i:;lg electronics @&

Article
A New Method of Dynamic Horizontal Fragmentation for
Multimedia Databases Contemplating Content-Based Queries

Felipe Castro-Medina 1 Lisbeth Rodriguez-Mazahua L*(, Asdribal Lépez-Chau 2(, Jair Cervantes 3,
Giner Alor-Hernandez !, Isaac Machorro-Cano # and Mario Leoncio Arrioja-Rodriguez !

Division of Research and Postgraduate Studies, Tecnolégico Nacional de México/I. T. Orizaba,

Av. Oriente 9 852, Col. Emiliano Zapata, Orizaba C.P. 94320, Veracruz, Mexico;
dci.fcastro@ito-depi.edu.mx (F.C.-M.); giner.ah@orizaba.tecnm.mx (G.A.-H.);
mario.ar@orizaba.tecnm.mx (M.L.A.-R.)

Centro Universitario UAEM Zumpango, Universidad Auténoma del Estado de México, Camino Viejo a
Jilotzingo Continuacién Calle Ray6n, Valle Hermoso, Zumpango C.P. 55600, Estado de México, Mexico;
alchau@uaemex.mx

Centro Universitario UAEM Texcoco, Universidad Auténoma del Estado de México, Av. Jardin Zumpango,
s/n, Fraccionamiento El Tejocote, Texcoco C.P. 56259, Estado de México, Mexico; jcervantesc@uaemex.mx
Faculty of Engineering, Universidad del Papaloapan, Circuito Central #200, Colonia Parque Industrial,
Tuxtepec C.P. 68301, Oaxaca, Mexico; imachorro@unpa.edu.mx

* Correspondence: Irodriguezm@ito-depi.edu.mx

Abstract: The proper storage and management of multimedia data is a topic of great interest to indus-

E:edcgtfgsf try and academia. Database fragmentation plays a fundamental role as a mechanism to guarantee cost
reduction and improve response time performance in distributed data management environments.

Citation: Castro-Medina, F; . . . P
Rodriouer Magahua, L Multimedia database access patterns are constantly changing; due to this, it is important that the
odriguez-Mazahua, L.;
Lopez-Chau, A, Cervantes, I partitioning schemes also adapt to these changes. Dynamic fragmentation techniques offer this ad-

Alor-Herndndez, G, Machorro-Cano, 1, Vantage and represent a reduction of the tasks that an administrator must perform and the complete

Arrioja-Rodriguez, ML. A New autonomy to determine when to carry out a new fragmentation based on a cost model. This work
Method of Dynamic Horizontal proposes a new method of dynamic horizontal fragmentation for multimedia databases, including a
Fragmentation for Multimedia way to contemplate content-based queries in the creation of new fragments. The use of content-based
Databases Contemplating queries is on the rise, as multimedia elements are often presented within databases, and for this
Content-Based Queries. Electronics reason new fragmentation strategies must include this aspect to provide better-performing schemas.
2022, 11,288. https://doi.org/ The method included in this research is placed within a current web application called XAMANA.

103390/ electronics11020288 We performed some experiments to demonstrate the effectiveness of our approach.

Academic Editor: George
A. Tsihrintzis Keywords: dynamic fragmentation; CBIR; access patterns

Received: 29 November 2021
Accepted: 13 January 2022
Published: 17 January 2022

1. Introduction

Publisher’s Note: MDPI stays neutral Data fragmentation arises as a strategy to provide a new and adequate distribution

unit in terms of performance. Chunks in a Distributed Database Management System
(DDBMS) allow data to be stored close to the points of use, and thus each site manages
only a portion of the database, reducing I/O requests. In addition, in a DDBMS scheme the
location of the data reduces delays in remote access [1].
Relational tables can be partitioned either horizontally or vertically. The basis of
horizontal fragmentation is the select operator where the selection predicates determine the
fragmentation, while vertical fragmentation is performed utilizing the project operator [1].
This article is an open access article This research uses horizontal fragmentation to divide a relation along its tuples,

distributed under the terms and Cconsidering a cost model that uses predicates to obtain each fragment and assign it to the
conditions of the Creative Commons Site where it produces the lowest cost under the current workload.

with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.

Attribution (CC BY) license (https:// Database fragmentation can be performed statically or dynamically [2]. When a work-
creativecommons.org/ licenses /by / load changes, databases in a distributed environment require redesigning their schema.
40/). When these changes in the workload occur, dynamic fragmentation can be carried out

Electronics 2022, 11, 288. https:/ /doi.org/10.3390/electronics11020288 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11020288
https://doi.org/10.3390/electronics11020288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9861-3993
https://orcid.org/0000-0001-5254-0939
https://doi.org/10.3390/electronics11020288
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11020288?type=check_update&version=2

Electronics 2022, 11, 288

20f19

from the starting point; however, for highly dynamic systems this causes an overhead
when redesigning. The best approach is to redesign the schema incrementally each time
changes are detected or periodically at regular intervals of time [1]. Rodriguez et al. [2]
show different disadvantages of the static approach and mention the dynamic approach as
a solution to all of them.

This work applies horizontal fragmentation dynamically to determine when to per-
form new fragmentations over time in a distributed database, thus avoiding the significant
amount of time spent by the database administrator observing the system to collect the
frequencies of the operations performed, guaranteeing the use of real trends to reduce
query execution time, adapting the scheme to changes in access patterns and making
refragmentation a trivial, autonomous, and executed on-the-fly task.

Large amounts of complex data (e.g., image, sound, and video) are collected and
organized in databases every day. These complex data come in different formats and
cannot be sorted by content in the same way as conventional data (those represented as
strings or numbers). This scenario, combined with the huge size and considerable growth
of some complex data collections, poses new challenges for information retrieval [3]. The
consideration of multimedia databases and CBIR (Content-Based Image Retrieval) makes
this work a valuable study to face challenges and use fragmentation as an approach to
improve the performance of this type of database. This article stands out for contemplating
all the characteristics mentioned above in the new and complete fragmentation method
applied to the database management systems that are most used in the literature [4].

This article is organized as follows: Section 2 shows the works related to dynamic
horizontal fragmentation. The method proposed by this work is described in detail in
Section 3. The evaluations and results are shown in Section 4. Section 5 mentions different
aspects to consider in the application of the proposed method. Finally, Section 6 provides
the conclusions and future research plans.

2. Related Work

To introduce this section, the work that laid the foundations for the development of
the objectives of this work is presented. Our previous work in [4] showed an in-depth
analysis of the approaches related to dynamic fragmentation methods in multimedia
databases. The most current works related to the topics of interest were selected through a
research methodology. The conclusion in [4] produced the objective of this new research
since the platform where the horizontal fragmentation method was implemented was
developed. In [4], three works [5-7] stood out for presenting a simple cost model for their
implementation. Researchers in [5,6] carried out a vertical and horizontal fragmentation,
respectively. Rodriguez-Mazahua et al. [7] presented a hybrid fragmentation method for
multimedia databases. The analysis in [4] mentions that these works are excellent ways to
perform fragmentation and it is concluded that the research performed helps researchers
and practitioners with an overview of the state of the art of this type of work.

