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ARTICLE INFO ABSTRACT

Over the last years, Support Vector Machines (SVMs) have become a successful approach in classification
problems. However, the performance of SVMs is affected harshly by skewed data sets. An SVM learns a biased
SVM model that affects the performance of the classifier. Furthermore, SVMs are typically unsuccessful on data sets
Hybrid algorithms where the imbalanced ratio is very large. Lately, several techniques have been used to tackle this disadvantage
by generating artificial instances. Artificial data instances attempt to add information to the minority class.
However, the new instances could introduce noise and decrease the performance of the classifier. In this
research, an alternative procedure is suggested, the algorithm finds systematically new instances, improving the
performance of SVMs on skewed data sets. The proposed method starts obtaining the support vectors (SVs)
from the skewed data set. These initial SVs are used to generate new instances and the PSO algorithm is used to
evolve the artificial instances, eliminating noise instances. This research combines the best of optimization and
classification techniques. To show the ability of the proposed method to improve the performance of SVMs on
skewed data sets, we compare the performance of our method against some classical methods and show that our
algorithm outperforms all of them on several data sets.

Keywords:
Skew data sets

1. Introduction

In the past few years, Support Vector Machines (SVMs) have shown
excellent generalization power in classification problems in several
application fields [1-6]. In addition to their strong theoretical back-
ground and high generalization ability, SVMs have been confirmed as a
robust tool for classification and regression in several noisy and
complex domains. However, it has been shown that the generalization
ability of SVMs drops on skewed data sets [7,8], because SVMs learn a
biased model, which affects the classifier performance. Moreover, the
performance of SVMs is more affected when the imbalanced ratio is
very large. In order to tackle this disadvantage, many algorithms have
been proposed to deal with this problem. The most basic step to
process imbalanced data sets can be realized by sampling the data set.
This step helps to build a better predictive model. There are two main
methods that can be used to even-up the classes: under-sampling and
over-sampling. Under-sampling, delete instances from the over-repre-
sented class, called under-sampling and Over-sampling add copies of
instances from the under-represented class. These approaches are
often very easy to implement and fast to run. They are an excellent
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starting point. However, there are many algorithms to improve the
performance on imbalanced data sets. These algorithms are categorized
into internal and external techniques. External techniques try to
balance the data instances before training the classifier [9-18]. On
the other hand, internal techniques redesign the architecture of the
classification methods [19,8,20,21].

Although there are many classification algorithms for imbalanced
data sets in the current literature, the SMOTE (Synthetic Minority
Oversampling Technique) algorithm [14] is perhaps one of the most
used approaches to improve the performance of classifiers on skewed
data sets. The SMOTE algorithm introduces artificial instances in data
sets by interpolating feature values based on neighbors. Several studies
have shown that SMOTE has a better performance than under-
sampling and over-sampling techniques [22-26]. Moreover, SMOTE
does not cause information loss and sometimes the algorithm could
potentially find hidden minority regions. In the case of skewed data
sets, SMOTE could identify similar but more specific regions in the
feature space as the decision region for the minority class. Despite its
excellent features, SMOTE is limited to increment the density of the
sets by introducing instances with limited information because the new
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instances are obtained using a linear combination between positive
examples (minority class). The best artificial examples (i.e., instances
with more information of each class) are in the region between positive
and negative instances. Introducing instances in this region could
increment the discriminative information of positive instances, im-
proving the performance of a classifier on imbalanced data sets.
However, this external region is very sensitive to artificial instances.
The generation of inadequate artificial instances leads to introduction
of noise and loss of performance in the classifier. Artificial instances
can cause significant differences in performance. Therefore, artificial
instances must be generated carefully. Introducing optimal new
instances is an important step in the proposed algorithm. However,
no general studies are available to introduce the best artificial
instances.

Zhang et al. [16] proposed an algorithm to expand the minority
class boundary. The algorithm uses a Random Walk Over-Sampling
(RWO-Sampling) approach to balance different class samples by
creating synthetic samples through randomly walking in the real data.
In [27] a Genetic Algorithm (GA) is used for under-sampling the
majority class; the algorithm tackles the difficulties of SVM learning on
large data sets because the method significantly reduces the size of the
training set without losing performance. In [28] a hybrid learning
model is proposed to cope with the problem of imbalanced by evolving
self-organizing maps. The authors used GA to evolve the subset of the
minority examples into a new stage that might discover novel knowl-
edge from the limited and under represented minority class. In [15], a
GA is used to balance skewed data sets. The authors argued that the
method obtains better results than simple random sampling. Garcia
et al. [29] implemented an algorithm which performs an optimized
selection of examples from data sets. The learning algorithm is based
on the nested generalized exemplar method and GA to generate and
select the best suitable data to enhance the classification performance
over imbalanced domains. In [30], the authors proposed a classifica-
tion system in order to detect the most important rules, and the rules
which perturb the performance of the classifier. That system uses
hierarchical fuzzy rules and a GA. All the studies mentioned before, try
to improve the classifier performance by selecting subsets, balancing
subsets or evolving artificial examples. However, the searching space
could be huge in the most cases, this makes it difficult to find an
acceptable solution. In this paper, we present a novel algorithm which
uses Particle Swarm Optimization (PSO) in order to generate new
examples.

