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a b s t r a c t

Support Vector Machine (SVM) has important properties such as a strong mathematical background and
a better generalization capability with respect to other classification methods. On the other hand, the
major drawback of SVM occurs in its training phase, which is computationally expensive and highly
dependent on the size of input data set. In this study, a new algorithm to speed up the training time
of SVM is presented; this method selects a small and representative amount of data from data sets to
improve training time of SVM. The novel method uses an induction tree to reduce the training data set for
SVM, producing a very fast and high-accuracy algorithm. According to the results, the proposed algorithm
produces results with similar accuracy and in a faster way than the current SVM implementations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

SVM was introduced by Vapnik as a kernel based machine learn-
ing model for classification and regression task. The extraordinary
generalization capability of SVM and its discriminative power have
attracted the attention of data mining, pattern recognition and
machine learning communities in the last years. SVM has been used
as a powerful tool for solving practical binary classification prob-
lems [1–5] and regression [6,7]. However, it is well known that
the major drawback of SVM occurs in its training phase [8–10].
This is because in order to train this classifier, it is necessary to
solve a quadratic programming problem or QPP, which is a com-
putationally expensive task. Solving the QPP becomes impractical
when the data sets are huge because the amount of time and mem-
ory invested is between O(n2) and O(n3). In order to show how
long the training time of a SVM is, Fig. 1 presents a comparative
between training times using three popular methods whose source
code is publicly available, these are: Sequential Minimal Optimiza-
tion (SMO) [11], Library of Support Vector Machines (LibSVM) [10]
and Simple Support Vector Machine (SSVM) [12]. The data set used
in this example contains one million points and eight features; in
this case, LibSVM significantly outperforms SMO and SSVM.
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In this research, we propose a novel method to reduce the
size of data sets based on a decision tree (DT). The latter has
several interesting properties: they are tolerant to noise, their train-
ing is not costly, they are able to partition the input space into
regions with low entropy, and in addition, they produce mod-
els that humans can interpret easily. By taking advantage of the
ability of DTs to model class distributions with the use of parti-
tions, new instances can be assigned to the same class of partition
they belong to. Using this feature, we can detect critical instances
that determine the decision boundaries of SVM. With proposed
method, SVM can be enabled on large data sets. According to
the experimental results there is some minor damage in some
data sets. However, computational comparisons on benchmark
data sets show that proposed method reduces the training time
significantly in comparison with other state of the art propos-
als.

DTs have been used for data reduction in some previous works.
In [9], each disjoint region (partition) discovered by a DT is used
to train a SVM. That method is based on the well-known fact that,
in general, the region (hyperplane defined by the solution) found
on small data sets are less elaborated than the region obtained
by the entire training set [13–15]. Small learning data sets reduce
decision tree complexity simplifying the decision rules. A SVM is
applied to each one of these regions, so that the computational
cost is less expensive compared with training a SVM and with the
whole data set.

http://dx.doi.org/10.1016/j.asoc.2015.08.048
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Fig. 1. Training times comparative of SVM implementations.

A similar approach to proposed method was recently presented
in [16]; it consists in reducing the number of instances to train a
SVM. The central idea was to approximate the decision boundary
of SVM by using DT, i.e., to capture the objects near the decision
boundary; however, the strategy is different to the used in [16]; a
SVM is trained twice, the first time with a few examples randomly
selected. The hyperplane obtained before is used to select examples
close to the Support Vectors of separating hyperplane detected by
a DT. The SVM is trained again, but this time with those examples
selected by the DT. In [17,18], also DT is used to select examples
close to decision boundary, however, the authors does not take in
consideration how to optimize the sigma parameter, and the use of
the algorithm on imbalanced data sets.

The method presented in this research is very efficient with large
data sets. The proposed approach, firstly, eliminates nonessential
data, and then it recovers the data points that are near to the deci-
sion boundaries. The training of SVM is done on those remained
“useful” data. The methodology presented in this study applies a
decision tree in a unique, yet powerful and effective way to reduce
the SVM training time. It is important because in many applica-
tions on the real world is necessary a reasonable trade-off between
accuracy and training time.

The rest of the study is organized in 7 sections. In Section 2, an
overview on the methods to train SVM is presented. In Section 3, we
review some preliminaries of SVM and DT. Section 4 presents the
proposed method in detail. The complete experimental study is car-
ried out in Section 5. A thorough discussion is presented in Section
6. Finally, Section 7 summarizes the work and draws conclusions
from it.

2. Review on methods for training support vector machines

According to the strategy used, the training methods for SVM
can be categorized into data selection, decomposition, geometric,
parallel implementations and heuristics. Their core ideas and the
most representative algorithms are presented in this section.

Data selection methods for SVM intent to decrease the size of
data sets by removing the instances that do not contribute to the
definition of the optimal separating hyperplane. The latter depends
completely on instances which are located closest to the separation
boundary [19], and correspond to those whose Lagrange multipli-
ers are greater than zero in the Karush–Kuhn–Tucker conditions
(1). These instances are called support vectors (SVs). Generally, the

number of SV is a small portion compared with the size of training
sets.

