article, some of the procedures presented in [4, 5, 8] for ]2Sat are consid-
ered. We show some conditions on the constraint graph of the formula which allow the
efficient computation of ]2Sat. We also consider the general case of a 2-CF, showing
that ]2Sat can be adequately parameterized according to the number of intersected
cycles appearing in the constraint graph of the 2-CF.

In summary, the main contributions in this work that are different to the other or
our previous works, are:

• We propose a novel decomposition of a constraint graph GF of a 2-CF F . GF is
descomposed in a cactus graph AF containing a maximal number of independent
cycles and a set of edeges T = (E(G)−E(T )) ordered in connected components.

• The computation of ]2Sat(F ) has a bottom-up orientation. It begins with
F0 = T . In each iteration of the procedure, a new clause Ci ∈ T is considered
in order to form Fi = (Fi−1 ∧Ci) and then to compute ]2Sat(Fi) based on the
computation of ]2Sat(Fi−1).

• We show that each new subformula Fi has less knots (intersected cycles) than
those from its father formula. And only if the subformula Fi has new knots,
then recursive calls to the original procedure has to be performed.

In section 2, we present the preliminaries to understand the rest of the paper. In
section 3, we present a graph decomposition on the constraint graph of the input 2-CF.
In section 4, we show how to compute ]2Sat(F ) based on the graph decomposition
of the constraint graph and our main result. Finally, the conclusions of the paper are
established.

2 Preliminaries

Let X = {x1, . . . , xn} be a set of n Boolean variables. A literal denoted as l is, a
variable xi or a denied variable xi. As usual, for each xi ∈ X, x0

i = xi and x1
i = xi.

A clause c is a disjunction of different literals. For k ∈ N , a k-clause is a clause
with exactly k literals, and (≤ k)-clause is a clause with at most k literals. Sometimes,
we consider a clause as a set of literals.

A variable x ∈ X appears in a clause c if either x or x is an element of c.
A conjunctive normal form (or conjunctive form), denoted as CF , is a conjunction

of clauses, and k-CF is a CF containing only k-clauses. A CF F with n variables
is a n-ary Boolean function F :{0, 1}n → {0, 1}. We also consider a CF as a set of
clauses.

We denote with Y any of the basic logic elements that we are using, such as a
literal, a clause, or a CF. Then, υ(Y ) expresses the set of variables involved in the
object Y . For example, for the clause c = {x2, x3}, υ(c) = {x2, x3}. Meanwhile,
Lit(Y ) denotes the set of literals involved in object Y . For example, if X = υ(F ),
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then Lit(F ) = X∪X = {x1, x1, . . . , xn, xn}. We also use ¬Y as the negation operator
on the object Y . We denote to {1, 2, 3, . . . , n} by [[n]], and the cardinality of a set A
by |A|.

An assignment s for F is a Boolean mapping s : υ(F ) → {0, 1}. An assignment
s can be also considered as a set of non-complementary pairs of literals. l ∈ s if and
only if s assigns true to l and false to l. Considering a clause c and an assignment
s as set of literals, c is satisfied by s if and only if (c ∩ s) 6= ∅, and if for all xε ∈ c,
x1−ε ∈ s then s falsifies c.

Let F be a CF, F is satisfied by an assignment s if each clause in F is satisfied by
s. F is contradicted by s if any clause in F is contradicted by s. A model of F is an
assignment for υ(F ) that satisfies F . s is a partial assignment for the formula F when
s has determined a logical value only to variables of a proper subset of F . Given a CF
F , the SAT problem consists of determining if F has a model. Meanwhile, SAT (F )
denotes the set of models of F . The ]Sat problem consists of counting the number
of models of F defined over υ(F ). ]2Sat denotes ]Sat for formulas in 2-CF.