Pinto and Torres [8] provided a solution to the problem of dynamic data reassignment
in a partitionable distributed database with changing access patterns. They used a public
company subsidized by the Mexican government, CFE (Comision Federal de Electricidad,
Federal Electricity Commission), as a case study. CFE has a distributed database in con-
tinuous operation, which causes data fragmentation that cannot be determined with the
server turned off. Therefore, the authors performed a horizontal fragmentation with partial
replication to achieve improved performance through access patterns. It was mentioned
as a conclusion that the tests showed a good behavior of the method under a distributed
structure of 16 computers.

Saad et al. [9] proposed a multimedia primary horizontal fragmentation approach and
achieved this by analyzing the implications between predicates creating minterms to use in
k-NN (K-Nearest Neighbor) and range query methods. A prototype was produced, imple-
mented in C#, and named Multimedia Implication Identifier. The experiments satisfactorily

Electronics 2022, 11, 288

30f19

obtained the expected result in a computational time that grows in a quadratic way for the
analysis of the implications of similarity.

Hauglid et al. [10] showed how DYFRAM performs dynamic table fragmentation
and replication based on recent historical access to maximize the number of local accesses
and minimize remote ones. DYFRAM is a decentralized approach that takes place in
a distributed database environment. This work achieves its objective by observing the
access patterns of the sites to the tables. The evaluation presented began by obtaining the
results through a workload simulator under two sites; later, a new scenario was presented
simulating two highly dynamic workloads involving more sites. Finally, DYFRAM was
implemented in a distributed database system (DASCOSA-DB).

Abdalla and Amer [11] presented a fragmentation strategy that sometimes uses partial
replication to allocate fragments. The approach presented by the authors applies horizontal
fragmentation in a relational database environment. To achieve this objective, a heuristic
technique is used, since it evaluates the allocation of fragments to sites through a cost
model. Finally, the heuristic model assigns the fragment to where it represents the highest
cost. It is concluded that the proposed technique significantly improves the performance of
distributed databases by eliminating frequent remote accesses and high data transfer costs
between sites.

Bellatreche et al. [12] oriented their work to the inclusion of optimal fragmentation
schemes of large relational data warehouses. Different schemes are statically selected
using a genetic algorithm. It presents the primary choice for horizontal incremental data
fragmentation and adapts to the operations and evolution of data warehouse workloads.
The conclusion mentioned that the adaptation produced an incremental approach, which
was compared with two other strategies and was shown to give a better optimization with
the queries, reducing the maintenance cost.

Derrar and Ahmed-Nacer [13] carried out an investigation on horizontal fragmentation
applied to data warehouses using the recent history of data access to minimize response
time in OLAP query systems. In the first stage, the authors use histograms to analyze
access to the fragments and apply refragmentation according to the new statistics collected.
To evaluate this strategy, the APB-1 benchmark was used, which has a star scheme. It was
implemented under Oracle 10G with 9000 tuples and 4-dimensional tables. The conclusions
indicated that the results obtained are encouraging since the approach reduces the space
occupied in memory and the query response time was shorter.

Herrmann et al. [14] presented Cinderella, an autonomous algorithm to carry out
horizontal fragmentation in irregularly structured entities. Cinderella maintains the frag-
ments while entities are added, modified, or deleted to increase local queries and reduce
execution costs. The approach has the quality of being incremental and abandons the idea
of a single fragmentation. The presented work produces entity-based or workload-based
fragmentation schemes. The evaluation was carried out with the TPC-H benchmark in
PostgreSQL 9.3 and showed favorable results when achieving the planned objectives.

Fetai et al. [6] presented Cumulus, a workload-based adaptive fragmentation protocol
for applications with a high need for data consistency assurance. Cumulus is capable
of fragmenting shared-nothing architectures, minimizing distributed queries, or even
avoiding them. The work presented is adaptive and dynamic as it performs refragmentation
at runtime. The evaluation was carried out with the TPC-C benchmark and a database of
more than 10,000 tuples, showing the overall performance gain compared to systems where
distributed transactions occur. Cumulus processes the workload and refragments before
starting data redistribution, intending to eliminate costly and unnecessary reconfiguration.

Abdel et al. [15] presented a distributed database system on a cloud environment
to perform dynamic fragmentation, allocation, and replication decisions based on access
patterns to sites and the load involved in allocating or migrating fragments or replicas to
these. To carry out the objective of this work, an MCRUD (Modified Create, Read, Update
and Delete) matrix is built to determine the operations performed with each predicate on
each site and each application. The results evaluate the costs of each attribute and are

Electronics 2022, 11, 288

40f19

placed in the ALP (Attribute Locality Precedence) matrix. The predicates of the attributes
with a higher value in the ALP matrix define the horizontal fragmentation scheme. The
MCRUD matrix determines the sites where the fragments will be assigned and where
they will be replicated. The evaluation shows cost reduction through the application of the
scheme produced by the approach presented.

Serafini et al. [16] proposed Clay, an elastic algorithm capable of load balancing and dis-
tributing transactions through dynamic blocks called clumps. Clumps are created at runtime
and based on the monitored workload. The authors compared Clay with graph fragmentation
techniques and presented differences and key advantages that showed the proposed approach
as a better option. Clay runs in an OLTP database environment and a reconfiguration en-
gine that dynamically changes the data layer. The evaluation was carried out through three
workloads: TPC-C benchmark, Product-Parts-Suppliers, and Twitter benchmark.

Lwin and Naing [17] described an algorithm for assigning non-replicated dynamic
fragments in a distributed database system. This approach was presented in two parts: the
pre-processing phase and the action phase. The pre-processing phase uses the log information
table stored by each site and obtains information for the method. The action phase fragments,
allocates, and migrates data under a horizontal technique. The evaluation included four
sites with fully connected distributed database systems and 10,000 tuples in each. A total of
75 percent of response inquiries and 25 percent of update operations were executed.

Olma et al. [18] presented a logical raw files fragmentation scheme. This scheme allows for
lightweight indexing on each fragment, highlighting benefits that are refined on the fly using
an online random algorithm. The authors integrated this approach into a prototype in situ
query engine called Slalom. The evaluation was carried out using synthetic and real workloads
comparing Slalom response times against a traditional DBMS (Database Management System),
a state-of-the-art in situ query processing engine, and adaptive indexing.

Castro-Medina et al. [19] introduced FRAGMENT, a web application to carry out static
horizontal fragmentation and replication over a cloud environment. FRAGMENT proposes
a scheme for assigning fragments to the sites where the current cost of each fragment is
reduced the most. The authors validated their work within the Amazon Web Services
(AWS) platform with a simulated data set and the TPC-E benchmark.

Rodriguez-Arauz et al. [20] collected historical data from the Orizaba Technological
Institute and created a multimedia database with these. They used horizontal fragmentation
to optimize data management and measured their performance using a cost model, which
proved to be better than when horizontal fragmentation was not used.

Abebe et al. [21] developed MorphoSys, a distributed database system that makes
decisions automatically on how to partition data, what to replicate, and where to place
these partitioned and replicated data. The authors used two benchmarks to evaluate their
approach: YCSB and TPC-C. The results show that MorphoSys improves the performance
of the evaluated databases 900 times.