˛i = 0⇒ yi(〈ω, xi〉 + b) ≥ 1 and �i = 0

0 < ˛i < C ⇒ yi(〈ω, xi〉 + b) = 1 and �i = 0

alphai = C ⇒ yi(〈ω, xi〉 + b) ≤ 1 and �i ≥ 0

(1)

Simple random sampling (SRS) is probably the most basic strat-
egy to reduce the size of training sets. It consists in choosing a
number of instances and then train a SVM with them. The works
presented in [20,21] and [22] show that uniform random sampling
is the optimal robust selection scheme in terms of several statisti-
cal criteria. However, although SRS is computationally cheap, the
standard deviation of classification accuracy is large in most cases
[22].

A more sophisticated form of this type of sampling consists
in assigning to each instance a probability to be chosen. Once a
number of instances is randomly selected, a SVM is trained with
them. After this, the probabilities are updated, increasing those
whose instances have been miss-classified [23–25]. This process
is repeated several times.

Some data selection methods have been developed by comput-
ing the distance between the instances and the optimal hyperplane.
Several metrics for measuring distance have been used in previ-
ous works: Euclidean [26,27], Mahalanobis [28] and Hausdorff [29].
Most of the current distance-based methods are inspired on two
observations: (1) the instances closest to those ones with oppo-
site label have high chances to be SV [29] and (2) instances far from
hyperplane do not contribute to the definition of decision boundary
[30]. A problem with naive implementations that require to com-
pute all distances between objects is that this task has a temporal
and a spatial complexity of O(n2).

The Condensed Nearest Neighbor (CNN) [31] choose instances
near to class frontiers, reducing the size of training sets. However,
CNN is not noise tolerant. Reduced Nearest Neighbor (RNN) [32],
Selective Nearest Neighbor (SNN) [33] and Minimal Consistent Set
(MCS) are methods based on CNN, and therefore, they have also
problems with noisy data sets. RNN, SNN and MSC are more costly
than CNN.

Neighborhood properties of SV have also been exploited to
reduce size of training sets. Wang and Kwong [34] used neigh-
borhood entropy, in [35] only the patterns in the overlap region
around the decision boundary are selected. The method presented
in [36] follows this trend but use fuzzy C-mean clustering to select
samples on the boundaries of class distribution, whereas [29] uses
hyper spheres.

The basis for decomposition methods lies in the fact that the
training time can be reduced if only the active constraints of QPP
are taken into account [37]. A similar idea to active sets methods for
optimization is applied in decomposition methods. In the active set
approach, two sets are used: the working set and the set of fixed
variables. The optimization is made only on working set. For the
case of SVM, the working set is usually composed of instances that
violate the Karush–Kuhn–Tucker conditions. Apart of the proved
convergence [38], a clear advantage of decomposition is that mem-
ory requirement is linear in the number of training examples; but
on the other hand, because only a fraction of variables is being con-
sidered in each iteration, it is time consuming [39,40] if elements in
active set are not carefully selected. One of the first decomposition
methods was Chunking [30]. It consists in repetitively obtaining the
maximum margin hyperplane from an amount of instances (called
the chunk) and then forming a new chunk with the SV from the pre-
vious solution and some new instances. Probably the most famous
decomposing algorithm is the SMO [11]. It considers the smallest
size working set: only two training samples. LibSVM [10] is an algo-
rithm based on SMO with the improvement of a more advanced
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mechanism of selection of working set by using the second order
information method previously shown in [41]. The SVMlight [42] is
another important state of the art decomposition method.

Variants of SVM speed up training time of SVM at expense of
loosing accuracy [39]. These methods work by changing the origi-
nal QPP formulation. Most of the variants methods conclude with
a system of linear equations solved efficiently if the number of fea-
tures is moderate, i.e., around 100. A representative method in this
category is the least square SVM (LS-SVM) [43] which changes the
original QPP by using a linear system of equations that can be solved
explicitly or by using a conjugate gradient method. Other impor-
tant methods are the PSVM (Proximal SVM) [44] and reduced SVM
(RSVM) [45].

Parallel implementation of QPP is difficult because there is a
strong dependence between data [46]. Most parallel methods for
training SVM divide training set into independent subsets to train
SVM in different processors, as in [46–48]. In [49], the kernel matrix
of SVM is approximated by block diagonal matrices so that the orig-
inal optimization problem can be decomposed into hundreds of
sub problems, which are easy to solve in a parallel fashion. Other
parallel implementations can be found in [50–54].

Geometric methods for SVM are based on that computing the
optimal separating hyperplane is equivalent to find the closest pair
of points belonging to convex hulls [19,55,56]. Recent advances on
geometric methods can be found in [57–61].

Among all heuristic methods, the alpha seeding [62] consists in
providing initial estimates of the ˛i values for the starting of QPP.
Alpha seeding seems to be a practical method to improve training
time of SVM. Recently in [63] has been proposed an improvement
of this method.

According to the reviewed literature, there are currently just
few methods that combine DT for instance selection in a similar
way to the presented in this research. In [64], the algorithm pat-
terns by ordered projections (POP) is presented. It uses projections
of instances on the axis of attributes to find the minimal number of
elements to represent hyper-rectangles which contain instances
of the same class (entropy zero). A disadvantage of POP is that
reduction of the size of data sets is very low [65].

In [16], a method that approximates the decision boundary of
SVM using a DT to speed up SVM in its testing phase is proposed.
There are important differences with respect of our method: first,
in [16], a SVM is used in some leaves of a DT. The idea is to reduce
the number of test data points that require SVM’s decision; and
secondly, the other method is not focused in reducing the number
of SV.