The distinctive contribution of the proposed method is that the
artificial instances are obtained from the most critical region for SVMs,
called the margin, and evolved to eliminate bad artificial instances. The
margin is the distance between the decision boundary and the closest
examples with a different label. The proposed algorithm obtains
artificial instances from the most important region by identifying the
minority samples in the margin region and introducing new artificial
examples only in this region. Techniques in the existing literature
obtain artificial instances by selecting each sample in the minority
class, and then introducing new artificial examples by joining any or all
of the k minority class nearest neighbors. The generation of new
instances in the minority class can improve the performance of SVM
classification [18]. However, it is particularly difficult to introduce good
instances in the margin region because this region is extremely
sensitive. Introducing artificial instances in this region must be
generated carefully. To find the optimal and synthetic instances is an
important step in the proposed algorithm. This is the main reason for
the combination of PSO and SVMs in this research. In this paper, a
hybrid SMOTE-PSO algorithm is proposed in order to improve the
performance of SVMs on imbalanced data sets. In SMOTE-PSO, PSO is
used to guide the search process of artificial instances that improve the
SVM performance. Moreover, the synthetic instances are evolved and
improved by following the best particle p,;. Experimental results show
that the SMOTE-PSO algorithm can get better performance than

188

Neurocomputing 228 (2017) 187-197

traditional models.

The rest of the paper is organized as follows. In Section 2, a brief
overview of the related work on SVMs with imbalanced data sets is
presented. In Section 3, the PSO algorithm is introduced. Section 4
presents the SMOTE-PSO technique. The results of the experiments are
shown in Section 5. Discussion and Conclusions are given in Section 6.

2. Classification on imbalanced data sets

In this section, the problem of imbalanced data sets is introduced,
and some algorithms to address this problem are described. The second
subsection discusses how SVM classifiers are affected by the imbalance
in data sets.

2.1. Addressing the imbalanced problem

Many real-world applications show an imbalance in data sets. The
imbalance in data sets occurs when a class contains most instances of
the entire data set (negative class), while the other class contains a
small fraction of instances (positive class). In these problems, the goal
in binary classification problems is to find a function that best
generalizes the minority class, which is usually the most important.
Traditionally, the performance of classical classification methods is low
on imbalanced data sets, because they were not designed to address
such problems. There are several techniques to deal with the challenges
of imbalanced data sets. These techniques can be categorized into
internal and external techniques. The most widely used external
techniques are under-sampling and over-sampling. Under-sampling
gets the number of instances m in the minority class X* = {x;}/2, and
randomly selects m instances in the majority class X~ = {x;}{_,. The
over-sampling technique tries to reduce the imbalance by replicating
data instances in the minority class or generating artificial instances in
the minority class.

In the past few years, the Synthetic Minority Over sampling
Technique (SMOTE) algorithm [14] has been one of the most popular
techniques to generate artificial instances. The SMOTE algorithm
generates artificial instances by over-sampling the minority class, this
is achieved taking each minority class instance and generating syn-
thetic instances along the line segments by joining any or all the k
minority class nearest neighbors. It does not cause any information loss
and could potentially find hidden minority regions. However, in some
cases the SMOTE algorithm could introduce noise in the data set
reducing the performance of the classifier. This is because SMOTE
makes the assumption that the instance between a positive class
instance and its nearest neighbor is also positive [17].

Several studies have shown that SMOTE is better than under-
sampling and over-sampling techniques [22-26]. Several techniques
inspired in the SMOTE algorithm have been proposed
[26,31,32,22,33]. In [33], authors proposed the Borderline-SMOTE
method, the algorithm over-samples the instances near the class
boundaries. The algorithm tries to learn the borderline between classes
and introduces artificial instances in this region. However, the border-
line algorithm could introduce noise by adding artificial instances
because this is a very sensitive region. The introduction of bad artificial
instances could damage the performance of the classifier. In [26] the
authors tested ten different implementations of under-sampling and
over-sampling to balance the class distribution of the training data. In
their conclusions, implementations based on SMOTE have better
performance than implementations based on under-sampling. In [34]
Akbani et al. proposed an algorithm based on SMOTE to make the
distribution of a minority class more dense, which is called SMOTE
with Different Cost (SDC). SDC pushes the biased decision boundary
away from the minority-class. The method introduces a scheme to
penalize classification errors, SDC assigns a high penalty for the
majority class, while for the minority class SDC assigns a lower penalty.
Zeng and Gao [8] proposed a kernelized version of SMOTE, in this
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implementation the algorithm generates new instances in the feature
space instead of input space. All techniques mentioned before are
based on the SMOTE technique to tackle the disadvantage of imbal-
anced data sets. However, the principal disadvantage of these methods
is that it is possible to introduce noise in the classifier when new
instances are generated, in this context it is necessary to develop
algorithms that cope with this problem by carefully generating artificial
instances and introducing just optimal new instances in data sets.

