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Abstract
In a recent review we addressed the role of the transcription factor NF-κB, in shaping the cancer 
microenvironment. NF-κB, which interacts with chromatin modulators by cell-specific dynamics, 
controls cell interactions during inflammation, and its abnormal feedback regulation is implicated 
in cancer. Inflammation normally reprograms cells through changes in key topological elements 
of chromosomal DNA. As a result, inflammation overrides cell phenotype: initially, reprogramming 
cell function halts processes that impede the response of a damaged tissue to the cause of the 
harm, and eventually, late reprogramming of cells will replenish tissue structure and restore function. 
Each cell type provides a distinct resource for restoration of tissue integrity, tissue function, and for 
replenishment of the responsiveness of the immune system. Modulators of NF-κB transcriptional 
activity alter key aspects of gene expression and tissue integrity. NF-κB network alterations confer 
transcriptional plasticity to cancer.

Cáncer como una red defectuoso para NF-κB

Resumen
En una revisión reciente se abordó el papel del factor de transcripción NF-κB en la formación del 
microambiente del cáncer. NF-κB, que interactúa con los moduladores de la cromatina por la 
dinámica específica de células, controla las interacciones de células durante la inflamación, y su 
regulación por retroalimentación anormal está implicada en el cáncer. La inflamación normalmente 
reprograma células a través de cambios en los elementos topológicos clave de ADN cromosómico. 
Como resultado, la inflamación anula fenotipo celular: inicialmente, la reprogramación de la función 
celular detiene los procesos que impiden la respuesta de un tejido dañado de la causa del daño, y, 
finalmente, a finales de reprogramación de células va a reponer la estructura del tejido y restaurar 
la función. Cada tipo de célula proporciona un recurso distinto para la restauración de la integridad 
del tejido, la función del tejido, y para la reposición de la capacidad de respuesta del sistema 
inmunológico. Moduladores de la actividad transcripcional de NF-κB alteran los aspectos clave de 
la expresión génica y la integridad del tejido. Alteraciones de la red NF-κB confieren plasticidad 
transcripcional al cáncer.
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Tissue states and NF-κB: impact on regulatory chromatin 
regions

A healthy mammalian tissue is essentially found in three main 
states, or in their transitions: morphogenesis, fully functional 
condition, or inflammation1-5. At the end of inflammation the 
organism reactivates a part of the mechanisms involved in 
morphogenesis, to restore the tissue into a fully functional state. 
Cells in the tissue coordinate these transitions by secreting 
cytokines, chemokines, and adhesion molecules in discrete 
cohorts6-11. These molecules bind to their cognate receptors and 
elicit signal cascades that alter gene expression, which results 
in a change in the cellular protein contents and the molecules 
the cell secretes12. Inflammation overrides cellular phenotypes by 
activating transcription factor NF-κB13-15+ which rapidly recruits 
the transcriptional machinery also to inaccessible heterochromatic 
regions16 and redistributes transcriptional cofactors such as the 
mediator subunit MED117. Inflammation, therefore, is a process 
that tests the hormonal integrity of a tissue because the process 
requires coordination of gene expression between diverse cell 
types1,18.

	 Chromosomal DNA folds into topological elements that 
control gene expression19. One such type of elements is termed 
super-enhancers; they contain a high abundance of binding sites 
for sequence-specific transcription factors13. Even though a cell 
typically contains a few hundred super-enhancers, they control 
expression of genes that determine the differentiated state20. Cell 
feedback signaling through exchange of mediators is mutual, 
but asymmetric7,8. This asymmetry ensures that each cell type 
incorporates information from the tissue, and in turn provides a 
distinct resource for restoration of tissue integrity, tissue function, 
and for replenishment of the responsiveness of the immune 
system7,8,21,22.

	 A stimulus that changes the cell phenotype induces 
binding of sequence-specific transcription factors on the portion 
of cellular super-enhancers that control genes that are essential 
for the phenotypic change23. It is very important to note that a 
main aspect of induced transcription factors is a mutual titration 
that results in synergy or antagonism in the cytoplasm4, as 
well as on the regulatory sequences these factors bind on the 
chromatin24,25.