Recently, in [66], the combination of a DT and SVM was pro-
posed. The underlying idea is to train a SVM first, and then use the
predictions of the model obtained to modify the class of examples
in the training set. A DT is afterward trained using the modified
set. The SVM is used as a pre-processor for improving the perfor-
mance of DT, when dealing with the problem of imbalance. The
major drawback of this approach is its inability to deal with large
data sets.

3. Preliminaries

This section presents some basic concepts of the SVM and deci-
sion trees. A more detailed explanation can be found in [67–69]
respectively.

3.1. Support Vector Machines

Considering binary classification case, it is assumed that a train-
ing set is given as:

(x1, y1), (x2, y2), . . ., (xn, yn) (2)

i.e. X = {xi, yi}ni=1 where xi ∈Rd and yi ∈ (+1, −1). The optimal sepa-
rating hyperplane is given by

y = sign[wT ϕ(xi)+ b] (3)

which is obtained by solving the following QPP

min
w,b

J(w) = 1
2

wwT + c

n∑
i=1

�i

subject to : yi[wT ϕ(xi)+ b] ≥ 1− �i

(4)

where �i are slack variables used to tolerate miss-classifications
�i > 0, i = 1, 2, . . . n, c > 0. Eq. (4) is equivalent to the QPP 5 which is a
dual problem with the Lagrange Multipliers ˛i > 0,

max
˛i

J(w) = −1
2

n∑
i=1,j=1

˛iyi˛jyjK〈xi · xj〉 +
n∑

i=1

˛i

subject to :
n∑

i=1

˛iyi = 0, C ≥ ˛i ≥ 0, i = 1, 2, . . ., n

(5)

With C > 0, ˛i = [˛1, ˛2, . . ., ˛n]T, ˛i ≥0, i = 1, 2, . . ., n, are the coef-
ficients corresponding to xi, all the xi with nonzero ˛i are called
SV. The function K is the kernel which must satisfy the Mercer
Condition [8]. The resulting optimal decision function is defined
as

yi = sign

(
n∑

i=1

˛iyiK〈xi · xj〉 + b

)
(6)

where x = [x1, x2, . . ., xn] is the input data, ˛i and yi are Lagrange
multipliers. An unpreviously seen sample x can be classified using
(6). There is a Lagrangian multiplier ˛ for each training point. When
the maximum margin of the hyperplane is founded, only the closed
points of the hyperplane satisfy ˛ > 0. These points are called sup-
port vectors (SV), the other points satisfy ˛ = 0, so the solution
vector is sparse. Where b is determined by Kuhn–Tucker condi-
tions:

∂L

∂w
= 0, w =

n∑
i=1

˛iyiϕ(xi)

∂L

∂b
= 0,

n∑
i=1

˛iyi = 0

∂L

∂�i

= 0, ˛i − c ≥ 0

˛i{yi[wT ϕ(xi)+ b] ≥ 1− �i} = 0

(7)

3.2. Decision trees

Decision tree techniques have become one of the most popu-
lar tools for classification and regression. One of the attractiveness
of decision trees is that they can extract knowledge by inferring
human understandable rules from data. Typically, a decision tree
algorithm begins with the entire set of data, splits the data into
two or more subsets based on the values of attributes and then
repeatedly splits each subset into finer subsets until the split size
reaches an appropriate level. The entire modeling process can be
represented in a tree structure and the model generated can be
summarized as a set of “if-then” rules. Decision trees are easy to
interpret, computationally inexpensive, and capable of work with
noisy data.

We used the C4.5 algorithm [69] to construct the decision tree
data filter. The selection of the best attribute node is based on the
Gain ratio (S, A) where S is a set of records and A is an attribute. This
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Fig. 2. Block diagram of the proposed method.

gain defines the expected reduction in entropy due to sorting on A.
It is calculated as

Gain(S, A) = Entropy(S)−
∑

v∈Value(A)

|Sv|
|S| Entropy(Sv) (8)

In general, if we are given a probability distribution P = (p1, p2,
. . ., pn) then the information conveyed by this distribution, which
is called Entropy of P and it is given by

Entropy(P) =
n∑

i=1

− pi log2 pi

4. Proposed method

The decision boundaries discovered by SVM are determined by
the Support Vectors, which are usually a small portion of training
set. The SV correspond to the closest objects with opposite label
for linearly separable case. In the general case, there is no way
to exactly know a priori which objects in training set are the SV,
however the knowledge on geometry of SVM can be exploited to
pre-process a data-set and detect objects that are likely to be SV.

The proposed algorithm introduces a pre-processing step to
quickly remove data that do not contribute to define the decision
boundary of SVM, while preserving SV candidates.

In general the proposed method works as follows: it applies SVM
on a small subset of original data-set in order to obtain a sketch of
the optimal separating hyperplane, then it labels objects that are
far from sketched hyperplane and objects that are close to it.

The method uses a decision tree to identify objects that have
similar characteristics to the computed SV and then it removes the
less important objects from the original data-set.

A deeper explanation of the process is given in the next subsec-
tions. Fig. 2 shows the proposed method.

4.1. Initial subset selection

In the first phase of the method, a small subset C is extracted
from the Entire Data Set (EDS), subset C is used to compute a sketch
of the optimal separating hyperplane.

In general, the separating hyperplane obtained from C is not
the optimal. This happens because the random selection of exam-
ples from training data-set can discard some important objects that
could be SV. Using just simple random sampling is not enough in
most cases.

