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Simple Summary: The minimum alveolar concentration of isoflurane (inhaled anesthetic required to
prevent movement in 50% of subjects exposed to a supramaximal noxious stimulus) was determined
in 24 male rats chronically treated with the synthetic cannabinoid WIN 55,212-2 to evaluate the
interaction of isoflurane with chronically administered cannabinoid agonist. The minimum alveolar
concentration was determined in one group without treatment, in rats treated for 21 days with WIN
55,212-2, and another group 8 days after stopping treatment for 21 days with cannabinoid. We believe
it is necessary to study the effects of chronic consumption of these substances on the requirements of
inhalation anesthetics in patients that will be submitted to general anesthesia. The administration
for 21 days of WIN 55,212-2 increases the minimum alveolar concentration of isoflurane in rats; this
effect does not disappear after 8 days of discontinuing treatment with the synthetic cannabinoid.

Abstract: The minimum alveolar concentration MAC of isoflurane was measured in rats chronically
treated with WIN 55,212-2. Methods: The MAC of isoflurane was determined in 24 male rats from
expiratory samples at time of tail clamping under the following conditions: without treatment
MAC(ISO), in rats treated for 21 days with WIN 55,212-2 MAC(ISO + WIN55), and in rats 8 days after
stopping treatment with WIN 55,212-2 (MACISO + WIN55 + 8D). Results: The MAC(ISO) was 1.32 ± 0.06.
In the MAC(ISO + WIN55) group, the MAC increased to 1.69 ± 0.09 (28%, p-value ≤ (0.0001). Eight days
after stopping treatment with WIN55, the MAC did not decrease significantly, 1.67 ± 0.07 (26%,
p-value ≤ 0.0001). Conclusions: The administration of WIN 55,212-2 for 21 days increases the MAC
of isoflurane in rats. This effect does not disappear 8 days after discontinuation of treatment with the
synthetic cannabinoid.

Keywords: minimum alveolar concentration MAC; isoflurane; WIN 55,212-2; rats

1. Introduction

Cannabis sativa, one of the oldest psychotropic drugs known [1], is also the most
consumed drug according to the World Drug Report 2019, published by the United Nations,
which estimated that there are over 188 million consumers of cannabis [2].

Animals 2022, 12, 853. https://doi.org/10.3390/ani12070853 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani12070853
https://doi.org/10.3390/ani12070853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-2078-1217
https://orcid.org/0000-0002-6511-6595
https://orcid.org/0000-0001-5126-2092
https://doi.org/10.3390/ani12070853
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani12070853?type=check_update&version=1


Animals 2022, 12, 853 2 of 7

Delta-9-tetrahydrocannabinol (Delta 9-THC) was isolated in the 1960s [3], the cannabi-
noid type 1 receptor (CB1) was identified at the end of the 1980s [4], and the cannabinoid
type 2 receptor (CB2) was discovered in 1993 [5]. Subsequently, the first [6] and second
endogenous cannabinoids were discovered [7]. The endocannabinoid system (ECS) is
involved in many health and disease processes [8], and different research groups have per-
formed investigations [9] by modulating the activity of the ECS and assessing the possible
effects of manipulating this system. This information could have important therapeutic
applications [10–12] in a variety of diseases, such as epilepsy and acute and chronic pain
in humans.

Therefore, we believe it is necessary to study the effects of chronic consumption of
these substances on the requirements of inhalation anesthetics in patients that will be
submitted to general anesthesia.

The objective of this study was to evaluate the interaction of a chronically administered
cannabinoid agonist on the minimum alveolar concentration (MACISO); to the knowledge
of the authors, there are no studies that evaluate this interaction. MAC is defined as the
minimum alveolar concentration of an inhaled anesthetic required to prevent movement in
50% of subjects exposed to a supramaximal noxious stimulus and represents an index of the
potency of anesthetic agents [13]. The authors hypothesize that cannabinoids administered
chronically have a different effect than that previously reported in acute administration
of MAC.

2. Materials and Methods

This experiment was approved by the Animal Research Ethics Committee for Animal
Experimentation of the Faculty of Veterinary Medicine of the University of the State of Mex-
ico (protocol number 3492/2013CHT). A total of 24 male Wistar rats weighing 310 ± 20 g
were used.