	 Inflammation normally reprograms cells through changes 
in key topological elements of chromosomal DNA17,26. Specifically, 
through secretion of discrete cytokine cohorts, inflammation 
overrides cell phenotype: initially, reprogramming cell function 
halts processes that impede the response of a damaged tissue to 
the cause of the harm, and eventually, late reprogramming of cells 
will replenish tissue structure and restore function once the cause 
of damage has been removed1,3. Cytokines typically induce NF-
κB activity, as well as other transcription factors that modulate 
gene expression17,27,28. NF-κB, which recruits the transcriptional 
machinery to chromatin with cell-specific kinetics and dynamics, 
regulates cell communication during inflammation13,17, 29.

	 A number of feedback mechanisms serve to fine 
tune and ultimately shut down NF-κB activity according to the 
phenotypic state of the cell (Figure 1)21. The duration of gene 
expression depends on sequential binding of transcription factors 
that recruit histone acetyltransferases to maintain open chromatin 
configuration at the DNA sequences encompassing the locus of a 
given gene and cell-specific regulatory regions23. The combination 
of activated transcription factors determines the permissiveness 
of the cell to hormonal or metabolic signals, the interaction of the 
cell with the immune system, and the contribution to cell fate30-32.

Figure 1. NF-κB network integrates hormonal signaling to 
determine cellular function.

(A) Regular tissue function is controlled by hormones. Inflammation 
elicits cytokines, which take control of cells by activating NF-κB and 
other transcription factors. NF-κB activates genes that control its 
own network. In cancer, the products of certain NF-κB target genes 
fail to limit its activity. Specifically genes that respond to changes 
in tissue composition lose key operating modules for control of NF-
κB, due to mutations and metabolic changes that are characteristic 
for the cancer cell.
(B) The changes in cell phenotypes correspond to changes in 
super-enhancer activity.
Normal cell interactions converge in control of gene expression that 
coordinates tissue function and organelle activity with cell survival.
Source: author’s original figures.

Canonical NF-κB is composed by a Rel protein dimer which 
is held in a latent form in the cytoplasm by IκBα21. IκBα is 
phosphorylated in response to activation of the IKK complex or 
other kinases, leading to its degradation by the proteasome; the 
freed Rel dimer then enters the nucleus and binds to cognate 
DNA response elements. The Rel dimer then reprograms the 
expression of target genes by recruiting the basal transcription 
factors and enzymes to the site13,33. In malignant cells a number 
of proteolytic systems can initiate degradation of IκBα, especially 
in response to cell stress caused by cytotoxic drugs15,34. While 
these systems may also interfere with effects of drugs through 
alterations in metabolism, their effect on NF-κB provides a 
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pathway to activate cell survival signals, and recruit diverse cell 
types in the tissue microenvironment to protect the cancer cell 
from the immune system and from metabolic challenge35,36.
	 A healthy tissue eliminates cells that cannot support 
organ needs. This elimination occurs through a tight coupling 
of cell survival mechanisms to hormonal signals and to a wide 
interdependence of survival mechanisms to the expression and 
activity of specific adhesion molecules. Essentially, restrictions 
on NF-κB activity tie cell survival with tissue integrity15,37. 
Controlled NF-κB helps a cell survive only if it contributes to 
protection of the tissue, or to restoration of tissue function15. 
Abolishing basic elements of NF-κB control counteracts cellular 
tumor suppressors, allowing activated oncogenes to transform 
a cell15,38,39. We recently described the essential aspects of the 
NF-κB role in the tissue microenvironment to illustrate how failure 
of a key feedback node can enable a cell to initiate metastatic 
cancer15.
	 Different assortments of inducible enzymes can activate 
noncanonical NF-κB signalling to regulate developmental 
genes, which can also have overlapping effects with canonical 
signalling40. However under certain conditions, especially in 
cancer cells, noncanonical can substitute for canonical NF-
κB activity15. Importantly, however, cell stress by metabolic 
imbalance, activates the potent NF-κB subunit p65 RelA, by a 
variety of mechanisms35. Through NF-κB diverse mechanisms 
of cell stress activate innate immunity21. It is remarkable that 
hybrid periportal hepatocytes with high proliferative potential can 
repopulate niches without giving rise to tumors: their lineage does 
not operate detoxifying enzymes, or innate immunity responses 41. 
In line with this note, in mouse lung, oncogenic gene expression 
clusters increase after induction of the base excision OGG1/ NF-
κB pathway, and not by reactive oxygen species (ROS) alone42. 
Cell stress and innate immunity therefore determine oncogene 
impact.