Figs. 3 and 4 exemplify this fact, the former shows a version of
Checkerboard with 100,000 examples and the resulting decision
boundaries found by SVM when using the entire data-set.

Training a SVM with this version of Checkerboard (or other
one with similar size) takes long time, but a small subset data-
set can be used to find a suboptimal separating hyperplane. Fig. 4
shows the decision boundaries computed by using a small subset
set randomly chosen from the Checkerboard. It is clear that the clas-
sifier generalization is severally affected in this case. A key point
in selection is to carefully chose a subset of examples from train-
ing set. This subset must be small and representative at the same
time.

Commonly, the data sets contain similar number of examples
with positive and with negative labels. Most classifiers including
SVM can achieve good accuracy if their parameters are calibrated
appropriately. In some cases, data sets are not balanced, but
they contain most of the examples of one class (called major-
ity class) and a few of the opposite class (minority class). These
data sets are named imbalanced or skewed. In these cases, SVM
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Fig. 3. Checkerboard data-set and decision boundaries founded by SVM.
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Fig. 4. Decision boundaries using simple random sampling.

does not perform well. Similar behavior occurs with other classi-
fiers.

In order to face this problem, it is necessary to artificially bal-
ance the training set. A mechanism is built-in the proposed method
to accomplish the balancing task. The result is an algorithm that
implements a simple heuristic to select a small subset C from EDS
taking into account the number of elements of each class.

The proposed method begins the selection of objects by com-
puting the rate of positive and negative samples, this is achieved in
linear time by using (9).

p← min{N+, N−}
|EDS| (9)

with N+, number of xi ∈EDS s.t. yi = +1; N−, number of xi ∈EDS s.t.
yi =−1; |EDS|= N+ + N− and N+ > 0, N− > 0, i.e., at least one sample of
each class.

Two thresholds �b,�u are defined to give an indication to the
method on how should be considered the grade of imbalance of a
data-set.

�b, �u ∈ (0, 1) s.t. �b > �u. (10)

The thresholds (10) are used to indicate when the data-set is
considered with small imbalance (13), moderate imbalance (12) or
high imbalance (11).

ph < �u (11)

�u ≤ pm < �b (12)

�b ≤ ps ≤ 0.5 (13)

Fig. 5a shows a hypothetical example for p values of a data-set
containing 1000 examples. Instances in minority class with less
than 1% have a big imbalance as shown in Fig. 5b. If we have two
data sets, with different size of minority class defined by p = 0.1 and
p = 0.5, then the imbalance is given by 9:1 and 1:1 respectively as
shown in Fig. 5b.

Algorithm 1. Initial Data Selection

Data
EDS: Entire Data Set
�u , �b: According to (10)
Output
EDSr: A subset of instances (EDSr ⊂EDS)
Begin algorithm

Compute p using (9)
If EDS is balanced then //see Eq. (13)

Apply SRS to create EDSr

else if EDS is semi balanced then //see Eq. (12)
Select samples from majority and minority classes considering the

probabilities
as p and 1−p respectively.

else //The data set is imbalanced, see Eq. (11)
Create EDSr taking 100% of minority class and selecting a number of

instances of majority class.
end if
return EDSr

End algorithm

According to the data-set, the user can modify the thresholds.
For the experiments, the following values were used:

�b = 0.25 and �u = 0.1

The number of instances selected from EDS using these thresh-
olds values is therefore as explained in the following:

Criterion I. If the amounts of both positive and negative labels in
X are similar, i.e., the proportion between the number of positive
and the number of negative labels is lesser or equal to 2:1, then
the algorithm uses a simple random sampling (SRS) where each
element of the data-set has an equal probability of selection.
Criterion II. If the proportion between positive and negative labels
is greater than 2:1 and lesser than 9:1, then the algorithm uses
an inverse probability proportional to size sampling, e.g., if there
are 90% data points with negative labels and 10% data points with
positive labels, the random selection algorithm selects 90% of the
small data-set with positive labels.
Criterion III. Finally, if the proportion between data points with
positive and negative labels is bigger than 9:1, then the algorithm
uses all data points that have label with fewer rates.

This random selection approach has the greatest impact on
determining the suboptimal separating hyperplane. This simple
heuristic ensures that the subset obtained is balanced, regardless if
the original one is skewed or not.

Recent studies show that the imbalance of data-sets consider-
ably affects the performance of most classifiers [70], because in
general they are designed to reduce the global mean error regard-
less classes distribution and therefore the decision boundaries are
biased to the majority class in the training phase. This method of
selection can improve the accuracy for a given sample size by con-
centrating sampling on few elements in this stage, but it has the
greatest impact on determining a hyperplane.

Formally, our training data-set EDS consists of n pairs (x1, y1),
(x2, y2), . . ., (xn, yn), with xi ∈Rd, and yi ∈ {−1, 1}. After the applying
the heuristic selection the obtained data set is C = {xi, yi}li=1, with
l�n.

Algorithm 1 shows the implementation of the proposed heuris-
tic.

4.2. Detecting objects close to decision boundaries

After the reduced subset set C has been created from EDS, a
sketch of optimal separating hyperplane is computed using data-
set C and SVM. This hyperplane becomes important because it is
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Fig. 5. Thresholds to different ratio of imbalance in data-sets.

used to model the pattern distribution of SVs and non-SVs in order
to reduce the original training set EDS.

After the SVM classification stage, the hyperplane obtained with
subset C is given by (14).∑
k∈Vsmall

yk˛∗smallK(xk, x)+ b∗small = 0 (14)

where Vsmall are the SVs, i.e. the data points that contain the most
important features in the small data-set.