Ge et al. [22] introduced a set-based adaptive distributed differential evolution (S-ADDE)
algorithm. S-ADDE adopts an island model to maintain population diversity. With the help
of the S-ADDE database fragmentation result, the anonymity degree of the original dataset in
each fragment increases. According to the analysis of the experimental results, the proposed
S-ADDE algorithm is significantly better than the compared algorithms.

Different works were shown that apply horizontal fragmentation in different ways.
Table 1 shows the comparison of the different approaches under five headings. It is ana-
lyzed: if the works present completeness, that is, everything necessary to be implemented;
if they have characteristics to implement them easily; if they are based on a cost model to
carry out fragmentation; if the fragmentation they perform is dynamic; and finally, if they
contemplate the use of content-based queries. The works that do not present completeness,
do not include diagrams, equations, or algorithms that fully describe the approach they
present, thus making it difficult to replicate the research. The approaches that are not
easy to implement contain elements, data sets, tools, or preconditions difficult to obtain
under the context of development, budget, or delimitation of the goals of this research.

Electronics 2022, 11, 288

50f19

Table 1 shows that we aim to provide a horizontal fragmentation method that fulfills the
five criteria.

Table 1. Comparison of related works.

Atrticle 1 2

Pinto and Torres [8] X
Saad et al. [9]
Hauglid et al. [10]
Abdalla and Amer [11] X
Bellatreche et al. [12]
Derrar and Ahmed-Nacer [13]
Herrmann et al. [14]
Fetai et al. [6]
Abdel et al. [15]
Serafini et al. [16]
Lwin and Naing [17]
Olma et al. [18]
Castro-Medina [19]
Rodriguez-Arauz et al. [20]
Abebe et al. [21]
Geetal. [22]
This work

(1) Completeness, (2) ease of implementation, (3) cost model, (4) dynamic, (5) CBIR.

=
)]

> X X X
X XX X <

XXX XXX XX X
x X
HKHXHEHXHEXHXAKXHXX XXX XXX ®»
XXX XX

XX XX X

3. Dynamic Horizontal Fragmentation Contemplating CBIR

To introduce the description of the developed method, it will be briefly presented
where it was implemented, and the tools involved. The strategy is divided into two sections.
The first section involves the static fragmentation which takes place within the XAMANA
web application. The second section performs the dynamic fragmentation as part of a library
ready to be implemented within the projects related to the table that will be fragmented.

XAMANA is a web application developed under the Java programming language
with the JavaServer Faces framework. The objective of XAMANA is to host the three types
of fragmentation (horizontal, vertical, and hybrid) and execute them in four database
management systems widely used in industry and academia [4]: MySQL, PostgreSQL,
Postgres-XL, and MongoDB.

Figure 1 shows the workflow of the static fragmentation method proposed in this work.
As can be seen, content-based queries are part of the first steps of the diagram, as a new
investigation will be developed when they are not present in the table to be fragmented.

Table received
CBIR

a
M<<userActi0n>> <<systemAction== D_}

<<userAction==> g;} P

Select textual
descriptor column

Provide the type name of
DBMS and data connection

Group tuples using the

Start textual descriptor

<<systemAction==> Dxb 8 < <systemAction>> D_}

Create fragmentation
scheme

Apply scheme

Figure 1. Static fragmentation method workflow contemplating CBIR.

The first step in the diagram is to obtain the name of the DBMS that the user uti-
lizes (MySQL, PostgreSQL, Postgres-XL, or MongoDB) and the data to establish a remote
connection with reading and writing privileges.

After verifying if content-based queries were executed on the table to be fragmented,
descriptors hosted in the column that the user chooses are grouped. At this stage, other
data are requested, which are detailed below, since they are part of the dynamic horizontal
fragmentation workflow. The penultimate stage presents the scheme proposed by this
approach. If the user agrees with the scheme shown, it will proceed to the last stage. The

Electronics 2022, 11, 288

6 of 19

application of the fragmentation scheme is carried out under the connection data obtained
in the first step of the workflow.
Figure 2 shows the workflow of the dynamic fragmentation method considering CBIR.

==systemAction>> D}}

Obtain and analyze log files <=userAction=> gﬁb

._ n Implerment

Start SSUSRACHIN== %}} observer-fragmenter in sites
Set operational and

performance threshold

l(Perrmlmant analysis of operations M
<<=systemAction== D:}}
Analyze current -
performance cost <<systemAction== D}
Refragment and allocate
<<systemAction== D:} Yes g
Analyze current N
operation cost Reached Reached
operation performance
threshold threshold
~ S

¢

Figure 2. Dynamic fragmentation method workflow contemplating CBIR.

The first three activities of the dynamic fragmentation workflow take place inside
XAMANA while the permanent analysis of the operations occurs inside a library named
observer-fragmenter. The observer-fragmenter is responsible for dynamically adapting the
distributed database schema to new trends in the workload at each site over time. Figure 2
shows the first stage, which consists of obtaining and analyzing the log files. These files
contain valuable information about the addresses of the sites and the approximate number
of operations carried out in each of them. The analysis of the files consists of obtaining the
initial operation and performance thresholds, calculated by the frequency of operations,
the type (create, read, update, and delete), and where they come from (local or remote).
The user assigns a percentage for the performance and operation threshold, which when
reached in each fragment will cause a refragmentation. The frequency of the fragmentation
is inversely proportional to these percentages; a low value for these thresholds will trigger
a new fragmentation more often, while a high value for these thresholds will cause fewer
fragmentations. We decided that the DBA must fix these parameters for two reasons: (1) the
DBA knows how often the database access patterns change, and (2) to provide him/her
the ability to configure the frequency of the fragmentation. For instance, if 10 operations
accessed the data located in fragment i in the last fragmentation, an operation threshold
of 50% would indicate that six new operations must be executed in fragment i to exceed
the current operation threshold, while a performance threshold of 100% would imply that
the current value must be doubled to trigger a new fragmentation. In the third activity,
it is observed that the user must implement the observer-fragmenter in each of his/her
applications. The permanent analysis of the operations is carried out after implementing
the proposed library in each site where queries are executed on the table of interest. The
observer-fragmenter records the operations performed after fragmentation using the pri-
mary key and the type of operation and analyzes whether the operation and performance
thresholds were reached. The last stage of the diagram shows the result of this approach
which are sites with fragments of the original table. The user performs the operations on the
fragments and in this way the execution cost and response time of the queries are reduced.

This work contemplates content-based queries under the suggested implementation
of SURF (Speeded Up Robust Feature) descriptors under BoofCV [23] and k-NN queries.
Under this approach, BoofCV uses all the descriptors to carry out the classification of the
multimedia elements and identify the most similar. Under a database approach, all the
descriptors of a set of images are retrieved to obtain an answer for each query, which is

Electronics 2022, 11, 288

7 of 19

filtered by the BoofCV libraries. This results in the log files not containing the number of
operations used. For this reason, the record of operations within the observer-fragmenter
was considered, so that only the real operations are recorded after filtering BoofCV. Figure 3
represents the process of content-based queries under the BoofCV approach. In this
research, we validate the proposed method using a multimedia database that contains
SUREF descriptors of images obtained by BoofCV.