2.2. SVM classification on imbalanced data

SVMs are one of the most effective methods for the binary
classification problem [23,34]. They achieve optimal classification in
linear separable case. The generalization power of SVMs is one of their
mainly remarkable properties; the key advantages of SVMs are the
absence of local minimal, sparseness of their solution and their
capacity to generalize by optimizing the margin [35]. Formally; the
training of SVMs begins with a training set X,. given by

X = { G, )V, 1)

with x; € R? and y, € {-1, +1}. The classification function is deter-
mined by

J=1

Y = sign[i a;y, K{xi-x;) + b]
@

where a; are the Lagrange multipliers, K(x;-x;) is the kernel matrix, and
b is the bias. The optimal separating hyperplane is computed by solving
the following optimization problem:

I

! )

min Ew,-Tw,- +C Z n;
=1

3
subject to

y,-(W,-TK<Xi'Xj> +b)>1-un @

where C is the margin parameter to weight the error penalties 7;.
The margin is optimal in the sense of (3).

Formally, given a data set {(x;, ;) }'_, and a separating hyperplane
f@) =wlx + b =0, the shortest distance from the separating hyper-
plane to the closest positive example in the non separable case is

Y, =miny, Vy € class + 1 5)

the shortest distance from the separating hyperplane to the closest
negative example is

y.=miny, Vy €class—1 (6)
where y; is given by
%W K(xix;) + b))

[bwl] ™
The margin is
r=ntr ®)

Fig. 1 shows different margins y, which are obtained with SVMs
with a different imbalance ratio a) balanced data set, b) imbalanced
ratio of 1:10, and c) imbalanced ratio of 1:30. In Fig. 1, each plus sign
in blue represents a data point with positive label and each plus sign in
red represents a data point with negative label. The margin is defined
by the brown and blue lines. The green line represents the midpoint of
the margin y. In Fig. 1 a), the margin of the balanced data set is well
defined. However, when the imbalance grows, the margin is biased
towards the majority class.

Methods based on the SMOTE algorithm introduce artificial
instances in the minority class in order to reduce the bias. However,
SMOTE only introduces artificial instances between positive instances
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(one positive instance and its k nearest neighbors). Clearly, the region
with more information is between support vectors with different label.
Introducing artificial instances in this region could help improve the
performance of SVMs.

3. Particle swarm optimization

Hybrid algorithms have been used in many fields [36—40]. PSO is a
stochastic optimization technique introduced by Kennedy and
Eberhart, inspired and originally designed to mimic the flocking
behavior of birds and fish schooling [41]. PSO is a population-based
search method that exploits the concept of social sharing of informa-
tion. Each individual (called particle) of a given population (called
swarm) benefits from the previous experiences and refines its position
in the search space. PSO starts with an initial population of particles
whose positions are randomly generated. The number of particles in a
swarm is represented by m. Each particle, denoted by B (?)(i = 1,...,m),
is characterized by:

1. Position P € R?, which represents the i — th candidate solution at
iteration t.

2. Velocity V;(¢) € R?.

3. Best position of the particle p,(¢) € R?, which represents the best
solution of the particle P;(t) up to the current iteration.

During the process, the particles adjust their positions and velo-
cities. Also, the population memorizes the best position among all
particles in the swarm up to the current iteration. This position is called
the best known position. It is represented by p,(t) € R‘. The advan-
tages of PSO are: simplicity, ease of implementation and computational
efficiency.

The velocity of the particle P; is changed as follows:

Vit + 1) =wVi(0) + e (D) (py (1) — B (1) + co:r2 (D) (p, (1) — B(1)) 9

where w is a parameter called the inertia weight, c; is the attraction of
particle P;(t) towards p, (2), c2 is the attraction of particle P;(t) towards
p,(t), ri(t) and r,(1) are random variables obtained from a uniform
distribution in the range [0, 1].

The position of particle P; is updated as follows:

R+ 1) =FR®+V@®) (10)

The inertia weight w allows PSO to manipulate the grade of
exploration. The parameters ¢; and c, define the relative attraction of
the best position of a particle and the best known position. These
variables determine how the particle is influenced by the cognitive rate
and the social rate, respectively.

4. SMOTE-PSO

Many methods, including SMOTE, produce examples that are linear
combinations of current examples for a class. These techniques obtain
new instances which are generated internally. Fig. 2 a) shows a data set
with two classes, this data set is imbalanced because it contains a class
with many data points called majority or negative class (black squares)
and a class with few data points called minority or positive class (black
circles). The Fig. 2 b) shows how the new instances are generated
internally. In the Figure the red circles are artificially generated by
linear combination between two instances in the minority class.

The SMOTE algorithm oversamples the minority class by taking
each minority class instance and introducing synthetic examples along
the line segments by joining any/all of the k minority class nearest
neighbors, as shown in Fig. 2 b). In Fig. 2 b), the red circles represent
the generated synthetic instances. It can be seen that the density is
incremented. However, it does not ensure that the separating hyper-
plane would be moved.

SMOTE-PSO takes a different approach. It generates new examples
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1:30 imbalance

in the region where the density of the minority class decreases. Instead
of considering only the examples of a class, examples with opposite
class are used, which are located close to negative instances.

Fig. 3 a) shows the imbalanced data set with minority (black circles)
and majority (black squares) classes, and Fig. 3 b) shows how the new
instances are generated by a linear combination. In this case, the red
circles (synthetic instances) are artificially generated by linear combi-
nation between two instances. The first instance is obtained in the
minority class and the second instances computing the most closed
instance in the majority class. Current algorithms can obtain one or
several most closed instances to one instances in the minority class.
The Fig. 3 b) shows an instance in the minority class and the three most
closed instances in the majority class joined by lines.