SVs are the most important data points of all input data-set and
generally constitute a small fraction of the training examples. If
most non-SVs can be removed from the entire data-set, then the
SVM training can be accelerated drastically.

It is necessary to compute a general model of distribution of SVs
in C, to detect SVs in EDS and remove objects that are non-SVs from
it. The algorithm takes the SVs of C and labels them with an extra
class E+1, and non-SVs as outliers and labels them with an extra class
E−1. The outliers are observations that do not follow the statistical
distribution of the bulk of data, in this case, outliers are objects
far from suboptimal separating hyperplane. These points are not
important when obtaining the optimal classification hyperplane.

Summarizing, the small data-set is given by

C = {xi, yi}li=1

with l�n the SVs in the small data-set are given by

{(x1, y1), (x2, y2), . . ., (xk, yk)}, 1, 2, . . ., k,

where k∈Vsmall and non-SVs are given by

{(x1, y1), (x2, y2), . . ., (xm, ym)}, 1, 2, . . ., m /∈ Vsmall

It is clear that {xl, yl}= {(xk, yk)∪ (xm, ym)}, consequently, data-
set {xi, yi}ki=1 ∈Vsmall is labeled with a extra class E+1 and {xi, yi}mi=1
/∈Vsmall with E−1.

4.3. Modeling the distribution of support vectors

Once all the SV and outliers of C have been identified in the
previous stage, a decision tree is induced in order to model the dis-
tribution of SV. Fig. 6 shows the SVs and the decision tree obtained
from SVs and non-SVs. Decision tree is obtained from support vec-
tors and non-support vectors. The function of DT is to reduce the
entire data set, obtaining a small data set with the most important
data. In Fig. 6 SVC represent the Support Vectors Candidates and
N-SV the non-SV.

A decision tree is used here in the model to detect and retain all
data that are close to the objects (xk, yk)∈Vsmall and to remove data
that are similar to outliers {xi, yi} /∈Vsmall.

The new distribution class is expressed by:

(x1, yE1 ), (x1, yE2 ), . . ., (xn, yEn ) (15)

i.e., training data-set {xi, yEi
}q
i=1 where q = k + m, xi ∈Rd, and yEi

∈
(+1) represent the SV obtained in the first stage of SVM and the pairs
xi ∈Rd, yEi

∈ (−1) represent the non-SV obtained in the first stage
of SVM. Where yEi

∈ (+1) constitute data points that contain the
most important features and yEi

∈ (−1) constitute the data points
far from hyperplane (outliers). From these data points (SVs and
non-SVs) obtained in the first stage of SVM is trained the decision
tree.

To find a decision function that separate SVs from non-SVs, a
decision tree is induced. In this way, objects close from hyperplane
and data points far from hyperplane are distinguished. The reduced
data-set RDS can be expressed as

RDS = {xpi, ypi} ∪ {{xi, yi}ki=1 ∈ Vsmall}

where xpi are the data close from the decision hyperplane obtained
in the first stage, which have a positive label, and Vsmall are the
support vector from small data-set.

The obtained subsets contain objects that have similar distribu-
tion of SV in EDS, i.e., the entire data-set EDS is reduced into a small
data subset with the most important data objects. It is clear that the
quality of the reduced data points obtained in this phase benefits
directly, in accuracy and training time, the proposed algorithm.

Different from algorithm presented in [16], where the authors
used a ı− region to control the influence of the method on the
training set, in this study the parameter used to recover the most
important objects is the parameter � of the RBF kernel.

Fig. 7 shows the data points recovered with different values of �
used in the first stage of SVM. Fig. 7a shows the recovered data set
with � = 0.2, in Fig. 7b are shown data points recovered with � = 0.5
and in Fig. 7c are shown data points recovered with � = 0.8.

Is clear that, the training time rely on the proper choice of �
parameter, which is selected in this research by grid search and
cross validation. In the special case of the checkerboard data-set,
the training time was reduced and the optimal hyperplane was
obtained by using the smallest data-set. However, in some cases
it is not the best solution and is necessary to find the best value
of � that reduces the training time without affecting the classifier
accuracy.
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Fig. 6. Building a DT from SV and non-SV obtained in first stage of SVM.

4.4. Training the Support Vector Machine

The SVM is trained using the small subset selected in the pre-
vious state of the method. The complete method is shown in the
block diagram of Fig. 2.

5. Experimental results and comparison

In order to show the effectiveness of the proposed method, it
was tested with public available data-sets, in addition with two
synthetic ones which were created by ourselves. The performance
of the proposed method was compared with LibSVM, a state of the
art training method for training SVM.

Organization of the experimental results is as follows: in the first
part the characteristics of data-sets are presented. The second part
of this section shows the performance of the proposed algorithm in
terms of generalization capability and training times. A discussion
on the choice of parameter � is shown. The value of this parameter
affects the classification accuracy.

5.1. Data sets

In order to demonstrate the performance of the proposed
method, several experiments on benchmark problems were
conducted. The following data-sets are used in the experi-
ments: Checkerboard and UCI Adult data sets from UCI Machine
learning repository (available at http://archive.ics.uci.edu/ml/);
IJCNN1, Covtype Binary and Magic data sets from LibSVM (pub-
licly available at http://www.csie.ntu.edu.tw/ cjlin/libsvm); ARN

(www.pubmedcentral.nih.gov), and Synthetic 1 and Synthetic 2
which were created for the experiments.