CBIRTable

Query an image in BoofCV ‘—
Coll Cal2 Col3 SURFDescriptor & e

Tuple 1 [0.012562621, 0.4512315...]
Tuple 2 [0.458562213, 0.8785462...] h Y

L L L]

L - . -

- - L]
Tuple n [0.047856212, 0.4751245...]

asuodsay

Select SURFDescriptor from CBIRTable;

103d1I353P JHNS 03 WIOySUed|

_> lk-NN more similar images —

SURF descriptor chart

Figure 3. Process of content-based queries under the BoofCV approach.

By reducing the set of descriptors through this fragmentation approach, CBIRs are
executed on smaller groups of SURF descriptors, thus improving the performance of these
types of queries.

The operation threshold is calculated by adding the number of operations performed
since the last fragmentation or refragmentation. Values representing the cost of each type
of operation were determined to calculate the performance threshold. Table 2 shows the
values assigned to each type of operation.

Table 2. Values for each type of operation.

Type of Operation Value
Read 1
Delete 2
Create 2
Update 3

Executing operations from remote sites is more expensive than running operations
locally. This work considers in its cost model if the sites where the operations are carried
out are local or remote. The performance threshold is obtained by the following equations:

N
PT; =) (VTO; x RV; X S; X F) 1)
j=1
_ [1ifRVj=1
5= { Sel; otherwise @

where PT is the performance threshold of fragment i, VTO is the value of the operation type
according to Table 2, and RV is the remote value. RV takes the value of 1 when the operation
j is local and 2 when it is remote, S is the size of the data involved in the queries, Sel is the
selectivity of the predicates, F is the frequency of operations executed from the same site and
N is the number of operations in the log file considering the fragmentation predicate.

When the operation and performance thresholds are exceeded by the operations
performed, a new fragmentation is executed. The dynamic fragmentation that is carried

Electronics 2022, 11, 288

8 of 19

out in the observer-fragmenter uses the graph of the Gaussian curve to normalize the use
of the tuples throughout the fragment by the different sites. The diagram is divided into
two and the site that represents a greater cost is determined on the tuples of the first and
second part of the Gaussian diagram. Finally, the tuples of each half are assigned to their
respective fragments and the fragments assigned to their sites.

As part of fragmentation techniques, it must be ensured that the semantics of the
database do not undergo changes during fragmentation. Therefore, fragmentation tech-
niques must meet three properties:

e Completeness. If a relation instance R is decomposed into fragments Fg = {Ry, Ry, ... , Ry},
each data item that is in R can also be found in one or more of R;’s;

e Reconstruction. If a relation R is decomposed into fragments Fr = {Ry, R, ..., Ry}, it
should be possible to define a relational operator V such that:

R =VR;, VR; € Fg

The reconstructability of the relation from its fragments ensures that constraints defined on
the data in the form of dependencies are preserved;

e Disjointness. If a relation R is horizontally decomposed into fragments Fr = {Ry, Ry, ... , Ry}
and data item d; is in R;, it is not in any other fragment Ry (k # j). This criterion ensures that
the horizontal fragments are disjoint. If relation R is vertically decomposed, its primary key
attributes are typically repeated in all its fragments (for reconstruction). Therefore, in the
case of vertical partitioning, disjointness is defined only on the nonprimary key attributes of
a relation.

The method proposed in this work ensures the three previous properties. Complete-
ness is guaranteed in the dynamic and static part of the approach, creating schemas that
contain all the tuples of the original relation, allowing each tuple to be found in the created
fragments. This is achieved by adding a fragment to the horizontal fragmentation scheme
defined by the negation of the fragmentation predicates. Reconstruction is ensured by
creating schemas under predicates that include, together, all the tuples of the original
relation, as well as the dependencies of the same defined in the beginning. This method
ensures disjointness, as it produces schemes with completely different fragments from
each other.

Algorithm 1, Observer, represents the pseudo-code to analyze the changes in each
operation performed and trigger a new fragmentation. The Token that Algorithm 1 uses as a
parameter is provided by the web application, which is an identifier for obtaining the entire
set of fragments, tuples, statistics, sites, and connection data from the XAMANA database.
As observed in lines 4 and 8, the operation and performance thresholds are obtained as a
percentage and must be interpreted under their respective values to determine when they
are reached. Dynamic fragmentation occurs when both thresholds are reached or exceeded,
i.e., the frequency of execution of the refragmentations is directly related to the cost model.

Algorithm 1 uses Algorithm 2, Fragmenter, which is responsible for applying fragmen-
tation. As parameters, Algorithm 2 receives the data of the fragment (or the table) to be
fragmented and the Token. In both algorithms, different details are omitted to summarize
them and make them easier to understand. One of them is the recording of the new statistics
in the XAMANA database after the fragmentation has been performed. In Algorithm 2, the
implementation of fragmentation in MongoDB is highly related to the language in which the
algorithm is implemented; however, this part is described in a general way using instructions
from the NoSQL (Not Only SQL) DBMS.

In the application of Algorithm 2 in the observer-fragmenter, implemented in Java,
lines 3-11 were carried out as queries to the XAMANA database.

Electronics 2022, 11, 288

90f19

Algorithm 1 Observer

1 input: Token
2 fragments[]<Token.get fragments
3 forifrom 0 to size of fragments[] do

4 nOperations<—(fragments[i]. Performance threshold percentage x

5 fragments[i]. Number of initial operations)/100

6 nOperations<—nOperations+fragments[i]. Number of initial operations

7 if fragments[i].Current operations number >= nOperations then

8 nPerformance<— (fragments|i].Performance threshold percentage x

9 fragments[i] Number of initial performance)/100

10 nPerformance<—nPerformance+fragments[i] Number of initial performance
11 if fragments[i].Current performance number >= nPerformance then

12 x<—fragmenter(fragments[i], Token)

13 write to activity file x

The variable oddEven, on line 13, allows fragmentation for odd tuples and then for
even tuples by changing the vector in turn and the IP address to which the tuples will
be assigned. The arrangement of the tuples from lowest to highest frequency and the
separation of even and odd causes a representation of the graph of a Gaussian curve to
normalize the data. Separating even and odd tuples is similar to dividing the Gaussian
graph into two.

Line 20 takes into account MongoDB, since being a NoSQL DBMS, the operations are
different. Lines 21 and 27 separate the formation of the CREATE statement for MySQL and
PostgreSQL DBMSs, since the syntax is similar, but not the same. Another reason why the
algorithm separates relational DBMSs is due to data types, as some are not included in both.

The fragmentation process handles four IP addresses. The algorithm in lines 7, 8, and 9
shows the purpose of three of them. The fourth address is the connection to the XAMANA
server, which must be considered in the workflow of the fragmentation performed by the
web application, since users must allow the remote connection from this IP to their servers.

Lines 38-54 represent obtaining the tuples from the source server to the destination
server. Lines 57-62 show a more compact process for MongoDB, since it allows the copying
of documents without defining a structure in the destination and source collection, even
in new versions of MongoDB, when making a connection to a non-existent collection, the
DBMS creates it automatically.