The SMOTE-PSO algorithm oversamples the minority class by
taking each minority class instance and introducing synthetic examples
along the line segments by joining any/all of the k majority class
nearest neighbors, as shown in Fig. 3 b). In this figure, the red circles
represent the generated synthetic instances. Fig. 3 b) shows an example
of this idea. In this figure, the new examples are generated “out of the
class” distribution.

In order to reduce the effect of imbalance in data sets, the SMOTE-
PSO algorithm generates new examples that belong to the minority
class and the PSO algorithm is used to evolve the instances that
improve the performance of the SVM. If the new points are carefully
located, the separating hyperplane can be shifted and the margin on the
side of the minority class is increased. The idea is to move the decision

b)

Fig. 1. Margin in data sets with different imbalance ratio. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

different from other methods such as SMOTE, where some internal
data points are randomly generated and added to the training set.

4.1. Input data set

Obtaining a discriminative data set is an important issue in
machine learning. This is because the identification of how many
instances are sufficient to gain knowledge, make a good decision and
validate results is really a very difficult task. In order to obtain an initial
data set with discriminative abilities, we use k-fold cross-validation
with k=5. To separate the input data set, each one of the subsets is
separated maintaining almost equal proportion in class distribution
over the data.

For instance, using k-fold cross-validation with k=5, if there are 2
class values (X~ and X*) in a classification problem P with 1000
examples in total, and the number of examples of majority and
minority classes (X-, X*) are respectively 800 and 200. Then, each
subset will contain 200 instances with 160 negative instances and 40
positive instances.

4.2. Pre-processing

In this research, a new algorithm based on PSO is proposed in order
to introduce artificial instances with high discriminative features.

Fig. 4 and Algorithm 1 describe the general process of the SMOTE-
PSO method. The SMOTE-PSO algorithm starts normalizing the input

boundary towards the majority class. The SMOTE-PSO algorithm is data set. Each instance x;, x;=(x;1,....,xi)’ € Xp — (x;,...,x2) (where X
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Fig. 2. Samples generated internally. a) Imbalanced data set b) Data set with synthetic instances (red circles) generated internally. (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)

190



J. Cervantes et al.

Neurocomputing 228 (2017) 187-197

[ u] o nﬂ [u] o
[n] O n o
gpO QO =] o
oOpg o o no
O_ 0 po o
n] Onp
u] o o
(= O o o
oo QD o
o o ng
o o o o
o
[
(o] I:II:I o o
o
lo) (o] o
o ogpf o
(o] o
o 0oL

O n O no
O
Oo_O p a]
opO QO o o
oOp O O o
a O po o
[ u] o Dnn o
o o o o
[u ] =]
O po o g
o ] o o
“ o a] o o O
o u]
le) o °® o
o [ ] o,f o o
O
(o] O.. nl:l

b)

Fig. 3. Samples generated externally. a) Imbalanced data set b) Data set with synthetic instances (red circles) generated externally. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

includes the total input data set) in the input data is normalized as

Xj1 — minxg

Xjr — MiN X, )

Xi = . seees .
(max—xkl — IMiIn Xy max Xz, — MIN Xz,

11

where 1 < k < L and r is the dimensionality of x;.

4.3. SVM classification

In this part, an SVM is trained using X, and X,;, the idea in this
step is to identify the support vectors (SVs). In SVMs the solution is
given by a small subset of instances called support vectors (SVs). These
SVs are the most important and successful instances in the entire data
set. The success of each SV is given by its position in the feature space
which defines the hyperplane and gives the solution. The hyperplane
obtained in this step will be obtained by Eq. (7) and the decision
function is given by Eq. (2), which is skewed due to imbalance in the
input data. However, the obtained SVs will serve us to generate new
instances and the initial population for the PSO. These data points are
the most representative, but its effectiveness in some cases is difficult to
ensure. In our case, the implemented PSO algorithm guarantees the
effectiveness of the created data points.

4.4. Generation new synthetic instances

The key idea of this model is to intelligently introduce artificial
instances in the region of the minority class to reduce the skew
behavior of the separation margin. The artificial instances not only
correct the margin, but also modify the region of the minority class.
Moreover, the examples generated by the SMOTE-PSO method derive
from the most critical region for SVMs, called the margin. In order to
do this, SVs are used to generate artificial instances and correct the
skewed hyperplane. Firstly, the SVs in the minority class are moved to
the majority class. For each SV in the minority class sv*, the algorithm
finds the k nearest neighbors in the sv~ and calculates the distance
between them for each dimension. The distance nuy is given by

Input

k=1,....,r

sV

ve=xip = X, (12)
where x/, is the ith SV of X;J, and x]- represents the jth sv™ nearest
neighbors of x/,, and r defines the dimensionality of the instance.
Initial vector v; = 0, k = 1,...,d, and the algorithm picks one or more
random entries out of an array. In the experiments only one is selected.
The artificial instance is obtained by
X =xis+ ey (13)
which modifies only the ith dimension of x/ ..