The main characteristics of each data-set (training size, number
of features and class of each data-set) are shown in Table 1. In the
experiments, training and testing sets were randomly created by
selecting the 80% and 20% of objects respectively.

The two synthetic data sets have two classes of purposes for
testing binary classification. The Synthetic 1 data-set is linearly
separable whereas Synthetic 2 data-set is linearly inseparable.

5.2. Classification accuracy and training times

The methods were implemented in Matlab. The experiments are
carried out on several data-sets using SMO [11] in Support Vector
Machine and the results were compared with the ones obtained
using LibSVM [10]. The LibSVM method was selected because it is
the most representative in the area of SVM, and it has demonstrated
good performance in practical applications.

Training a SVM involves to choose some parameters. Such
parameters have an important effect on the classifier’s perfor-
mance. In all the experiments, except in Synthetic 1, radial basis
function (RBF) was used as kernel.

(K(xi − xj) = exp(‖xi − xj‖/�), � > 0) (16)

Cross validation and grid search was used to find parameters
in (16) and also for computing the regularization parameter of
SVM. We use model selection to get the optimal parameters. The
hyper-parameter space is explored by a two-dimensional grid with
� = [10−2, 10−1, 100, 101] and the regularization parameter C = [101,
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Fig. 7. Influence of parameter � on the retrieved data-set.

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


794 J. Cervantes et al. / Applied Soft Computing 37 (2015) 787–798

Table 1
Data-sets used in the experiments.

Data-set Training size Testing size Features

Fourclass 862 – 2
Mushroom 8124 – 112
German 1000 – 24
Diabetes 768 – 8
Breast cancer 683 – 10
Australian 690 – 14
a1a 1605 30,956 123
a2a 2265 30,296 123
a3a 3185 29,376 123
a4a 4781 27,780 123
a5a 6414 26,147 123
a6a 11,220 21,341 123
a7a 16,100 16,461 123
a8a 22,696 9865 123
a9a 32,561 16,281 123
w1a 2477 47,272 300
w2a 3470 46,279 300
w3a 4912 44,837 300
w4a 7366 42,383 300
w5a 9888 39,861 300
w6a 17,188 32,561 300
w7a 24,692 25,057 300
w8a 49,749 14,951 300
Magic 19,020 – 10
IJCNN1 49,990 91,701 22
UCI Adult 48,842 – 14
Synthetic 1 109,000 – 2
Synthetic 2 500,000 – 2
Covtype Binary 581,012 – 54
Checkerboard 1,000,000 – 2

102, 103, 104, 105, 106]. In the experiments all data sets were nor-
malized and 10-fold cross validation was used in order to validate
the results. The experiments were performed on a 2.1GHz Intel Core
i5 CPU, 4 GB RAM machine running Windows XP. The Synthetic 1
is the only linearly separable data-set used in the experiments. For
this data-set, a linear kernel was used.

Table 2 shows a comparative between algorithms. In it t is the
training time in seconds and Acc is a classification accuracy on test
data-set. In some cases, the test data-set has the size of 20 percent
of that of the entire data-set, and contains points that do not belong
to the (80 percent) training set. In the case of UCI Adult, IJCNN1 and
Magic data sets, there exist test data sets which contain data points
that do not belong to the training data-set. Means and standard
deviations (SD) over 30 independent runs are reported for all data
sets.

In Table 2, the best results are shown in bold letters, standard
deviation of the proposed method is shown in last column. It can be
seen in Table 2 that proposed method requires more training time
on small data sets. However, the proposed method requires sev-
eral orders in less training time when the training data-set is big,
while providing comparable classification accuracies. It is impor-
tant because in many applications on the real world is necessary a
reasonable trade-off between accuracy and training time.

The superiority of proposed method (in training time) becomes
clearer in huge data-sets as can be seen in Table 2. In the case of
Checkerboard, in Synthetic 1 and Synthetic 2 data sets, the SSVM
algorithm requires substantially less time compared to LibSVM.
However, is clear that where the data-sets is small, the proposed
algorithm does not have a significant impact in terms of time. How-
ever, for large data-sets, a clear advantage can be observed.

It is observed from the results shown in Table 2 that on large data
sets, LibSVM algorithm performs better than the proposed algo-
rithm in almost all data sets. However, the difference is very small.
Moreover, the proposed algorithm requires substantially less time
compared to LibSVM algorithm.

Some studies have shown that there is a relationship between
the accuracy and the number of support vectors in the training

Table 2
Comparisons in terms of accuracy and time on data-sets.