Algorithm 2 Fragmenter

input: fragment, Token

output: status

tupleldFrequency[][]<—get tuple identifiers and access frequency from fragment.Identifier

oddld[]<—sort tupleldFrequencyl][] by frequency from lowest to highest, number them and get
odd

evenld[]<—sort tupleldFrequency[][] by frequency from lowest to highest, number them and
get even

connection<—get connection data using Token

oddIP<—get site that occupies the most odd tuples

evenlP<—get site that occupies the most even tuples

inicialIP<—get site where the fragment comes from

attributes[]<—get fragment attributes

keyAttribute<—get table identifier

for oddEven from 0 to 2 do

if oddEven is 0 then

vectorInTurn|]<—oddld[]
ipInTurn<—oddIP

O 00 NI O U1 = W IN-

—_
)

e e
NN Ol WD

18 else

Electronics 2022, 11, 288

10 of 19

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

vectorInTurn[]<—evenld[]
ipInTurn<—evenIP
sentence<""
if Token.get database type is not “MongoDB” then
if Token.get database type is “MySQL” then
foreach r<—attribute in atributtes[] do
sentence<—sentence + r.get name + “ “ + r.get datatype + “(“ + r.get size + “), “;
sentence<—sentence — last two characters
createSentence<—"create table “+fragment.get name+"_"+(oddEven)+ “ (“+
sentence+”, PRIMARY KEY (“+keyAttribute.get name+"))”
if Token.get database type is “PostgreSQL” or “Postgres-XL” then
foreach r<—attribute in attributes[] do
sentence<—sentence + r.get name + “ “ + r.get datatype + “(“ + r.get size + “)”;
if r.get name is keyAttribute.get name then
sentence<—sentence + “ PRIMARY KEY, “

"o

else
sentence<—sentence + “,
sentence<—sentence-last two characters
createSentence<—"create table “+fragment.get name+"_"+(oddEven)+ “ (“+
sentence+");”
execute createSentence on ipInTurn using connection
us=""
foreach r<—attribute in attributes[] do
u<—u + r.get name + “, “
u<—u-last two characters
foreach y<—item in vectorInTurn[] do
query<"select “ + u + “ from “ + fragment.get name + “ where
+ keyAttribute.get name + “=" + y + “;”
t[]«—execute query in inicialIP using connection
values<""
for w from 0 to size of t[] do
values<values + tfw] +“, "
values<—values — last two characters
query<="INSERT INTO “ + fragment.get name + “_" + (oddEven)
+“ VALUES (“ + values + “);”
deleteQuery<—"DELETE FROM “ +fragment.get name + “_" + (oddEven) +
“ WHERE “+ keyAttribute.get name + “=" + y + ;"
execute query in ipInTurn using connection
execute deleteQuery in inicialIP using connection
status<—"Fragmentation carried out successfully”

else

"o

execute createCollection(fragment.get name +

connection

foreach y<—item in vectorInTurn[] do
where<—create a new document with _id:y
resultSet<—find using where in iniciallP using connection
insertOne with resultSet in new collection called fragment.get name +
(oddEven)
deleteOne using where in iniciallP

status<—"Fragmentation carried out successfully”

+ (oddEven)) in ipInTurn using

“ o

+

69 return status

4. Results

To obtain the results of this approach we use a multimedia database called HITO

(Historia del Instituto Tecnologico de Orizaba, History of the Technological Institute of
Mexico) [20], implemented in MongoDB with more than 1.5 GB of storage. To carry out
both workflows that perform static and dynamic fragmentation, the operations shown in
Table 3 were executed on the collection “multimedia_records”, shown in Table 4. The attribute

Electronics 2022, 11, 288

11 of 19

descriptor contains the SURF descriptor of the images obtained by BoofCV. In this way, a
log file is obtained that will be used to obtain statistics of the operations before the first
fragmentation using XAMANA.

Table 3. Operations performed on the centralized multimedia database.

1 2 3 4 5

1 db.multimedia_records.find({tipo:”equipment”}) 1 2 46.5

2 db.multimedia_records.find({tipo:”event”}) 1 1 38

3 db.multimedia_records.find({descripcion:”building”}) 1 1 6

4 db.multimedia_records.find({tipo:”personal”}) 1 1 21

5 db.multimedia_records.find({tipo:”event”}) 2 3 28.3

6 db.multimedia_records.find({tipo:”equipment”}) 2 1 8

7 db.multimedia_records.find({tipo:”personal”}) 2 1 27

8 db.multl,r,nedla_records.fmd({tipo: 3 5 40
personal”})

9 db:mt'lltllr,nedla_records.fmd({tlpo: 3 5 145
building”})

10 db.multimedia_records.find({tipo:”event”}) 3 1 13

(1) Item, (2) operation, (3) site, (4) frequency, (5) execution time in milliseconds.

Table 4. Attributes of the multimedia_records table.

Attribute Name Datatype
descripcion String
tipo String
imagen String
validado String
_id String
descriptor Array
nombre String

The evaluation was carried out at three sites. The first site uses Ubuntu 20.04.3 LTS
as the operating system, 4 GB RAM, and an AMD A6 processor with a clock frequency of
2.1 GHz. The second site uses Windows 10 as the operating system, 6 GB of RAM, and
an Intel processor 17 with a 3 GHz clock frequency. The third site also uses Windows 10
as an operating system, 6 GB of RAM, and an AMD A8 processor with 2 GHz as a clock
frequency. The centralized database is on the first site.

The data types shown in Table 4 were interpreted using Java. As seen in Table 3, read
operations are performed from three different sites. Site 1 represents IP 192.168.200.5, site
2 represents IP 192.168.200.30, and site 3 represents IP 192.168.200.39. Figure 4 shows the
initial XAMANA view requesting the type of database to be fragmented. As a complement
to JavaServer Faces in the web application, the PrimeFaces library was used to add a rich
open-source user interface.

The connection configuration view is shown in Figure 5. The data of the connection
to the database are those mentioned in the preconditions that must be the same for all the
sites of the same user (except the IP). The database address must allow remote connection
from the XAMANA server IP. The username and password fields are not mandatory in
databases where authentication is disabled. When placing the connection data, the list of
tables found is automatically displayed.

The status of the connection is shown in the dialog in Figure 6. If the connection
data do not allow communication between XAMANA and the user’s database, a message
informs that the data must be entered properly. If the connection data are correct, the
fragmentation must be configured in the following view.

Electronics 2022, 11, 288

12 0of 19

MongoDB -

Figure 4. XAMANA web application home page.

Configure connection

ovwnrore | T
e
ows | E—

t
p— - G con_personal
est connection al CBIR

aportaciones
con_equipment
system.profile
imagenes
puestos_view

Figure 5. Setting up XAMANA'’s remote connection to the user database.

Information x

The connection was successful, now you will configure
details to carry out fragmentation.

Configure fragmentation

Figure 6. Remote connection status after using the data to test communication.

The fragmentation configuration screen is shown in Figure 7. In Figure 7, horizontal
fragmentation was selected, being one of the three types of fragmentation that the web
application allows. The CBIR option, when selected, displays the dialog shown in Figure 8.
The next field requested by the form presents the option to add the log files where the
records of the operations previously executed are stored. For this evaluation, the thresholds
were set with the percentages shown.

Fragmentation type

CBIR

[of o articulo v2.log

Figure 7. Configuration of the fragmentation to be performed.