Where the step size is €, in the experiments e is selected between
0.001 and 0.1. According to the geometric properties of SVMs [42], the
movement of the SVs in the minority class to the majority class can
improve the classification accuracy, sensitivity and sensibility. In the
SMOTE algorithm, the minority class is oversampled until the minority
class size is equal to the majority class. In the SMOTE-PSO method,
two artificial instances for each SV are generated for the positive class
until the final data set has the same number of negative and positive
instances.

This displacement of SV* moves the decision boundary towards the
majority class improving the classification accuracy, sensitivity and
sensibility. The initial population is conformed by x;; U x;; U xy,. Fig. 5
shows how the new instances are generated from SVs.

The choice of ¢ is very important in the generation of new instances,
an e = 7, is a bad choice because we can introduce noise or outliers in
the data set. In our experiments an € < 0.1 gives us good results.

Fig. 5 shows how the synthetic instances are generated. In the
Figure, circles represent the minority class and squares represent the
majority class. The instances x;,x, and x; are the support vectors in the
minority class x;t;. The instances x;;, x;, and x;3 are the three support
vectors in the majority class x;,; most closed to x; joined by r1,r; and 3
respectively. In order to avoid introduce noise, the synthetic instances
(data points in blue) are generated very closed to the instances in
minority class.

The algorithm to generate instances is shown in Algorithm 2.

SVM New synthetic

Data set Pre-processing

Final

Classification instances

Hyperplane

PSO

Fig. 4. SMOTE-PSO algorithm.
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4.5. PSO for imbalanced data sets

In this subsection we describe the proposed Imbalanced SMOTE-
PSO system. The proposed Imbalanced SMOTE-PSO system can be
divided into two parts, in the first part an SVM is trained in order to
obtain the most important instances from the skewed data set, the
second part describes the way PSO optimizes the generated artificial
instances.

4.5.1. Coding of artificial instances

The initial population is obtained by generating artificial instances,
each instance is defined by x,, = (x, %, ...,x,), where r is the dimension-
ality of each instance. Each PSO particle is defined by

pi= (x;l, xéo,...,xéq), where g is the number of generated artificial

instances. In each particle there are g artificial instances with dimen-
sionality r. Fig. 6 shows how the instances in the swarm are coding and
decoding.

4.5.2. Particle swarm

Particle swarm is denoted by P = [p,, p,, ...p,]”. Each particle is a
vector with (¢ X r) — dimensionality, where g is the number of created
instances, r is the dimensionality of each instance, and m is the size of
the initial population. The problem is determining the artificial
instances that improve the performance. The (m x gr)— dimensional
search space I' is defined by

mxgxr

r= ];[1 [I;,mim I;.max] (14)

The search space of each individual x = [x;, », ...x,]” is defined by
the minimal distance between SVs with different class, i.e.

Xmmin,i = sv;1 )
Xmax,i = IIE{ZIHD(SV;r, SVF)-G (16)

4.5.3. Decoding

When a PSO algorithm is used to solve the optimization problem, a
swarm of the candidate particles {Pi’};n:1 is moved in the search space I
in order to find a solution Ax, where m is the size of the swarm, and
[ € {0, 1,...,L} denotes the Ith movement of the swarm.

Each particle p(i) has a (¢xr)— dimensional velocity
v = [vy, v, ...%,]" to direct its search, and v € V with the velocity space
defined by

qxr

V= H [Vi.mins Vi,max]

i=1

a7)

where V. pax = %(F;,max — I} min)- To start PSO, the candidate particles
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{X,-O}:i1 are randomly initialized within I, and the velocity of each
candidate particle is initialized to zero, {»’ =0} ,. The cognitive
information pbf. and the social information gb’ record the best position
visited by the particle i and the best position visited by the entire
swarm, respectively, during [ movements. The cognitive information
pb! and the social information gh’ are used to update the velocities
according to eq. (9). Each iteration the synthetic instances are evolved
improving the classification accuracy.

Algorithm 1. General process of the SMOTE-PSO algorithm.

Input: Skewed dataset
Output: Optimized final hyperplane (Hy

1: Divide the input data set in X, = {X;,
Xt={xeX y=+1},i=1,....m and

X,={xeXiy=-1},j=1,....n

X,; where

2: Train the SVM with the training data set, train SVM X/}, X,

3: Obtain support vectors x; and x; from hyperplane in i*"*
iteration (H;)

4: Generate new instances using equations (12) and (13)

5: Obtain Hyfrom X/}, X,; using the PSO algorithm described in

Algorithm 2

Meta-optimizers can be used to tune the PSO parameters. In order
to maximize the search speed on each specific problem, the optimiza-
tion parameters are used. [43] present a interesting work to obtain
optimum parameters for PSO on several optimization scenarios. The
parameters were tuned on several benchmark problems with several
dimensionalities. The choice of parameters w, c;, ¢, and the search
space are essential to the performance of PSO and therefore have been
the focus of prior research. Variables ¢; and c, represent the cognitive
and social learning parameters that pull each particle towards the
global best positions and ry, 1, are uniform random values in the range
[0,1]. These variables determine together the space searching ability
and control the behavior of the algorithm. Apparently w, c;, ¢, are the
parameters that determine the accuracy and convergence character-
istics of the algorithm. Low values of these variables provoke that
particles roam far from the target regions. On the other hand, high
values result in an abrupt movement towards the target region [43,44].