Data-set LibSVM Proposed method

t in seconds Acc t in seconds Acc �

Fourclass 0.0008 98.5 0.1140 98.5 0.023
Mushroom 0.731 100 0.472 100 0.310
German 0.00658 80.03 0.0081 79.95 0.075
Diabetes 0.00235 80.11 0.004761 79.91 0.058
Breast cancer 0.000520 98.5 0.003569 98.4 0.043
Australian 0.000909 86.413 0.01139 86.2319 0.081
a1a 0.126 84.38 0.176 84.19 0.028
a2a 0.242 84.71 0.183 84.38 0.062
a3a 0.439 84.52 0.187 83.93 0.085
a4a 0.98 84.53 0.477 84.49 0.093
a5a 1.71 84.44 0.864 84.51 0.153
a6a 5.42 84.58 2.95 84.67 0.278
a7a 11.28 84.66 4.95 84.80 0.318
a8a 23.43 85.04 8.71 85.13 0.271
a9a 50.64 85.05 20.88 85.12 0.249
w1a 0.52 97.23 0.12 97.73 0.048
w2a 1.057 97.40 0.23 97.52 0.098
w3a 2.05 97.51 0.394 97.44 0.083
w4a 10.91 97.60 1.52 98.01 0.036
w5a 26.73 97.66 2.20 97.95 0.249
w6a 89.93 97.87 4.13 98.20 0.485
w7a 177.89 97.94 7.03 98.78 0.552
w8a 690.61 99.46 21.09 99.29 0.310
Magic 103.67 91.5 22.97 91.69 0.379
IJCNN1 9.188 98.59 2.108 98.41 0.824
Synthetic 1 120 100 12.07 100 0.018
Synthetic 2 223.5 99.9 32.81 99.9 0.059
Covtype Binary 9532 91.48 4761 91.45 0.364
Checkerboard 12,632 98.5 857 98.5 0.074

set. In all data sets shown in Table 2 the number of support vec-
tors represent only a fraction of the entire training set. However, in
Covtype Binary many data points are support vectors. Preliminary
studies show that over one hundred thousands of support vectors
are required for a good approximation on Covtype Binary dataset.

Fig. 8 shows the results obtained with the proposed method and
LibSVM algorithms.

Accuracy and training time of the proposed method depend of
each training data set. Figs. 8 and 9 show the comparisons with UCI

Fig. 8. Comparisons with UCI Adult data-set in terms of accuracy, training time and
SV.
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Fig. 9. Comparisons with Covtype data-set in terms of accuracy, training time and
SV.

Adult and Covtype binary data-sets respectively. Comparisons are
made in terms of accuracy, training time and SVs with different size
of the training time. The number of support vectors significantly
affects the training time of any SVM implementation and in this
case the proposed approach is affected too. Data sets with many
supports vectors can provoke that the training time of proposed
method will be affected when the proportion between support
vectors and instances in the data set is small.

As it can be seen from Fig. 8a the number of support vectors
obtained with Libsvm is similar to the proposed method in this
data set. It provokes that the training time of the proposed method
is similar to LibSVM as can be seen in Fig. 8b.

On the other hand, as it can be seen from Fig. 9c, in this case, the
number of support vectors is very high for both data sets too. How-
ever, in this data set, the proposed method reduces considerably
the input data set without loss accuracy.

Note that when the training set is small, more training patterns
bring in additional information useful for classification and so the
number of support vectors is very high and training time is very
similar to LibSVM. However, after processing around 100K patterns,
both the time and space requirements of the proposed method
begin to exhibit a constant scaling with the training set size. With
the entire data-set, the training time of the proposed method is only
a fraction of the training time used with LibSVM. In this case, the
accuracy obtained with LibSVM is better than the proposed method.
However, standard deviation over 30 independent runs shows in

Table 3 demonstrates that accuracy means of LibSVM is better than
the proposed method but the training time is very high.

Moreover, Fig. 9b shows that the means of accuracy of the pro-
posed method is similar to LibSVM. In the case of Checkerboard
data-set, we generate the data-set with class-overlap in order to
do more complex the training process. The experimental results
show that the training time of proposed algorithm is only 52.63 s
in comparison with 857 s with LibSVM.

6. Performance analysis

In this section we show the complexity of the proposed algo-
rithm. It is difficult to analyze the complexity of SVM algorithm
precisely. This operation involves multiplication of matrices of size
n, which has a complexity O(n2) and O(n3) at worst [11,12,24]. Is
clear that without a decomposition method, is almost impossible
for normal SVM to obtain the optimal hyperplane when the train-
ing data size is huge. On the other hand, in the SVM, the input data
of p dimensions are loaded into the memory. The data type is float,
so the size of each data point is 4 bytes. If we use normal SVM clas-
sification, the memory size for the input data should be 4(n×p)2

at worst. Is clear that, in modern SVM implementations, it is not
needed that the entire kernel matrix be put into the memory simul-
taneously. In the following, we assume that a QP implementation
of each stage of SVM takes O(n3) time.

6.1. Algorithm complexity

The complexity of the proposed algorithm can be approxi-
mated as follows. The complexity of finding a small data sets is
O(l). O(log l) in the worst case, where l is the size of small input
data. The approximate complexity of the two SVM training is

O(l3)+ O[(
∑l

i=1ni +m)
3
]. The total complexity of two stage clas-

sification is

O(l)+ O(l3)+ O(m3) (17)

where l is the number of data points selected in the first SVM stage,
m are the data points closest to the hyperplane which were recov-
ered using the decision tree, is clear that, the number of data points
depends of �. The choice of l and � is very important to obtain fast
convergence and to obtain a good accuracy. A good choice of l and
� will conduce to obtain fast convergence and high degree of gen-
eralization. On the other hand, the algorithmic complexity of C4.5
is O(mn log n) as proved in [16]. The total complexity of two stage
classification via decision trees is

O(l)+ O(l3)+ O(mp log p)+ O(m3) (18)

where p is the number of attributes. Obviously complexity in 17 is
smaller than the complexity of a normal SVM O(n3), because in the
most cases n� (l + mp).

Table 3
Comparisons in terms of SV, accuracy and time on data-sets.