The rats were housed in groups of 4, in Plexiglas cages, with a 12 h light/12 h dark
cycle (lights on at 07:00), with a relative humidity of 50–60% and ambient temperature
of 23 ± 2 ◦C. The animals had free access to water and rodent food (Prolab1 RMH 2500,
St. Louis, MO, USA). Animals were allowed to acclimatize for one week before the experi-
ments took place. These experiments were performed during the morning (09:00–12:00).
All animals were handled according to the guidelines in the Guide for the Care and Use of
Laboratory Animals [14].

2.1. Anesthetic Procedure

Anesthesia was induced by placing each rat in the induction chamber and delivering
5% isoflurane (Forane; Baxter Laboratories, Irvine, CA, USA) with a continuous oxygen
flow rate of 5 L/min. Once the animal was adequately anesthetized, it was removed from
the induction chamber and placed in dorsal recumbency for endotracheal intubation. The
oral cavity was opened, and, with the aid of a laryngoscope, the larynx was visualized, and
a flexible blunt-tip wire guide was inserted and used to direct the endotracheal catheter
(16G Teflon catheter: Introcan; B-Braun, Sao Goncalo, Brazil), which was secured to the
maxilla by means of adhesive tape.

Correct placement of the catheter was confirmed by CO2 infrared absorption analysis
(BeneView T5, Mindray, Multi-gas offers, Shenzhen, China). The catheter was connected to
a small T-piece breathing system with minimal dead space and fresh gas flow of 1 L/min
of oxygen. The isoflurane concentration was adjusted as necessary based on an assessment
of the palpebral reflex and hemodynamic responses during instrumentation. During the
study, rats were breathing spontaneously.

The carotid artery was exposed surgically and catheterized using a 24- gauge catheter
(Introcan; B-Braun, São Gonçalo, Brazil). This catheter was connected to a pressure trans-
ducer system for direct blood pressure monitoring and the collection of arterial blood to
determine blood gases. Systolic, diastolic, and mean arterial blood pressures (SAP, DAP,
and MAP, respectively) and heart rate (HR) were continuously monitored (BeneView T5,
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Mindray, Shenzhen, China). For blood gas analysis (GEM Premier 3000; Instrumentation
Laboratory, Seattle, WA, USA), 0.3 mL of blood was obtained immediately after determining
the MAC to ensure (at that time) that values were within normal physiological parameters.
Rectal temperature was maintained between 37 ◦C and 38 ◦C by means of a convective
warming system (Equator1, SurgiVet1, Smiths Medical PM Inc., San Clemente, CA, USA).
Inspired isoflurane (FiIso), end-tidal (FeIso) concentrations, end-tidal carbon dioxide tension
(PEtCO2), and respiratory rate (RR) were continuously measured with an infrared gas ana-
lyzer previously calibrated (BeneView T5, Mindray, multi-gas offers, Shenzhen, China) by
endotracheal gas sampling (60 mL/min) obtained by means of a catheter inserted through
the endotracheal tube with the tip located at the level of the carina.

2.2. MAC Determination

Once instrumentation was performed, and prior to assessing MAC isoflurane, FeIso
was adjusted to 1.32%, which is a value close to the isoflurane MAC previously reported
by the authors [15]. Once this concentration was achieved, it was maintained for 15 min
in order to achieve the equilibrium of isoflurane partial pressure between alveolar gas,
arterial blood, and the spinal cord. [16] The isoflurane MAC was determined by the tail
clamp method described by Quasha et al. [17]. A painful noxious stimulus was applied
with a hemostat clamped (8-inch Rochester Dean hemostatic forceps) on the tail at a specific
end-tidal concentration of each volatile agent. The tail was clamped to the first ratchet
lock for 60 s or until a positive response was observed. The tail was always stimulated
proximally to the previous test site. A positive motor response was considered if jerking
or twisting motions of the head or body, or movement of the extremities was observed.
Negative responses included a lack of movement of the head and limbs, muscle rigidity,
shivering, swallowing, and chewing; movement of the tail should not be considered.

If the response was positive, the delivered volatile anesthetic concentration was in-
creased by 10%, and, if the response was negative, the concentration of the volatile anes-
thetic was decreased by 10%. After an equilibration period of 15 min, the application of the
stimulus was repeated. The person assessing the response was blinded with respect to the
drugs administered to each rat. In each rat, the MAC was evaluated in duplicate.