Modulators of NF-κB: effect of combinations

Every developmental signal that can interface with inflammation 
is a direct or indirect modulator of NF-κB activity. Many target 
genes of NF-κB can themselves shut down NF-κB transcriptional 
activity. Two characteristic products of target genes include 
the protein IκBα and the microRNA miR146, which protect the 
organism from excessive activation of the immune system15. 
Tissue function can change in response to inflammation; the 
extent of this change depends on the expression of cytokines 
that coordinate diverse cell types. Every cell expresses a specific 
pattern of cytokine receptors, and their interacting molecules, 
which determine to which cytokines it responds to, and by what 
type of result43-47.
	 A potent inducer of canonical NF-κB activity is cytokine 
Tumor Necrosis Factor-α (TNFα), encoded by the tnf gene27,36. 
The transcription start site for the tnf gene remains in a closed 
chromatin configuration in primary T helper (Th) cells, but acquires 
an open state after activation or polarization under Th1 and Th17 
conditions, where it is maintained by c-Jun45. Furthermore, the 
distinct position and movement capacity of different cell types 
has as result that the secreting cell type determines overall impact 
of a specific cytokine on tissue physiology48-50.
	 Metabolism can modify NF-κB activity by multiple 
mechanisms35. Under homeostatic conditions, histone 
deacetylase SIRT1 stimulates oxidative energy production, 
and in parallel binds to nuclear RelA and deactivates it by 
deacetylating lysine 310, while, inducing RelB; thereby SIRT1 
generates heterochromatin on inflammatory genes, and activates 
euchromatin on genes that trigger successive changes in cellular 
function, and metabolic activity40.