2.1 The constraint graph of a 2-CF

There are some graphical representations of a conjunctive form (see e.g. [12]), we use
here the signed primal graph of a 2-CF. Let F be a 2-CF with set of variables υ(F ).
The constraint graph (signed primal graph) of F is denoted by GF = (V (F ), E(F )),
with V (F ) = υ(F ) and E(F ) = {{υ(x), υ(y)} : {x, y} ∈ F}, that is, the vertices of GF

are the variables of F , and for each clause {x, y} in F there is an edge {υ(x), υ(y)} ∈
E(F ). We say that a 2-CF F is a path, cycle, a tree, or a forest, if its constraint
graph GF represents a path, cycle, a tree, or a forest, respectively.

Each edge c = {υ(x), υ(y)} ∈ E has an ordered pair (s1, s2) of signs associated
to the endpoints of the edge. Such signs are used as labels of the edge that connect
the vertices of the variables appearing in the clause. For example, the clause {y0, z1}
determines the labelled edge: ”y−+z” which is equivalent to the edge ”z+−y”. The
signs s1, s2 ∈ {+,−} are related to the variables y and z, respectively.

Let S = {+,−} be a set of signs. A graph with labelled edges on a set S is a pair
(G,ψ), where G = (V,E) is a graph, and ψ is a function with domain E and range
S. ψ(e) is called the label of the edge e ∈ E. Let G = (V,E, ψ) be a constraint graph
with labelled edges on S × S. Let x and y be vertices in V . If e = {x, y} is an edge
and ψ(e) = (s, s′), then s(s′) is called the adjacent sign to x(y).

Notice that a constraint graph of a 2-CF can be a multigraph since two fixed
variables can be involved in more than one clause of the formula forming so parallel
edges. Furthermore, an unitary clause defines a loop in the constraint graph. A
polynomial time algorithm to process parallel edges and loops to solve ]2Sat has
been shown in [4, 8].

Let ρ : 2-CF → GF be the function whose domain is the space of non strict
Boolean formulae in 2-CF and codomain the set of multi-graphs. It is clear that
ρ is a bijection. So any 2-CF formula has a unique signed constraint graph (up to
isomorphism) associated via ρ and viceversa, any signed constraint graph GF has a
unique formula associated via ρ−1.

3 A graph decomposition of the input formula

For the sake of simplicity, we used ]2Sat(G) where G is the constraint graph of a
formula F , to denote ]2Sat(F ). Let G be a forest, since

]2Sat(G) =

k∏
i=1

]2Sat(Gi)
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where Gi, i = 1, . . . , k are the connected components of G [2], then the total time com-
plexity for computing ]2Sat(G), denoted as T (]2Sat(G)), is given by the maximum
rule:

T (]2Sat(G)) = max{T (]2Sat(Gi)) : Gi is a connected component of G}.

Thus, from here on, we consider as an input graph only a connected component.
Let GF = (V (F ), E(F ), {+,−}) be a signed connected graph of an input formula F
in 2-CF, with n = |V | and m = |E|.

A depth-first search (abbreviated as dfs) is applied over GF . The dfs starts with
the node vr ∈ V of minimum degree; when a new node is visited, we select first the
nodes with minimum degree, if there are several, as a second criterion, we select the
one with minimum value in its label. The result of applying a dfs on G is a depth-first
graph G′, which we will denote as G′ = dfs(GF ) and a spanning tree TG with vr as
the root node.

The dfs allows us to detect if G has or has not cycles and the parity of such cycles
in time O(m + n). The edges in TG are called tree edges. An edge e ∈ E(G)\E(TG)
is called a frond edge, and we call to its respective clause ce ∈ F a frond clause. Let
e ∈ E(G)\E(TG) be a frond edge, the union of the path in TG between the endpoints
of e with the edge e itself forms a simple cycle Ce, such cycle is called a basic cycle
of G with respect to TG.