The MAC of isoflurane values was corrected to sea level by use of the formula (baro-
metric pressure of location/760 mmHg) x obtained MAC value. The mean barometric
pressure was obtained from the official city meteorological station for the altitude at which
the experiment was performed (2680 m above sea level) and was 556 mmHg. At the
end of each experiment, animals were euthanized with pentobarbital given intravenously
(Anestesal, Pfizer, Toluca, Mexico) to animals deeply anaesthetized with the inhalant agent.

2.3. Experimental Design

Using a random number generator (Excel 2007, Microsoft Office), the animals were
distributed into three groups (n = 8).

The control group MAC(ISO) remained untreated for the measurement.
The MAC (ISO + WIN55) group was treated intraperitoneally (i.p) with 1 mg/kg of WIN

55,212-2 (mesylate salt, Sigma-Aldrich, St. Louis, MO, USA) every 24 h (at 09:00 h) for
21 days, Lawston et al. [18].

WIN 55,212-2 was suspended in a vehicle solution of 0.3% Tween 80 in saline (0.9%),
as described by Tanda et al. [19]. Isoflurane MAC measurements were performed 24 h after
the last treatment of WIN 55,212-2 (day 22).

The MAC (ISO + WIN55 + 8D) group was treated i.p with 1 mg/kg of WIN 55,212-2 every
24 h (at 09:00 h) for 21 days. The measurement of isoflurane MAC was performed 8 days
after the last treatment with WIN 55,212-2 (day 29).

2.4. Statistical Analysis

Statistical analysis was performed using Prism 6 (GraphPad Software, Inc., San Diego,
CA, USA). The Shapiro–Wilk test was used for the assessment of data normality. Data are
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reported as mean ± standard deviation (SD). Analysis of variance was performed, and
post hoc comparison of the groups was performed using the Holm–Sidak test. Values were
considered statistically different when p < 0.05.

3. Results

The results are summarized in Table 1. The value of the mean ± SD obtained in the
MACISO group was 1.32% ± 0.06. The MACISO + WIN55 group showed a 28% increase in
the MAC isoflurane; the mean value for this group was 1.69% ± 0.09 and was significantly
different when compared to the MACISO group (p < 0.0001). The MAC value of the
MACISO + WIN55 + 8D group was 1.67% ± 0.07, and there was no difference when
compared to the MACISO + WIN55 group (p = 0.6995), but a significant difference was
found when compared with the MACISO (p < 0.0001). Table 2 shows the cardiorespiratory
and temperature values of the different study groups in which no significant statistical
differences are observed between the different values.

Table 1. MAC of Isoflurane in rats chronically treated with the synthetic cannabinoid WIN 55,212-2.

Group MAC% SD % MAC
Increase p-Value 95% IC

MACISO 1.32 0.06 - 1.27–1.37
MACISO + WIN55 1.69 * 0.09 28% <0.0001 1.58–1.77
MACISO + WIN + 8D 1.67 * 0.07 26% <0.0001 1.60–1.75

* Statistically significant compared to the control group CAMISO (p < 0.05).

Table 2. Cardiorespiratory and temperature values of the different study groups.

Value MACISO MACISO + WIN55 MACISO + WIN + 8D

Hearth rate (bpm) 401 ± 8 403 ± 7 403 ± 9

Mean arterial blood
pressure (mmHg) 93 ± 8 90 ± 9 91 ± 6

Temperature ◦C 37.7 ± 0.07 37.6 ± 0.12 37.7 ± 0.06

pH 7.3 ± 03 7.3 ± 0.04 7.3 ± 0.03

PaO2 (mmH) 301 ± 34 295 ± 8 288 ± 28

PaCo2 (mmHg) 37 ± 4 37 ± 1 37 ± 1

4. Discussion

In this work, we observed that a synthetic cannabinoid chronically administered
increases the MAC of isoflurane.

While the use of cannabinoids has increased in a recreational and therapeutic way [20],
to the knowledge of the authors, there are no reports of the effect of chronic administration
of cannabinoids on the requirements of inhalation anesthetics. In this investigation, we
observed that after 21 days of administering the synthetic cannabinoid WIN 55,212-2,
MAC of isoflurane in rats increased. However, this observation may not necessarily reflect
the effect that occasional Cannabis sativa consumption could generate in humans. The
most abundant substance present in the cannabis plant, ∆9-THC, is responsible for its
psychotropic effects [2] and is a phytocannabinoid and partial agonist of the CB1 receptor.
WIN 55,212-2 is a synthetic total cannabinoid agonist of the CB1/CB2 receptors [20];
therefore, the effectiveness of the cannabinoid agonist and the duration of exposure could
influence the effect on the requirements of inhalation anesthetics.