The performance of PSO is also highly influenced by the accelera-
tion constants and inertia weight. A grid search method was imple-
mented for different c; and ¢, in the range [1 4] and w in the range [0.7
1.6]. The parameter w was decreased by 5% in each iteration while c;
and c, was constant. According to the experiments described here, the
PSO algorithm obtains the highest performance when w=1 and
¢; = ¢; = 2. Kennedy has studied the effect of the random variables c;
and c» on the particle trajectories and asserted that if ¢; + ¢, > 4,
velocities and positions explode towards infinity. In the proposed
research based on experiments, the acceleration constants have been
set to 2.0 and w=1 according to empirical experiences [45].

The input space is expressed by the generated artificial instances.
Each particle p; contains g new artificial instances with dimensionality
r. The general process of the SMOTE-PSO algorithm is described in
Algorithm 1 and 2.

Algorithm 2. PSO algorithm.

Input: Support vectors x,; and x};, number of iterations p
Output: Global best particle

1: Generate an initial swarm of size m x g x r from x;; and x};
with Egs. (12) and (13).

2:  Set initial velocity vectors V;(i = 1,...,q X r) associated with
the particles.

3: For each position p; of the particle £ (i = 1,...,m) which

contains artificial instances created from SVs, train an SVM
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Fig. 6. Optimizing instances by PSO algorithm.

classifier and compute its fitness function ¢.

Set the best position of each particle with its initial position,
i, p, =p,=1,..,m).

Obtain the best global particle p, in the swarm.

Update the speed of each particle using (9).

Update the position of each particle using (10).

For each candidate particle p;, train an SVM classifier and
compute its fitness function ¢.

Update the best position p,, of each particle if its current

position has a smaller fitness function.
Return to 5 if the pre-specified stopping condition is not yet
satisfied return Obtain the best global particle.

10

The final obtained hyperplane gives us a decision function Eq. (2).
From the final decision function, we can obtain the performance by
testing data set X, and X,/!. In the SMOTE-PSO algorithm, the
population size and the number of iterations or stop criterion are used
like mechanisms to avoid over-learning in the training data.

4.5.4. Fitness function

The fitness function value ¢ associated with the ith particle P; is
essentially the objective function of the problem. Fitness function
provides a way to find the best solutions, and also controls the update
process. The choice of the fitness function is important because helps to
PSO algorithm to evaluate the goodness of each candidate solution P;.
Each particle in the proposed method is created by modifying the SV
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found in the first stage of the SVM. The fitness function value of each
particle can be evaluated using the SVM and obtaining the performance
of each particle in the data set Te For classification, we can consider
factors such as prediction accuracy, error rate, in this research, the area
under the curve (AUC) and g-mean are used as fitness functions.

5. Experimental results

In this section, our aim is to show the improvement achieved in
SVMs by the combination of the generated data points and a PSO
algorithm to evolve the synthetic instances. The usefulness of the
SMOTE-PSO technique is checked by means of comparisons using
classical implementations to imbalanced data sets. In order to select
the best hyper-parameters and validate the obtained results, the model
selection and the metrics used are described in this section.

5.1. Model selection

Training an SVM involves the choice of some parameters. Such
parameters have an important effect on the performance of the
classifier. In all the experiments we use the radial basis function

(RBF) as the kernel, this function is defined in (18).
K@ —x) = eIi=5lh y > 0 (18)

Cross-validation was used to find parameters in (18) and also for
computing the regularization parameter of SVMs. We use model
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Table 1
Imbalanced data sets.

Data set me (+) Mec(-) Features (f) Imbalance ratio
Shuttle 1706 2175 9 1:01.275
Liver_disorders 145 200 6 1:01.379
Glass1 76 138 9 1:01.816
Pima 268 500 8 1:01.866
Glass0 70 144 9 1:02.057
German 300 700 20 1:02.333
Haberman 81 225 3 1:02.777
Vehicle2 218 628 18 1:02.881
Vehicle3 212 634 18 1:02.991
Ecolil 77 259 7 1:03.364
New-thyroid1l 35 180 5 1:05.143
New-thyroid2 35 180 5 1:05.143
Ecoli3 35 301 7 1:08.600
Ecoli-0147vs2356 145 1535 7 1:10.586
Glass2 17 197 9 1:11.588
Ecoli-0147vs56 125 1535 6 1:12.280
Abalone 42 689 7 1:16.405
Letter 789 19211 16 1:24.349
Yeast4 51 1433 8 1:28.098
Yeast6 35 1449 8 1:41.400
Page-blocks 115 5358 10 1:46.591

selection to get the optimal parameters. The hyper-parameter space is
explored with the kernel parameter y=[102, 10!, 10°, 10'] and the
regularization parameter C = [10°, 10, 10%, 103, 10%].

In the experiments all data sets were normalized and the 5-fold
cross-validation method was applied for the measurements. Several
authors recommend using k > 10 for cross-validation. However, in
many imbalanced data sets, the use of k=10 is prohibitive because the
minority group could remain without instances or with very few
instances.