Enzymes like the protein kinase S6, and stress-activated 
protein kinase JNK have the capacity to mediate induction of 
TNF –stimulated transcriptional activity, via phosphorylation of 
RelA, and c-Jun correspondingly21,51 It can be noted that c-Jun 
may activate TNFα gene expression45 itself, which probably 
allows tumor promotion by amplification of TNF-induced signal 
cascades52. Genotoxic conditions and radiation, trigger c-Abl, 
p53, ATM (Ataxia telangiestasia mutated), and other proteins 
to initiate JNK signal pathways51,53 and in parallel ATM offers a 
scaffold that accommodates induction of RelA transcription-
coupled synthesis of type I and type III interferons and CC and 
CXC chemokines21.
	 TNFα induces MMP-9 protein expression and mRNA 
level in U937 cells, via kinase AKT-mediated-NFκB/p65 activation 
and JNK-mediated c-Jun activation; thereby, cooperative 
recruitment of histone acetyltransferase p300 to mmp9 promoter 
regions surrounding NF-κB and AP-1 binding sites modifies the 
level of DNA looping54. By overexpressing mmp2 and mmp9 
leukemic cells can degrade tight junction proteins ZO-1, claudin-5 
and occludin, resulting in increased permeability of the Blood-
Brain-Barrier55. It is therefore not surprising that bioinformatic 
analysis of the gene expression signatures for clinically significant 
presence of leukemic blast cells in the cerebrospinal fluid in 
childhood acute lymphoblastic leukemia, implicated alterations 
in the NF-κB network, including AKT, among the main factors 
involved56.
	 One characteristic example of an NF-κB target gene 
that encodes a protein regulating tissue metabolism, integrity, 
and gene expression, is muc157. The full-length product of the 
muc1 gene, Muc1, is a transmembrane protein that is normally 
expressed on the luminal surfaces of ductal epithelia, regulates 
apical-basal polarity, and fine-tunes macrophage phenotypes58, 
while the Muc1 protein-derived cytoplasmic domain provides 
feedback regulation to NF-κB transcriptional activity59.
	 Many types of virus regulate NF-κB transcriptional 
activity to tie cell fate with viral propagation60,61. Regulation can 
promote viral replication, prevent virus-induced apoptosis, and 
even mediate the immune response to the invading pathogen60. 
Inflammatory signals are a key part in pathology of infections, 
including virus- induced cancer, with the important distinction 
that viruses use their own mechanisms for control of the NF-κB 
network, to change the kinetics of expression for specific gene 
clusters in the cell60.
	 Epstein-Barr virus (EBV) is an example of virus that 
transforms cells via NF-κB dependent tumor modulators62. EBV 
oncoprotein, latent protein 1 (LMP1), induces MUC1 expression 
through binding of STAT1 and STAT3 to the muc1 promoter63. 
LMP1-induced cell invasiveness is suppressed by silencing muc1, 
indicating that the increases in MUC1 expression contribute to 
the metastasis of EBV-infected tumor cells. The cytoplasmic 
domain of protein MUC1 (MUC1-C) affects cell growth, by 
recruitment of β-catenin and p300 on the genes encoding cyclin 
D1 (ccnd1) and c-Myc (myc)64. In breast cancer cells, complexes 
of MUC1-C/STAT3 are also detectable on the promoters of STAT3 
target genes, such as ccnd1 and muc163. MUC1-C and STAT3 
can link cytokine-induced inflammatory response to cancer cell 
survival. MUC1-C interacts directly with RelA at the Rel homology 
domain (RHD) and, notably, blocks binding of RelA to IκBα63. 
MUC1-C provides positive feedback to the STAT1/3 and NF-κB 
RelA transcription factors that activate the muc1 gene65.
	 Viral oncogenic proteins can have combinatorial effects, 
too: simultaneous expression of the EBV LMP1, with the human 
papillomavirus-16 (HPV16) protein E6, transforms primary mouse 
embryonic fibroblasts through NF-κB66. This co-expression of 
LMP-1 and E6, increases NF-κB activity, suppresses DNA damage 
response, leading the fibroblasts to transformation. In vitro, LMP-
1 and E6 co-expression leads to anchorage-independent growth, 
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and in nude mice, co-expression induces tumor formation66.