Electronics 2022, 11, 288

13 0of 19

Multimedia attribute details

Descriptor attribute (table, chair, building, etc.)
tipo:string

Figure 8. Selection of the attribute that describes the multimedia attribute.

Figure 8 shows the selection of the descriptor attribute, by which the grouping of
tuples and production of fragments will be carried out in the first stage of horizontal
fragmentation. The descriptor attribute can be of any type of data, considering that it
must form groups of tuples that share the same values. It is of interest to mention that
the descriptor attribute contemplated in this stage does not share a similarity with the
descriptors obtained by SURF. The use and implementation of BoofCV can help to obtain
the values of the descriptor attribute, since using the k-NN algorithm with SURF descriptors
allows for grouping multimedia content with similar characteristics.

Figure 9 shows the final structure of the fragments. The first column mentions the
name of the fragment, the second column contains the set that defines the fragment, the
third column represents the number of tuples that each fragment will contain, the fourth
column shows the percentage that each fragment represents with respect to the entire table,
the fifth column contains the operation value and the sixth column the performance value.

Fragment name Set Number of tuples Percentages Operations value Performance value

mutinedorocos 11 owdrg |t em Jso om0

Letsdoit [Download files

Figure 9. Selection of the final structure of the fragments.

The values of the last two columns are obtained from the log file. The calculation of
the initial values of operations and performance are obtained by searching the log for all
operations that contain the set of each fragment in their predicates. The operations value is
the number of operations found from that set. As an example, the multimedia_records_f3
fragment, defined by the event set, had five operations on the log file (one from site 1, three
from site 2, and one from site 3 according to Table 3). Therefore, multimedia_records_f3
obtained a performance value of 5793, which is determined through the performance
threshold cost model shown in Equation (1), adding the result of multiplying the value of
the operation by the remote value by the variable S by the frequency of each operation for
each set. Table 5 describes the performance value for each proposed fragment of Figure 9.

The observer-fragmenter contains a mechanism to save the operations performed
and bypass the log file in future fragmentations. The initial values are broadly related to
determining the execution of the next fragmentation.

The final fragment structure view provides two final buttons. The button to apply
the schema physically on the table and the button to download files to start the dynamic
fragmentation. For the PostgreSQL DBMS, in addition to the observer-fragmenter, functions
and triggers are offered to maintain a suitable design between the fragments. Functions
and triggers analyze changes to the original table structure; that is, adding, removing, and
modifying attributes. If any of these operations are executed on the original table, they
must also be carried out on the fragments related to this table. In this way, the design of the
fragments is synchronized with the original design, properly maintaining the structure of
the attributes.

Electronics 2022, 11, 288

14 of 19

Table 5. Description of the performance value for each proposed fragment of Figure 9.

Set Operation Types Remote Value Operation
Read 1
Read 2
Event Read 2 Ix1Ix1Ix)+(1x2x724x3)+(1x2x724x1)=5793
Read 2
Read 2
Read 1
Equipment Read 1 1Ix1x1x2)+(1x2x104 x1)=210
Read 2
Read 1
Building Read 2 Ix1x1x1)+(1x2x168 x2)=673
Read 2
Read 1
Read 2
Personal Read 5 ITx1x1x1)+(1x2x874x2)+(1x2x 874)=>5245
Read 2
After performing the first fragmentation and starting the dynamic fragmentation, new
operations are performed from sites 1, 2, and 3 on the observed fragments that trigger a new
fragmentation. Table 6 shows the operations performed by the three sites. For example, two
operations (creation and read) are performed from site 1 on document IMG1662 located in
the fragment multimedia_records_f1.
Table 6. Operations performed on the fragmented multimedia database.
Search Item Id Type of Operations Site Fragment Name
IMG1662 CR 1 multimedia_records_f1
IMG1875 R 1 multimedia_records_f1
IMG1581 RU 1 multimedia_records_f3
ObjectId(“615e967df0f0e30bc461306e”) U 1 multimedia_records_f2
ObjectId(“615e94d292bd5f6ac041f431”) C 1 multimedia_records_f4
Objectld(”615e94d892bd5f6ac041£432") D 2 multimedia_records_f4
ObjectId(”615e9684f0f0e30bc461307c¢”) RR 2 multimedia_records_f2
ObjectId(“615e967af0f0e30bc461306b") RRR 2 multimedia_records_f2
IMG1791 Uu 2 multimedia_records_f1
IMG800 CD 2 multimedia_records_f3
IMG788 RU 3 multimedia_records_f3
IMG1640 U 3 multimedia_records_f4
IMG1790 C 3 multimedia_records_f1
ObjectId(“615e99d2f0f0e30bc46133cf”) D 3 multimedia_records_f2
Objectld(“615e99c3{0f0e30bc46133c7”) RR 3 multimedia_records_f2

After performing the 24 operations shown in Table 6, the threshold analysis was
carried out. The above operation and performance values shown in Figure 9 represent 100%
of the thresholds. However, in this evaluation, the thresholds were set at 5% and this means
that both values should be lower than the previous ones. Table 7 shows the thresholds
reached by each fragment through the operations performed in Table 6. For example, for
multimedia_records_f3, the previous operation and performance values according to Figure 9
are 5 and 5793, respectively; therefore, the operation and performance thresholds are 0.25
and 289.65 (5 x 0.05 and 5793 x 0.05), the current operation value is 6 (read and update
from site 1, create and delete from site 2, and read and update from site 3 according to
Table 6), and current performance value is 20 since the operations executed by site 1 are
local and those by site 2 and 3 are remote.

Electronics 2022, 11, 288 15 of 19
Table 7. Threshold analysis in dynamic fragmentation.
Previous Current . Previous Current
. . Operation Performance
Fragment Name Operation Operation o Performance Performance o
Value at 5% Value at 5%
Value Value Value Value
multimedia_records_f1 3 6 0.15 673 20 33.65
multimedia_records_f2 4 9 0.2 5245 21 262.25
multimedia_records_f3 5 6 0.25 5793 20 289.65
multimedia_records_f4 3 3 0.15 210 12 10.5

Table 7 describes that no fragment exceeds both thresholds of 5% except for the
multimedia_records_f4 fragment. To represent the operation of refragmentation, Figure 10 of
the multimedia_records_f4 fragment is shown.

L o~
m m
b s
= b=
< <
8 S S
6 35 3
o5 o o

o 50 tuples oS S 51 tuples
O 4 o ©
° °
3 b4 § b3
=S o
2 @ - o
0 o 0
1 & = &

Tuples
I multimedia_records_f4_1 I multimedia_records_f4_2 |

Site 3 Site 2

Figure 10. Dynamic horizontal fragmentation of multimedia_records_f4.

The tuples are placed on a diagram representing the Gaussian curve to normalize
the costs. Figure 10 shows that the Gaussian curve will divide them to generate two new
fragments: multimedia_records_f4_1 and multimedia_records_f4_2. The observer-fragmenter
looks for the place where the tuples of each fragment represent the highest cost to per-
form the assignment. Therefore, multimedia_records_f4_1 is assigned to site 3 and multime-
dia_records_f4_2 to site 2. The current values of operations and performance are considered
as previous values in the next refragmentation operation. Under the new refragmenta-
tion scheme, the same operations presented in Table 3 are executed. Table 8 shows the
comparison of the execution times.