5.2. Metrics for testing classifiers on skewed data sets

Most times, accuracy is the measurement used to evaluate and
compare a classifier method against others. On skewed data sets, using
accuracy as a metric to evaluate a classifier can lead to wrong
conclusions, because the minority class has a small impact on accuracy
compared with the majority class. Consider, for example a data set with
an imbalance ratio of 99 to 1. A classifier that achieves 99% of accuracy
is considered good for balanced data sets. However, on skewed data
sets, this performance measure is not useful. In order to evaluate and
assess the improvement of a classifier on skewed data sets, it is
necessary to use a different performance measure. Medical and
machine learning communities use more and more the sensitivity
and specificity to evaluate the performance.

Sensitivity is computed with (19) and defines the proportion of
positive examples that are correctly identified, whereas the specificity is
the proportion of negative examples that are correctly identified.

Slrue — TP

" Tp + Fy (19)
and specificity is computed with (20).
Sfalse — TN

" Ty + Fp (20)

where Tp is the number of objects (true class +1) that have been
predicted as class +1. T is the number of objects (true class —1) that
have been predicted as —1. Fp is the number of objects (true class —1)
that have been predicted as class +1. Fps is the number of objects (true
class +1) that have been predicted as class —1. G-mean is used in this
research, which is a combination of sensitivity and specificity

falsetrue
G — mean = \ S, n

(21
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In addition to the numeric performance metrics mentioned above,
the area under the ROC curve (AUC) is also used in this paper. The
Receiver Operating Characteristic (ROC) analysis is a widely used
method for analyzing the performance of binary classifiers. The area
under the ROC curve represents how separable two objects are. AUC
and G-mean metrics are commonly utilized by many researchers for
evaluating classifiers on imbalanced data sets [34,23,17,47]. However,
AUC describes the ranking ability or the quality of the classification and
G-mean describes the performance of the classifier on both classes
(minority and majority).

A ROC curve can be generated using the labels of the input data set
and the classifier output. A detailed description on how to plot a ROC
curve also can be found in [46]. The most important advantage of ROC
analysis is that it is not necessary to specify the misclassification costs.
The visual and numeric metrics associated with this method allow for
great flexibility in performance analysis. In the experiments, G-mean
and AUC-ROC measures are used as fitness functions.

5.3. Data sets and results

We conducted several experiments with different classical classifi-
cation algorithms for imbalanced data sets. In the experiments carried
out, we use undersampling oversampling and SMOTE algorithms and
the results obtained with these algorithms were compared with the
proposed method. In all algorithms grid search technique was used to
optimize parameters.

In this study, we have selected a wide benchmark of 21 data sets
from the KEEL data set repository. Keel Data sets are imbalanced ones
(Public available at http://sci2s.ugr.es/keel/datasets.php). Table 1
shows the data sets used in the experiments. In order to measure the
performance of the SMOTE-PSO method in different scenarios, the
chosen data sets have an imbalance ratio from 1 to 1.248 up to 1-41.4.
Table 1 summarizes the properties of the selected data sets. This table
shows the number of examples in the minority class (mc), the number
of examples in the majority class (Mc), the number of features (f) and
the imbalance ratio for each data set. In the case of missing values we
have removed those instances from the data set.

The approach was implemented in Matlab. The results for all the
algorithms used in this study is reported in Table 2. The first column
indicates the data set, and the other columns report the corresponding
AUC and G-mean measure, o represents standard deviations of the
SMOTE-PSO method.

In Table 2, the full test results obtained can be observed. The
standard deviations for the G-mean measure is included. The best
results for each data set are highlighted in bold font. As shown in
Table 2, the SMOTE-PSO method achieves the best results compared
with undersampling, oversampling and SMOTE techniques on almost
all data sets. The average performance of AUC and g-mean on data sets
with small imbalances (<10: 1) is 0.8584 and 0.8462, respectively, and
the average performance on data sets with large imbalances (>10: 1) is
0.8723 and 0.8611, respectively. The experimental results show that
the performance of the SMOTE-PSO method is better than classical
implementations when imbalance ratio is large.

We summarize the strongest points of our SMOTE-PSO system as
follows:

In almost all data sets, the SMOTE-PSO method achieves better
measure performance than classical competent methods. These results
allow us to highlight the goodness of the SMOTE-PSO model to evolve
synthetic instances. The improvement provided by the SMOTE-PSO
methodology proves that a right management of the PSO algorithm
associated with SVMs has a positive synergy with the tuning of artificial
instances, leading to an improvement in the global behavior of the
system.

On the other hand, the standard deviations in results obtained
confirm that the SMOTE-PSO method can effectively deal with
imbalanced data and improve prediction performance.
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Table 2
Detailed results for the SMOTE-PSO algorithm.
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Under-sampling Over-sampling SMOTE SMOTE-PSO