Inflammatory signals and NF-κB synergies in gene expression

Inflammatory signals are transduced by many families of 
inducible transcription regulatory proteins in the nucleus. 
Transcription factors of the NF-κB family are in a latent form in the 
cytoplasm and upon stimuli that induce either phosphorylation or 
proteolysis of their inhibitor they enter the nucleus27, c-Jun factor 
of the AP-1 family is transcribed and translated rapidly67 upon 
phosphorylation of factors that activate its own promoter, making 
the c-Jun protein available to take over regulation of transcription. 
STAT proteins can then be activated by JAK family kinases to fine 
tune the time course of inflammation in a tissue68.
	 NF-κB activity normally fluctuates rapidly according to 
tissue needs, and regulation of its target genes such as nfkbia 
(IκBα) and stat3 serves to allow a restricted window of activity 
by cell-specific negative feedback; in cancer this network is 
disrupted, enabling simultaneous decrease and increase of 
target gene cohorts that do not follow identical kinetics in 
normal tissue15,69,70. In childhood acute lymphoblastic leukemia, 
reduced levels of both transcripts for the stat1 and stat3 genes 
were associated with a good prognosis, and there was a strong 
correlation between these two transcripts in the patient samples, 
as opposed to samples negative for neoplasia70.
	 Inflammatory signals and signals for cell proliferation 
have been known to intersect and overlap, by interactions 
between NF-κB and hormone receptors, or by competition 
for accessory proteins4. Cross-talk between hormonal and 
inflammatory signals determines disease, and becomes apparent 
in puberty4,71.
	 In particular, recent research data converge to suggest 
that NF-κB changes the chromatin landscape and enables access 
of AP-1 and then STAT3, where the ratio between the protein 
partners composing the AP-1 dimer contributes to altering 
chromatin accessibility in subsequent rounds of transcription72,73. 
Furthermore, the posttranslational phosphorylation of the 
RelA on serine 276 enables on the one hand inducibility of 
inflammatory genes by ROS, and synergy with AP-1, and on 
the other hand repression by glucocorticoids via GR74. AP-1 
can bring the ATP-dependent chromatin remodeler SWI/SNF to 
increase histone acetylation75. STAT3, on the other hand, recruits 
acetyltransferase p300 to increase acetylation and transcriptional 
activity of RelA under certain conditions76,77. Furthermore, STAT3 
induces expression of fos73.
	 The protein products of the human fos and jun genes 
are the proteins c-Fos and c-Jun, which form one of the most 
thermodynamically stable versions of the dimeric transcription 
factor AP-178,79. Their protein families have a distinct capacity to 
form heterodimers, while some of them, notably c-Fos cannot 
form homodimers (with itself), a feature that dictates the priority 
of discrete signal combinations to regulate gene expression 
from chromatin loci that allow access to the AP-1 binding site 
ATGACTCAT80,81. c-Fos enables mTOR to regulate the TLR-
induced T-cell response in vivo by controlling the balance between 
IL-12 and IL-1049, while c-Jun activity mainly characterizes 
T-helper cell subsets Th1 and Th1745.
	 Tumor progression, especially invasion and migration are 
in many types of cancer experimentally repeated by stimulation of 
neoplasia with TNFα and tumor promoter, Phorbol 12-myristate 
13-acetate (PMA) that activates protein kinase C 82. PKC may 
also activate p65 RelA Ser-536 phosphorylation to enhance 
selectively DNA binding affinity without affecting IκB degradation 
or p65 nuclear translocation83.

	 This capacity to bypass IκBα provides an additional 
mechanism for tumor promotion by PMA, and possibly also 
explains lack of glucocorticoid –induced cytostasis for some 
cell types84,85. In prostate and ovarian adenocarcinoma IKKβ 
phosphorylates p65 Ser536 and thereby can decrease sensitivity 
of cancer cells to proteasome inhibitors15,86,87. At least in 
ovarian cancer cells both in vitro and in vivo, this type of p65 
RelA activation was induced after proteasome inhibition with 
bortezomib, allowing recruitment of S536P-p65 to the promoter 
of chemokine IL-8 in tumor tissue88. p65 can recruit different 
combinations of other transcription factors on the IL-8 gene 
promoter, such as and transcription factor EGR187.