Let C = {e1, e2, ..., ek} be the set of frond edges found during the depth-first search.
If two distinct simple cycles Cei and Cej , i 6= j from C have common edges then we
say that both cycles are intersected, and then, Cei4Cej form a new cycle, where 4
denotes the symmetric difference operation between the set of edges of both cycles. If
two simple cycles are non-intersected we say that they are independent. Notice that
k ≤ m− n+ 1 is the dimension of the Z2-vector space with the symmetric difference
on the edge sets as addition, and C is a base in that Z2-vector space.

Decomposition plays an important role in graph theory. There are various decom-
positions of graphs such as decomposition by clique separators, tree decomposition or
clique decomposition. All of them have been shown to be a useful tools in the design
of efficient graph algorithms. There are even beautiful general results stating that
a variety of NP-complete graph problems can be solved in linear time for graphs of
bounded treewidth and bounded clique-width, respectively [3, 7].

We propose a decomposition of G, by AF that is a cactus graph containing
a maximal number of independent cycles from G, and C̄ = E(GF ) − E(AF ) =
{e1, e2, . . . , et} ⊆ C be the set of frond edges forming intersecting cycles with the
cycles in AF .

The decomposition of G allows us to consider basic cases for the computation of
]2Sat(F ). Some basic cases could be consider e.g. that the input instance F is such
that its constraint graph AF has not intersected cycles (C̄ = ∅), or the case when
|υ(AF )| ≤ d for some constant d, in some works such constant is for example d < 8
[9, 13, 7]. When AF has not intersecting cycles, we have designed a procedure (see
[4, 8]) for computing ]2Sat(F ) in linear time on the size of AF .

Let us consider the case when G has intersected cycles. For this case, let AF

be a cactus graph with a maximal number of independent cycles from G and let
C̄ = E(GF )−E(AF ). Let κ be a knot that is a set of intersecting cycles. This means
that each pair of cycles in κ are intersected in G. The cardinality of a knot |κ| is the
number of cycles forming such knot. Notice that any knot has at least one edge e
that is common to all cycle in that knot.

The knots of the graph are identified by traversing through the frond edges, and
also the cardinality of each knot can be computed at the same time. We call knotting
number of a graph to the maximum cardinality of any knot in the graph. We denote
the knotting number of a graph G as $(G), then $(G) = max{|κ| : κ is a knot of G}.
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The edges in C̄ are ordered in connected components {K1, . . . ,Kr}. Each (AF ∪
Ki), i = 1, . . . , r forms a knot of the graph. Note that {K1, . . . ,Kr} is a partition of
C̄ and then, C̄ = ∪rj=1(Kj), and (Ki) ∩ (Kj) = ∅, i 6= j, i, j = 1, . . . , r.

Our procedure begins considering F0 = AF . The order on the clauses of C̄ allows
the decomposition of GF in knots, at the same time that provide a way of computing
]2Sat(F ) in a bottom-up orientation, based on the computation of each ]2Sat(G0 ∪
Ki), i = 1, . . . , r, as we show in the following section.

4 Incremental Computation of ]2Sat

Contrary to the Davis & Putnam counting procedure, which has a top-down orien-
tation for computing ]2Sat, as well as some of its adaptations [9, 13, 7], we propose
here, a novel procedure with a bottom-up orientation, which is adequate for solving
the ]2Sat problem applying dynamic programming.

Given a 2-CF F as input, our proposal begins forming a decomposition on G (the
constraint graph of F ). The decomposition of G is given by AF that is a cactus graph
containing a maximal number of independent cycles from G, and a set {K1, . . . ,Kr}
of connected components of C̄, such that each (AF ∪Ki), i = 1, . . . , r forms a knot of
the graph.

In each iteration of our proposal, a new frond edge ei ∈ C̄, i = 1, . . . , t is con-
sidered in order to form the corresponding formula Fi = (Fi−1 ∧ cei), where cei is
the frond clause of ei and then ]2Sat(Fi) is computed. Notice that ]2Sat(F ) =
]2Sat(AF

∧
ei∈C̄ cei).