Table 8. Comparison of execution times using the items of operations in Table 3.

Execution Time without Execution Time with

Item Site Fragmenting this Approach

1 1 46.5 2

2 1 38 5

3 1 6 Less than 1
4 1 21 Less than 1
5 2 28.3 7.25

6 2 8 6

7 2 27 Less than 1
8 3 40 6.5

9 3 145 2

10 3 13 Less than 1

Table 8 shows a reduction in response times by 84.85% since remote communication
was reduced and local communication increased. The initial operations found in the log
were reads only and did not include content-based queries. A new experiment is carried out
contemplating the retrieval of all descriptors to carry out content-based queries using the
same attribute as multimedia description in the previous experiment. New operations are
presented in the log simulating a new workload described in Table 9. The initial fragments
produced by the web application are the same as in Figure 9, but the initial values of

Electronics 2022, 11, 288 16 of 19

operations and performance are not. Figure 11 shows the new initial values. Table 10
presents the new operations performed in this experiment under the execution of the
observer-fragmenter.

Table 9. Operations performed on the centralized multimedia database under a new workload.

1 2 3 4 5
1 db.multimedia_records.find({},{“descriptor:1”}) 1 2 493.5
9 db.multimedia_records. update({_id:"IMG1790”},{$set:{“nombre”: 1 1 58
“cancha0lmodificado”}})
3 db.multimedia_records.deleteOne({_id:"IMG1790"}) 1 1 61
db.multimedia_records.insert({_id:"IMG1790” tipo:
4 “building”,descripcion:”image of the chemistry group 1 1 41
1999” validado:false,nombre:”img20"});
5 db.multimedia_records.find({},{“descriptor:1”}) 2 2 49.5
6 db.multimedia_records.find({validado:{$ne:null}},{imagen:0,descriptor:0}) 2 1 13204
7 db.multimedia_records.update({_id: 5 1 73
ObjectId(“615e94dc92bd5{6ac041£437")},{$set:{“validado”:"no"}}
8 db.multimedia_records.find({tipo:”event”}) 2 1 13
(1) Item, (2) operation, (3) site, (4) frequency, (5) execution time in milliseconds.
Fragment name Set Number of tuples Percentages Operations value Performance value
T S - S - T R L
mutmede recore &b |0 e |eo a0
T S | R L R . S
Figure 11. New values of operations and performance under the operations of Table 9.
Table 10. Operations performed on the fragmented multimedia database in the new evaluation.
Search Item Id Type of Operations Site Fragment Name
IMG103 CRRU 1 multimedia_records_f4
IMG110 uuu 1 multimedia_records_f4
IMG1663 RRD 1 multimedia_records_f3
ObjectId(”615e9680f0f0e30bc4613072") RRRD 1 multimedia_records_f1
Objectld(“615e94dc92bd5f6ac041f436”) RDC 1 multimedia_records_f2
IMG1570 UDC 2 multimedia_records_f4
IMG1561 RR 2 multimedia_records_f4
ObjectId(“615e950692bd5f6ac041f460”) RU 2 multimedia_records_f2
Objectld(”615e96ccf0f0e30bc46130ba”) R 2 multimedia_records_f1
IMG1856 DC 2 multimedia_records_f3

This evaluation uses 0.4% in both thresholds and is applied under two sites. Table 11
represents the calculation of the thresholds for each fragment.

Table 11. Threshold analysis in dynamic fragmentation under the operations performed in Tables 9 and 10.

Previous Current Operation Previous Current Performance
Fragment Name Operation Operation Value at Performance Performance Value at
Value Value 0.4% Value Value 0.4%
multimedia_records_f1 5 5 0.02 7536 7 30.144
multimedia_records_f2 6 5 0.024 8984 13 35.936
multimedia_records_f3 8 5 0.032 7543 12 30.172
multimedia_records_f4 6 12 0.024 7542 34 30.168

Table 11 shows that the only fragment to exceed both thresholds was multimedia_records_f4.
Refragmentation is carried out in the same way as in Figure 9, placing the most used tuples
in the center of the diagram and producing two new fragments. The execution times of
the operations performed in Table 9 are again compared in Table 12 to observe the different
execution times in this new evaluation.

Electronics 2022, 11, 288 17 of 19
Table 12. Comparison of execution times using the items of operations in Table 9.
. Execution Time without Execution Time with
Item Site . .
Fragmenting this Approach

1 1 493.5 18.5

2 1 58 23

3 1 61 8

4 1 41 Less than 1

5 2 495 21.5

6 2 13,204 84

7 2 73 4

8 2 13 2

Table 12 presents an improvement in response times of 98.84%. Additionally, the
work presented in [19] shows an operation simulator for MySQL. The functionalities of
the query simulator were enriched to obtain log files simulating workloads and sites on
the DBMS of this work. Execution times were obtained using a program written in Java
before fragmentation and after fragmentation. A total of 200 queries on each site were
simulated on the same MongoDB media collection to gain a more accurate percentage of
improvement. Average response times resulted in an 86% reduction.

5. Discussion

The approach presented fulfills the hypothesis of improving performance by reducing
the execution time of operations by assigning the fragments to the sites where they are most
used. The implementation of CBIR using k-NN and SURF descriptors requires different
strategies to be sought so that the task of reading all the descriptors and placing them in a
graph to search for similar multimedia elements is a trivial task with low consumption of
computational resources. Fragmenting a database is an arduous task, since in large databases
the amount of data moving from one place to another is significant. Performing fragmentation
without a system in place is a difficult task for database administrators and even more difficult
to carry out dynamically. The dynamic fragmentation approach proposed in this work greatly
facilitates the task of fragmentation in a precise and adequate way.

6. Conclusions

The results show that the same workload in a fragmented environment under this ap-
proach greatly improves response times. Costs are minimized due to reduced data transport
and decreased access to irrelevant tuples. When traversing all descriptors to find similar im-
ages in content-based queries, access to irrelevant tuples is very large. This work proposes a
completely innovative approach, since none of the related works address the different topics
included in this research. In addition, this work stands out for contemplating the multimedia
content in the CBIR, outperforming other static approaches, such as FRAGMENT [19].

As a future direction of this research, a new method for vertical fragmentation consid-
ering content-based queries on XAMANA will be implemented. In addition, an operations
translator will be developed for the adaptation of programming code to the new schemes
produced by this approach.

Author Contributions: Conceptualization, L.R.-M., EC.-M. and A.L.-C.; data curation M.L.A.-R,,
L.R.-M. and FE.C.-M.; funding acquisition L.R.-M. and G.A.-H.; software, validation, investigation
EC.-M,, LR.-M,, IM.-C. and G.A.-H.; methodology EC.-M., L.R.-M. and]J.C.; supervision and project
administration L.R.-M., G.A.-H. and F.C.-M.; writing—original draft, F.C.-M.; writing—review and
editing, L.R.-M., A.L-C,, J.C, G.A.-H,, IM.-C. and M.L.A.-R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Council of Science and Technology (CONACYT)
and the Public Secretariat of Education (SEP) through the Sectorial Fund of Research for Education,
grant number A1-5-51808.