Data-set Data SV1 RDS SVs Acc Time in seconds
Proposed/LibSVM Proposed/LibSVM Proposed/LibSVM

IJCNN1 49,900 209 10,703 2561/2711 98.41/ 98.59 1.93/9.07
w8a 49,749 471 12,962 6820/24,520 99.29/99.46 21.09/590.61
a9a 32,561 1428 13,847 9754/19,059 85.12/85.05 20.88/50.64
Synthetic 1 109,000 3 395 3/3 100/100 12.07/120
Synthetic 2 500,000 122 5893 253/257 99.9/99.9 22.81/223.5
Checkerboard 1,000,000 1428 33,690 17,858/18,024 98.5 / 98.5 52.63/857
Covtype 100,000 849 47,237 32,180/32,091 88.81/88.92 684/887

200,000 1452 78,076 56,473/57,676 89.95/90.04 1966/3063
300,000 2073 97,136 75,356/81,413 90.48/90.69 3914/6542
350,000 3095 113,384 76,814/92,2163 91.45/91.45 4731/8028
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7. Discussions

The performance of SVM is intimately related to Support Vec-
tors (SV), which are the most important data points in the entire
data-set, because they represent the solution of the related QPP. An
important improvement of training time of SVM is possible if we
eliminate the data with less possibilities of being SV.

In this study an algorithm that reduces size of large training set
is proposed. It uses twice a SVM. The first time, it recovers enough
statistical information from SV and provides it to a DT, which uses
this information to recover all SV candidates in the entire data-set.
During the second time that SVM is used, it refines the solution to
obtain the optimal solution.

Since the performance of algorithm depends directly on the
first selected subset, it is very important to implement an efficient
mechanism to select objects that represent the entire data-set. The
quality of the reduced training set affects directly the accuracy and
training time of the classifier.

In order to reduce the entire data-set, two important aspects
must be considered: the imbalance of the training set and the
size of it. In skewed data-sets, the proposed algorithm modify
the selection process benefiting the minority class. In balanced
data-sets, the selection process is random. On the other hand, size
of the entire data-set is very important to select a small data-
set and to use SVM in the first stage. It was observed in the
experiments that the accuracy and the training time depend on
how close to the suboptimal hyperplane the recovered candidates
are. In [16], the authors used a ı – region to control the influ-
ence of the method on the training data-set. In this research, the
parameter used to recover the most important objects is the param-
eter � of the RBF kernel from SVM first stage. Furthermore, the
training time rely on the proper choice of � parameter, which
is selected in this research by grid search. In the special case of
the checkerboard data-set, using the smallest data-set the train-
ing time is reduced considerably. However, in some cases it is not
the best solution and we have to find the best value of � that
reduces the training time without affecting the classifier accu-
racy.

Table 3 shows more results. It is clear that the proposed method
is suboptimal, because it obtains a subset from the original data-set
eliminating data points that the algorithm identify as less impor-
tant to the learning process. However, sometimes, important data
points can be eliminated improving the accuracy. The experimental
results show that in some cases the accuracy obtained with the pro-
posal method is better than LibSVM with the entire data-set. This
anomaly is an interesting area for future research but a possible
hypothesis for this situation could be that the proposed algorithm
eliminates SV that introduce noise in the generalization process.
However, in the most data-sets, the number of SV affects directly
the classifier’s performance. An example of this argument is shown
by Covtype data-set (Table 3). The proposed method obtains less
SV’s than LibSVM and the performance is affected by it; although it
is very small, the performance of LibSVM is better in all the cases
than the proposed method.

Other important point is the training time. In small data-sets,
the training time of the proposed algorithm is bigger than LibSVM,
because the operation is more expensive in small data sets and
LibSVM grows quadratically. However, the proposed method sig-
nificantly outperforms LibSVM in large data sets in training time
and sometimes in accuracy. Finally, our algorithm uses a data filter
algorithm which find a function that discriminates between sup-
port and non-support vectors from a small data-set in order to
select the best data points in the entire data-set. This step may
often provoke improvement of the generalization performance,
maintaining a fast convergence. The proposed method captures the
pattern of the data and it provides enough information to obtain a

good performance. The data filter of the proposed algorithm cap-
tures the statistical summaries of the entire data-set.

Table 3 shows results obtained with Checkerboard data-set, we
generated it with a small intersection between classes. The case
without intersection is very simple, the accuracy is always almost
100% and the SV’s are a small quantity. In this case, the proposed
algorithm obtains the same accuracy with less SVs.

8. Conclusions and future work

In this paper was presented a new algorithm for training SVM
for classification. The proposed algorithm works very fast even with
large data sets and outperforms the current state of the art SVM
implementations without substantial reduction of accuracy.

The proposed method applies a data filter based on a deci-
sion tree that scans the entire data and obtains a small subset of
data points. The proposed approach is conceptually simple, easy
to implement, and for some experiments faster than other SVM
training algorithms (SMO, LibSVM and SSVM) because it avoids
calculating margins for nonsupport vector examples. The superi-
ority of the proposed algorithm is experimentally demonstrated
for some real life data sets in terms of training time.

The results of experiments on synthetic and real data sets show
that the proposed approach is scalable for very large data sets while
generating high classification accuracy.

As future work, proposed method ideas can be adapted to stream
data mining SDM, which is a relatively new research area in data
mining. The challenge in SDM for SVM rests in that the underly-
ing model must consider concept drift phenomena and SV must be
updated very quickly.
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