One relevant tool in our proposal is the application of the unit resolution propa-
gation as a part to perform into the computation of ]2Sat(Fi). In this section, we
present first the procedure Eval(Fi, cei), that is the application of unit resolution
propagation on Fi in order to recognize which models of Fi do not satisfy (cei).

Definition 4.1
Let H be a CF and xε, ε ∈ {0, 1} a literal of H. The reduction of H by xε, also called
forcing xε and denoted by H[xε], is the formula generated from H by the following
two rules:

a) removing from H the clauses containing xε (subsumption rule),

b) removing x1−ε from the remaining clauses (unit resolution rule).

A reduction is also sometimes called a unit reduction. The reduction by a set
of literals can be inductively established as follows: let s = {xε1

1 , x
ε2

2 , . . . , x
εk

k } be
a partial assignment of υ(H). The reduction of H by s is defined by suceessively
applying definition 4.1 for xεii , i = 1, . . . , k. It means that the reduction of H by xε11

forms the formula H[xε11 ], following of a reduction of H[xε11 ] by xε22 , forming as a result
the formula H[xε11 , x

ε2
2 ], and so on. The process continues until H[s] = H[xε11 , ..., x

εk
k ]

is reached. In case that s = ∅, then H[s] = H.

Example 4.1
Let H = {{x1

1, x
0
2}, {x1

1, x
1
2}, {x1

1, x
1
3}, {x0

1, x
1
3}, {x0

2, x
1
4}, {x0

2, x
0
4},

{x1
2, x

1
5}, {x1

3, x
0
5}}. Then, H[x0

2] = {{x1
1}, {x1

1, x
1
3}, {x0

1, x
1
3}, {x1

5}, {x1
3, x

0
5}}, and for

s = {x1
2, x

0
3} we have that H[s] = {{x1

1}, {x1
1}, {x0

1}, {x1
4}, {x0

4}, {x0
5}}.

Let F be a CF and s a partial assignment of F . If a pair of contradictory unitary
clauses is obtained while F [s] is being computed then ]Sat(F [s]) = 0, because under
no circumstances a pair of complementary unitary clauses can be set to true at the
same time. Thus, F [s] does not have models.

During the computation of F [s] new unitary clauses can be generated. Thus,
the partial assignment s is extended by adding the unitary clauses found, that is,
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s = s ∪ {u} where {u} is a unitary clause. So, F [s] can be again reduced using the
new unitary clauses. To this process of reducing an initial formula F via unit clauses
is also called unit resolution propagation. We call to this iterative process Eval(F, s).

The application of definition 4.1 on a 2-CF formula F , could remove variables
which have to be considered in the models of F . Let us present an example.

Example 4.2
Let F = {{x}, {x, y}}, in other words, F = x ∧ (x ∨ y). It follows that F [x] = ∅. It
can be noticed that {y} 6∈ F [x], however y can take any logical value in the models of
F .

The variables which are removed from F during the application of Eval(F, s),
form a set denoted by ElimVars(s). In fact, it can be checked that |ElimVars(s)| =
|υ(F )| − |υ(F ′)| − |s′|, where s′ is the assignment of s extended by the unit clauses
processed during the iterative process Eval(F, s). Meanwhile, F ′ is the subformula
from F resulting of the application of Eval(F, s). We will denote to those results
of Eval(F, s), the subformula F ′ and the extended assignment s′, as: (F ′, s′) =
Eval(F, s). For the sake of simplicity, when we want to reference to only one element
of the pair, we use F ′ = Eval(F, s), or s′ = Eval(F, s).