Electronics 2022, 11, 288 18 of 19

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are very grateful to the National Technological of Mexico (TecNM)
for supporting this work. This research paper was sponsored by the National Council of Science and
Technology (CONACYT) and the Public Secretariat of Education (SEP).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ozsu, M.T; Valduriez, P. Distributed and Parallel Database Design. In Principles of Distributed Database Systems, 4th ed.; Springer
Nature: Cham, Switzerland, 2020; Volume 1, pp. 33-84.

2. Rodriguez, L.; Li, X.; Cuevas-Rasgado, A.; Garcia-Lamont, F. DYVEP: An active database system with vertical partitioning
functionality. In Proceedings of the 10th IEEE International Conference on Networking, Sensing and Control, Evry, France,
12 April 2013.

3. Fasolin, K.; Fileto, R.; Krugery, M.; Kasterz, D.; Ferreirax, M.; Cordeirox, R.; Trainax, A.; Traina, C. Efficient Execution of
Conjunctive Complex Queries on Big Multimedia Databases. In Proceedings of the 2013 IEEE International Symposium on
Multimedia, Anaheim, CA, USA, 11 December 2013.

4. Castro-Medina, F; Rodriguez-Mazahua, L.; Lépez-Chau, A.; Cervates, J.; Alor-Hernandez, G.; Machorro-Cano, I. Application of
Dynamic Fragmentation Methods in Multimedia Databases: A Review. Entropy 2020, 22, 1352. [CrossRef] [PubMed]

5. Rodriguez-Mazahua, L.; Alor-Hernandez, G.; Li, X.; Cervantes, J.; Lopez-Chau, A. Active rule base development for dynamic
vertical partitioning of multimedia databases. |. Intell. Inf. Syst. 2017, 48, 421-451. [CrossRef]

6. Fetai, L.; Murezzan, D.; Schuldt, H. Workload-driven adaptive data partitioning and distribution—The Cumulus approach. In
Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 1 November 2015.

7. Rodriguez-Mazahua, L.; Alor-Hernandez, G.; Cervantes, J.; Lopez-Chau, A.; Sanchez-Cervantes, J. A hybrid partitioning method
for multimedia databases. Dyna 2016, 83, 57-70.

8. Pinto, D.; Torres, G. On Dynamic Fragmentation of Distributed Databases Using Partial Replication. In Proceedings of the WSEAS
International Conferences: IMCCAS’02, ISA’02, SOSM’02, MCP’02 & MEM’02, Cancun, Mexico, 12 May 2002; pp. 208-211.

9. Saad, S.; Teklj, J.; Chbeir, R.; Yetongnon, K. Towards Multimedia Fragmentation. Adv. Databases Inf. Syst. 2006, 4152, 415-429.

10. Hauglid, J.O.; Ryeng, N.H.; Nervag, K. DYFRAM: Dynamic fragmentation and replica management in distributed database
systems. Distrib. Parallel Databases 2010, 28, 157-185. [CrossRef]

11. Abdalla, H.I; Amer, A.A. Dynamic horizontal fragmentation, replication and allocation model in DDBSs. In Proceedings of the
2012 International Conference on Information Technology and e-Services, Sousse, Tunisia, 26 March 2012.

12. Bellatreche, L.; Bouchakri, R.; Cuzzocrea, A.; Maabout, S. Incremental Algorithms for Selecting Horizontal Schemas of Data
Warehouses: The Dynamic Case. In Data Management in Cloud, Grid and P2P Systems; Springer: Berlin/Heidelberg, Germany, 2013;
Volume 8059, pp. 13-25.

13. Derrar, H.; Ahmed-Nacer, M. Exploiting data access for dynamic fragmentation in data warehouse. Int. J. Intell. Inf. Database Syst.
2013, 7, 34-52. [CrossRef]

14. Herrmann, K.; Voigt, H.; Lehner, W. Cinderella—Adaptive online partitioning of irregularly structured data. In Proceedings of
the 2014 IEEE 30th International Conference on Data Engineering Workshops, Chicago, IL, USA, 4 April 2014.

15. Abdel, A.E.; Badr, N.L.; Tolba, M.F. Distributed Database System (DSS) Design over a Cloud Environment. Multimed. Forensics
Secur. 2016, 115, 97-116.

16. Serafini, M.; Taft, R.; Elmore, A.J.; Pavlo, A.; Aboulnaga, A.; Stonebraker, M. Clay: Fine-Grained Adaptive Partitioning for General
Database Schemas. VLDB Endow. 2016, 10, 445-456. [CrossRef]

17. Lwin, N.K;; Naing, TM. Non-Redundant Dynamic Fragment Allocation with Horizontal Partition in Distributed Database
System. In Proceedings of the 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS),
Bangkok, Thailand, 24 October 2018; pp. 300-305.

18. Olma, M.,; Karpathiotakis, M.; Alagiannis, L.; Athanassoulis, M.; Ailamaki, A. Adaptive partitioning and indexing for in situ
query processing. VLDB]. 2020, 29, 569-591. [CrossRef]

19. Castro-Medina, F; Rodriguez-Mazahua, L.; Lépez-Chau, A.; Abud-Figueroa, M.; Alor-Herndndez, G. FRAGMENT: A Web Application
for Database Fragmentation, Allocation and Replication over a Cloud Environment. IEEE Lat. Am. Trans. 2020, 18, 1126-1134. [CrossRef]

20. Rodriguez-Arauz, M.]J.; Rodriguez-Mazahua, L.; Arrioja-Rodriguez, M.L.; Abud-Figueroa, M.A.; Peldez-Camarena, S.G.; Martinez-

Méndez, L. Design of a Multimedia Data Management System that Uses Horizontal Fragmentation to Optimize Content-based
Queries. In Proceedings of the Tenth International Conference on Advances in Information Mining and Managemen, Lisbon,
Portugal, 27 September 2020; pp. 15-21.

http://doi.org/10.3390/e22121352
http://www.ncbi.nlm.nih.gov/pubmed/33266019
http://doi.org/10.1007/s10844-016-0420-9
http://doi.org/10.1007/s10619-010-7068-1
http://doi.org/10.1504/IJIIDS.2013.051736
http://doi.org/10.14778/3025111.3025125
http://doi.org/10.1007/s00778-019-00580-x
http://doi.org/10.1109/TLA.2020.9099751

Electronics 2022, 11, 288 19 of 19

21. Abebe, M,; Glasbergen, B.; Daudjee, K. MorphoSys: Automatic Physical Design Metamorphosis for Distributed Database Systems.
VLDB Endow. 2020, 13, 3573-3587. [CrossRef]

22. Ge, Y,; Cao, J.; Wang, H.; Chen, Z.; Zhang, Y. Set-Based Adaptive Distributed Differential Evolution for Anonymity-Driven
Database Fragmentation. Data Sci. Eng. 2021, 6, 380-391. [CrossRef]

23. BOOECV. Available online: https:/ /boofcv.org/index.php?title=Main_Page (accessed on 17 September 2021).

http://doi.org/10.14778/3424573.3424578
http://doi.org/10.1007/s41019-021-00170-4
https://boofcv.org/index.php?title=Main_Page

	Introduction
	Related Work
	Dynamic Horizontal Fragmentation Contemplating CBIR
	Results
	Discussion
	Conclusions
	References