WIN 55,212-2 causes an increase in the central levels of norepinephrine. Page and
collaborators [21] showed that rats treated with WIN 55,212-2 for 8 days had an increase in
noradrenergic activity. Furthermore, they demonstrated that repeated administration of
WIN 55,212-2 stimulates CB1 cannabinoid receptors in cell bodies of the locus coeruleus and
nerve terminals containing norepinephrine, generating an increase in norepinephrine efflux.
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Norepinephrine levels in nervous terminals modulate the MAC response of isoflurane
as Miller et al. [22] demonstrated in a previous work, in experiments following the admin-
istration of alpha-methyldopa, reserpine, and iproniazid. These authors demonstrated that
the requirements of inhalational anesthetics are related to norepinephrine levels. Thus,
drugs that decrease the concentration of norepinephrine in the central nervous system
decrease the MAC. On the other hand, drugs that increase norepinephrine levels cause an
increase in the requirement for inhalation anesthetics. Similarly, it has been reported that
acute administration of amphetamine [23] and cocaine [24] increases the MAC of halothane
in dogs due to an increase in the catecholamine concentration in the central nervous system.

In addition, diverse neurotransmitters, such as norepinephrine, may manifest some
of their actions by strongly inhibiting TWIK-related acid-sensitive K+ channels (TASK)
and thus influence neuronal excitability. Similarly, inhalation anesthetics activate, and
cannabinoid agonists inhibit, TASK channels [25,26]. Perhaps the collective inhibition
between norepinephrine and cannabinoids of TASK channels led to the need for a higher
concentration of isoflurane to increase the anesthetic requirements necessary to prevent
movement in response to painful stimulus.

Previous studies have reported that acute and subacute administration of ∆9-THC
decreases the MAC of halothane in dogs [27], and the MAC cyclopropane decreases in
rats [28] when treated acutely and chronically (for one week) with ∆9-THC. This discrep-
ancy with our results may be explained on the basis of the experimental design, while we
administered the cannabinoid receptor agonist for 21 days, Stoelting and Vitez adminis-
tered the treatment for a shorter period of time, besides we used WIN55,212-2, while the
cited works used ∆9-THC.

Another explanation for the differences observed in MAC isoflurane can be through
the observations made by Mechoulam et al. [29] and by Marciano et al. [30], which indicate
that endocannabinoids have paradoxical effects on the central nervous system of mammals
since, in some cases, they generate an increase in neuronal excitability and, in others, they
decrease it, depending on the dose administered. Similarly, they reported that cannabinoids
cause short-term inhibitory effects on the release of glutamate; in contrast, prolonged
stimulation of CB1 receptors by exogenous administration of cannabinoids could block the
release of the inhibitory neurotransmitter GABA [30].

In this sense, an increase in the MAC of isoflurane suggests that systemic and sus-
tained administration of WIN 55,212-2 reflected an increase in the anesthetic requirements
necessary to prevent movement in response to painful stimulus.

When measuring MAC after 8 days of stopping cannabinoid administration
(MACISO + WIN55 + 8D group), we found no statistically significant differences compared to
the MACISO + WIN55 group. Therefore, the increase in the isoflurane MAC caused by the ad-
ministration of WIN 55,212-2 does not decrease after 8 days of stopping the administration
of the cannabinoid, possibly caused by an increase in noradrenergic activity sustained. This
difference with the studies carried out by Page and collaborators [21], where a decrease
in activity was observed at 8 days, could be a consequence of the longer exposure to the
cannabinoid used in our study and possibly it will take more time for the decrease in
noradrenergic activity since we administered it for 21 days. [31]. To determine whether
the effect of WIN 55,212-2 on isoflurane MAC is transient, further experiments will be
necessary where different administration intervals, as well as different doses, are evaluated
since this could be considered a limitation of our study where we use a single dose.

5. Conclusions

The administration for 21 days of WIN 55,212-2 increases the MAC of isoflurane
in rats; this effect does not disappear after 8 days of discontinuing treatment with the
synthetic cannabinoid.
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