Lemma 4.1
Let F be a 2-CF and s a partial assignment on υ(F ), if (F ′, s′) = Eval(F, s), then

]Sat(F ) = ]Sat(F ′)× 2|ElimVars(s(F ))|. (1)

Every model of AF had already determined truth values for all variable υ(F ) of
the total formula F . Given a frond clause c = {xε1j , x

ε2
k } in C̄, for any model s of AF

such that x1−ε1
j ∈ s and x1−ε2

k ∈ s, then s is not a model of AF ∧ c, because s falsifies
c. Thus, if we know SAT(AF ) then

]Sat(AF ∧ c) = ]Sat(AF )− |{s ∈ SAT (AF ) : s falsifies c}|. (2)

Let Y = {s ∈ SAT (AF ) : s falsifies c}, where c is a clause in C̄. A procedure
to compute |Y | starts forming a partial assignment sc = c = {x1−ε1

j , xε2k }, and then
Evaluate sc on AF , that is, F ′ = AF [sc]. Finally, |Y | = ]Sat(F ′). Eq. (2) can be
rewritten, as: ]Sat(AF ∧ c) = ]Sat(AF )− ]Sat(AF [sc])|.

We iterate equation (2) for computing new frond clauses in F . This means that

]2Sat(AF

∧
ei∈C̄

cei)

is computed in an iterative way, forming in each iteration a new formula F ′ =
Eval(Fi−1, si), which is the resulting formula of the Evaluation of the partial assign-
ment si on the formula Fi−1 = (AF ∧i−1

j=1 cej ). In our case, si = ci denotes the partial

assignment on υ(F ) falsifying ci, that is, if ci = (xε11 , x
ε2
2 ) then si = {x1−ε1

1 , x1−ε2
2 }.

We present now, the pseudo-code for the incremental computation of

]2Sat(AF

∧
ei∈C̄

cei).

Thus, assuming AF = (AF ∧ ce0), our procedure computes ]2Sat(F ) based on the
following equation:

]2Sat(F ) = ]2Sat(AF )−
t∑

i=1

]2Sat((AF

i−1∧
j=1

cej )[cei ]) (3)
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Algorithm 1 Counting Models

1: procedure CountModels(F)
2: Decompose F in a cactus formula AF and the frond edges C̄
3: F0 ← AF . Cactus formula is a base case for this recursive
4: A0 ← ]2Sat(F0) . process, which is computed in linear time
5: for all ei ∈ C̄ do {
6: F ′ ← Eval(Fi−1, cei)
7: Ai ← Ai−1 −CountModels(F ′)
8: Fi ← (Fi−1 ∧ cei)
9: }

10: return (Ai) . ]2Sat(F ) = Ai

In fact, if the constraint graph of each resulting subformula Fi = (AF∧i−1
j=1 cej )[cei ], i = 1, . . . , t has not intersecting cycles, or |υ(Fi) ≤ d|, then each

]2Sat(Fi) is computed in linear time on the size of Fi, which in the worst case is

of order O(m), and then the sum
∑t−1

i=0 ]2Sat(Fi+1) will be computed in a complex-
ity time of O(m · t) ≤ O(m(m− n)) and all the computation of ]2Sat(F ) will have,
in the worst case, a polynomial time complexity of order O(m · (m − n)), that is a
quadratic-time complexity on the number of clauses of the input formula.

In this case, we can consider the computation of ]2Sat(F ) by t + 1 linear-time
logical subformulas Fi (where F0 = AF and the computation of each ]2Sat(Fi), i =
1, . . . , t is done in linear-time complexity). Notice that in this case, the initial graph
GF could have knots but each one of the constraint graphs of each Fi, i = 1, . . . , t
may have not knots.

If the constraint graph of any Fi, i = 1, . . . , t has knots (intersecting cycles) then
the same equation (3) is applied recursively in order to compute ]2Sat(Fi). For
example, if only two recursive calls are needed to compute ]2Sat(F ) (one for F
and one for some Fi, i = 1, . . . , t − 1) then the computation of ]2Sat(F ) is done by
two recursive calls of the procedure CountModels, that includes linear-time and
quadratic-time polynomial functions, where each one of its constraint graphs has at
most one set of intersecting cycles.