Data set AUC G AUC G AUC G AUC G o
Shuttle 0.950 0.871 0.921 0.853 0.950 0.877 0.961 0.891 0.082
Liver_disorders 0.786 0.737 0.754 0.691 0.837 0.792 0.871 0.856 0.005
Glass1 0.765 0.624 0.741 0.673 0.746 0.636 0.802 0.779 0.047
Pima 0.696 0.725 0.647 0.718 0.714 0.735 0.742 0.785 0.042
GlassO 0.805 0.761 0.801 0.768 0.765 0.725 0.839 0.817 0.023
German 0.753 0.728 0.735 0.641 0.785 0.710 0.806 0.74 0.004
Haberman 0.502 0.537 0.520 0.600 0.609 0.634 0.622 0.683 0.089
Vehicle2 0.944 0.939 0.945 0.898 0.953 0.945 0.993 0.971 0.054
Vehicle3 0.593 0.675 0.635 0.678 0.658 0.706 0.734 0.715 0.002
Ecolil 0.852 0.417 0.806 0.877 0.886 0.877 0.944 0.936 0.021
New-thyroid1 0.989 0.981 0.983 0.964 0.977 0.959 0.995 0.991 0.014
New-thyroid2 0.978 0.963 0.917 0.973 0.972 0.969 0.986 0.977 0.009
Ecoli3 0.809 0.787 0.798 0.780 0.741 0.817 0.869 0.836 0.071
Ecoli-0147vs2356 0.673 0.850 0.744 0.761 0.837 0.820 0.853 0.870 0.182
Glass2 0.607 0.639 0.624 0.271 0.674 0.725 0.738 0.742 0.020
Ecoli-0147vs56 0.612 0.825 0.592 0.850 0.742 0.787 0.877 0.901 0.015
Abalone 0.835 0.776 0.821 0.781 0.845 0.783 0.872 0.814 0.001
Letter 0.996 0.952 0.954 0.842 0.998 0.993 0.997 0.954 0.017
Yeast4 0.793 0.781 0.786 0.729 0.791 0.761 0.847 0.824 0.062
Yeast6 0.845 0.817 0.841 0.816 0.837 0.812 0.848 0.826 0.085
Page-blocks 0.867 0.927 0.901 0.931 0.913 0.917 0.927 0.967 0.104
Average 0.792 0.776 0.784 0.766 0.820 0.808 0.863 0.851

5.4. Discussion

Some algorithms like SMOTE generate artificial instances to
improve the performance of SVMs. However, finding the best instances
that maximize the classification hyperplane is not an easy issue. A small
change in a data feature can improve or affect the SVM performance.
Consequently, the search space of each problem is often huge, complex
or poorly understood. The finding of data points that improve the SVM
performance in imbalanced data sets cannot be realized by classical
methods. PSO has the ability to exploit good regions and searching by
exploring new areas. PSO can be applied to the search problem of
finding artificial instances with discriminative abilities. The use of the
PSO algorithm allows to obtain artificial instances with an excellent
ability to improve the SVM performance. To accomplish this, we take
into account two important issues: the representation of the solution
(synthetic examples of each particle) and the definition of the fitness
function (measure performance).

Due to the nature of SVMs, the decision surface relies on the
positive/negative support vectors. In this way, the creation of new data
points between positive and negative support vectors can be unfavor-
able, because in some extreme cases, a single positive misclassified
example could introduce a significant drop in the performance of the
classifier. In order to face this disadvantage, the SMOTE-PSO method
evolves the best artificial instances improving always the performance
of the initial instances.

The principal disadvantage of the SMOTE-PSO method is its
algorithmic complexity. The complexity of SMOTE-PSO depends
mainly on the cost function of PSO, and the cost function of the
proposed method is the evaluation of the SVM which has a complexity
on the order of n® for each iteration (where n is the number of
examples in the training set) [48].

The SMOTE-PSO method works well in small data sets, but on large
data sets its time complexity is prohibitive.

6. Conclusions

Current classification methods produce good results when they are
applied to data sets that are balanced, however for the specific case of
skewed data sets most classifiers cannot obtain acceptable results
because decision boundaries are computed regardless minority and

majority classes.

The generation of artificial instances has been a new successful
technique to tackle the imbalance in data sets. However, these popular
techniques are based on generating internal examples. The generation
of external instances is very difficult for two reasons; i) It could
introduce noise in the data set if the instances are not generated
carefully, ii) There is not a method to generate good data.

The SMOTE-PSO method generates new instances in the region
where the density of the minority class decreases. Instead of consider-
ing only the positive examples of a class, SMOTE-PSO uses the
instances with different label. If the artificial instances are carefully
located, the separating hyperplane can be shifted and the margin on the
side of the minority class is increased.

The principal advantage of SMOTE-PSO is the performance im-
provement on imbalanced data sets by adding artificial examples.
However, the first disadvantage is the computational cost. SMOTE-PSO
can be used only on small data sets. The computational complexity of
SMOTE-PSO on medium and large data sets is prohibitive. In
comparison with under-sampling, over-sampling and SMOTE, the
SMOTE-PSO algorithm is computationally very expensive.

In this paper a novel method that enhances the performance of
SVM for skewed data sets was presented. The method reduces the effect
of the imbalance ratio by exciting SVs and moving the separating
hyperplane towards the majority class. The method is different from
other state-of-the-art methods for two reasons: the new instances are
added close to the optimal separating hyperplane, and they are evolved
to improve the performance of the classifier. The average performance
of AUC and G-mean on data sets with small imbalances (<10: 1) is
0.8584 and 0.8462, respectively, and the average performance on data
sets with large imbalances (>10: 1) is 0.8723 and 0.8611, respectively.
According to the experiments, SMOTE-PSO produces the most notice-
able results in average when the imbalance ratio is bigger than 10:1.
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