In this way, we can consider the raise of the degree of the polynomial time-function
for computing ]2Sat(F ) in accordance to the cardinality of the knots κi appearing
in the constraint graphs of the subformulas GFi , that also represents the maximum
number of recursive calls to CountModels until subgraphs holding the basic cases
for the procedure are obtained.

Of course, an ordering on the set of frond edges C̄ is crucial for accelerating the
computation of ]2Sat(F ). For this reason C̄ is ordered in connected components
K = {K1, . . . ,Kr}, where each (AF ∪Ki) is a knot of the graph.

The order on the clauses of C̄ allows the decomposition of GF in knots, at the
same time that provides a way of computing ]2Sat(F ) in a bottom-up orientation,
based on the computation of each ]2Sat(Fi ∪ Ki+1), i = 1, . . . , r. Then, the recur-
sive procedure CountModels for computing ]2Sat(F ) depends on the knot of the
maximum cardinality, more than the number of knots in F .

In fact, for two edges e1, e2 in Kj ∈ K usually they form a same subgraph when
they are Evaluated on the graph AF , as it will be shown in the following example.

Example 4.3
Let us consider as an example a 2-CF positive monote. This means that all variable
in υ(F ) appear in unnegated form in F .

Let F =
{
{x1

1, x
1
2}, {x1

1, x
1
6}, {x1

1, x
1
7}, {x1

2, x
1
3}, {x1

2, x
1
6}, {x1

2, x
1
7}, {x1

3, x
1
4},

{x1
3, x

1
7}, {x1

3, x
1
8}, {x1

3, x
1
5}, {x1

4, x
1
5}, {x1

4, x
1
9}, {x1

5, x
1
10}, {x1

5, x
1
11}, {x1

6, x
1
7}, {x1

8, x
1
9},



A Bottom-Up Algorithm for Solving ]2Sat 8

{x1
10, x

1
11}

}
be a 2-CF whose constraint graph is shown in Figure (1a).

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10 x11

(a) Constraint graph of F

x1

x2

x3

x6

x7

x10x11

x5

x4

x9

x8

(b) AF = F0

x1

x6

x2

x7

x5

x3

(c) Frond set or C̄

Figure 1: The cactus graph AF (1b) built using a dfs traversal on the graph (1a), its
frond set is given by graph (1c).

x1

x2

x3

x6

x7

(a) Knot 1

x3

x10x11

x5

x4

x9

x8

(b) Knot 2

Figure 2: Knots formed from the constraint graph of Figure (1a). The dotted lines
indicate the elements of the frond set.

x3

x10x11

x5

x4

x9

x8

(a) G1 = Eval{F0, {x0
1, x

0
6}}

x1

x2

x3

x6

x7

x10x11

x5

x4

x9

x8

(b) F1

x6

x2

x7

x5

x3

(c) Frond set or C̄

Figure 3: The constraint graphs after Evaluation of Eval(F0, {x0
2, x

0
6}), F1 and the

new frond set C̄.

For monotone formulas, ]2Sat continues being a ]P-complete problem. Further-
more, ]2Sat for a positive monotone formula is directly related to the problem of
counting independent sets on the constraint graph of the formula.

For our input formula, the cactus graph AF = F0 and its frond set C̄ are shown
in figures (1b) and (1c) respectively. The constraint graph has two knots which are
shown in figures 2a and 2b.

Let A0 = ]Sat(F0) = 176, since there are two knots, the algorithm processed
the first one, lets say Knot 1 (2a). Select the first edge {x1

1, x
1
6} from the frond

set, so A1 = A0 − CountModels(Eval{F0, {x0
1, x

0
6}}). The constraint graph of

Eval{F0, {x0
1, x

0
6}} is presented in Figure (3a). Hence A1 = A0 − ]Sat(G1)=176-

26=150. F1 = F0 ∪ {x1
1, x

1
6} is shown in Figure (3b) and the new frond set in Fig-
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(a) G2 = Eval{F1, {x0
2, x

0
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x10x11

x5

x4

x9
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(b) F2

x2

x7 x5

x3

(c) Frond set or C̄

Figure 4: The constraint graphs after Evaluation of Eval(F1, {x0
2, x

0
6}), F2 and the

new C̄.
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(a) G3 = Eval{F2, {x0
2, x

0
7}}

x1

x2

x3

x6

x7

x10x11

x5

x4

x9

x8

(b) F3

x5

x3

(c) Frond set or C̄

————————————-

Figure 5: The constraint graphs after Evaluation of Eval(F2, {x0
1, x

0
7}), F3 and the

new frond set C̄.

ure (3c). Notice that for this class of instances, the resulting graph from
Eval{Fi, {x0

j , x
0
k}} is the same graph obtained of the reduction: (Fi−(N [xj ]∪N [xk])).

The process is repeated, now select a second edge from C̄ let said {x1
6, x

1
2}. Hence

G2 = Eval({F1, {x0
6, x

0
2}}), Figure (4a). So CountModels(G2) = 18 and A2 =

A1 − CountModels(G2) = 150 − 18 = 132. So F2 = F1 ∪ {x1
2, x

1
6} and C̄ =

{{x1
2, x

1
7}, {x1

3, x
1
5}}, Figures (4b) and (4c) respectively.

The last edge of the first knot is selected {x2, x7} which allows to compute G3 =
Eval(F2, {x0

1, x
0
7}), Figure (5a). This time G3 = G2 so CountModels(G3) = 18

and A3 = A2 − CountModels(G3) = 132 − 18 = 114. So F3 = F2 ∪ {x1
2, x

1
7} and

C̄ = {{x1
3, x

1
5}}, Figures (5b) and (5c) respectively. The last clause {x1

3, x
1
5} from

C̄, which forms the second knot of F , is selected. Then G4 = Eval(F3, {x0
3, x

0
5}) is

computed, Figure (6).
Therefore CountModels(G4) = 6. So, A4 = A3−CountModels(G4) = 114−

6 = 108 = ]Sat(F ) the initial formula.

Notice that for the above example, the computation of CountModels(Gi), i =
1, 2, 3, 4 has been done in linear time, since each Gi is a cactus graph. Hence if the
resulting Evaluation of the constraint graph Gi with a clause from the frond set is
not cactus, an unfold of Gi has to be done forming its own frond set which results in
an exponential time in the knotting number of GF in the worst case.

5 Conclusions

The ]2Sat problem is a classical ]P-complete problem. However, there are several
instances of 2-CF’s for which ]2Sat can be solved efficiently. For example, if GF (the
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x9

x1

x6

Figure 6: The constraint graphs G4 after Evaluation of Eval(F3, {x3, x5}}).

constraint graph of F ) is a cactus graph, then ]2Sat(F ) is solved in linear time.
Otherwise, let G0 be a cactus graph from GF containing a maximal number of

independent cycles from GF , and let C̄ = E(GF )−E(G0) be the set of edges forming
intersected cycles in GF . The clauses in C̄ are ordered in connected components
{K1, . . . ,Kr}. Each (G0 ∪Ki), i = 1, . . . , r is a knot of the graph.

We have presented an incremental procedure for computing ]2Sat(F ). The pro-
cedure begins computing ]2Sat(G0), and in each iteration, a new clause ci ∈ C̄
is considered in order to form Gi = (Gi−1 ∪ Ci), and then compute ]2Sat(Gi) =
]2Sat(Gi−1)− ]2Sat((Gi−1)[ci]).

The order on the clauses of C̄ allows the decomposition of GF in knots, at the
same time that provide a way of computing ]2Sat(F) in a bottom-up orientation,
based on the computation of each ]2Sat(G0 ∪Ki), i = 1, . . . , r.
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