The example of NF-κB synergy with AP-1

NF-κB on the IL-8 gene promoter has the capacity to integrate 
regulation by different types of transcription factors including AP-
1, EGR1, helicase WRN89, and MUC190. AP-1 has overlapping 
sets of gene targets with NF-κB, and in some gene promoters, 
such as IL-8, or TANK, AP-1 can amplify NF-κB-dependent early 
gene expression that is induced up to 1 hour after cell stimulation 
with TNF27,91, and possibly expel NF-κB later, as is suggested by 
jun-quencing siRNA for TNF-induced invasion genes for triple 
negative breast cancer81. This way, the expression of inflammatory 
genes could be followed by the expression of genes that restore 
tissue function92.
	 Abnormal coordination between the transcription factors 
involved in the inflammation and regeneration sequence could 
cause chronic inflammation, or cancer, depending on the type of 
gene targets affected by the disrupted feedback response15. In 
airway smooth muscle cells in asthma, the il8 promoter chromatin 
is enriched in the acetyltransferase p300, and histone H3 lysine 
18 acetylation; in contrast, the histone acetylation reader 
proteins, Brd3 and Brd4, are present in both cells from patients, 
as well as healthy cells, on this promoter, and Brd4 appears an 
essential limiting factor for il8 expression93. Use of Bromodomain 
and extraterminal (BET) inhibitors reduces il8 expression without 
cytotoxic effect on those cells93.
	 Monocytic cells stimulated by TNFα express IL-827,94. 
This expression is mainly driven by transcription factor NF-κB 
which is induced by TNFα, in synergy with AP-1. AP-1 amplifies 
activity of the NF-κB dependent il8 gene promoter; AP-1 activity 
can be separately induced by activators of protein kinase C, such 
as phorbol esters80. Recent studies have suggested a role of 
NF-κB as a pioneer factor that promotes an open chromatin in 
response to inflammatory signaling on the chromosomal sites of 
at least certain cohorts of the TNF- regulated genes81.
	 AP-1 in turn, can amplify inflammatory cascades 
enhancing expression of diverse genes, including tnf45, Ifnb1, and 
metalloproteases that degrade the basal lamina to enable matrix 
invasion54,95. As TNF can increase further AP-1 activity also via 
NF-κB-induced genes, restriction of AP-1 activity, is an essential 
limit on disease pathology.
	 The HPV virus restricts AP-1 activity, and can thereby 
limit aggressiveness of HPV-related cancer by protein E2: 
Epidemiologically, HPV-related and HPV-unrelated sites have 
similar tumor growth dynamics once initiated96. However, survival 
rates for HPV-positive and HPV-negative tumors are drastically 
different96. AP-1 activity could explain that difference in prognosis, 
as selective participation of c-Jun in AP-1 dimers appears to 
promote poor differentiation and aggressive tumorigenesis 
only in HPV negative cases, while HPV infection leads to better 
differentiation and prognosis97. HPV protein E2 inhibits AP-1-
dependent HPV chromatin transcription through bromodomain 
protein Brd4 that binds to acetylated histones. Knockdown of 
Brd4 in human cells alleviates E2-mediated repression of HPV 
transcription98. These results highlight the importance of AP-1 
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contribution to transcriptional activity of cancer-promoting genes.

Therapeutic implications of cancer plasticity

One effect of cancer drugs that can result to drug resistance, is the 
induction of cell stress99,35. A key example is the induction of NF-
κB activity by its FDA-approved blocker, Bortezomib. Bortezomib 
blocks proteasome, activity, triggering auxiliary proteolytic 
mechanisms such as the lysosome to degrade IκBα35,100. Even 
a last generation drug that targets NF-κB-dependent gene 
expression, the BET inhibitor JQ1, can be rendered ineffective 
by abnormal activity of the wnt/β-catenin signaling cascade, 
driving myc gene expression through an alternative enhancer101. 
In particular, JQ1-resistant cancer may activate myc expression 
from the pvt promoter without a detectable contribution to JQ1 
resistance by the pvt gene product.
	 In respect to the wnt pathway, diverse mechanisms can 
be expected to modulate JQ1 resistance:
a) The proteasome and lysosome systems interact in β-catenin 
storage and degradation102,103.
b) The downstream signalling of β-catenin can be activated by 
synergy of wnt pathway protein LEF1 with ATF2 even in the absence 
of β-catenin stabilization104. ATF2 is a c-Jun partner protein and 
an activator for the jun gene105. (Figure 2) ATF2 is used by EBV to 
induce myc and thereby force expression of the EBV-encoded 
RNAs106. It is interesting that lef1 is an NF-κB target gene107,108. 
LEF1 induces myc expression in subsets of breast cancer, and of 
acute leukemia cells109,110. LEF1 also gives feedback to the NF-κB 
transcriptional activity: IL-1β stimulation induces chromatin DNA 
looping in cyclooxygenase 2 (cox2) and matrix metalloproteinase 
13 (mmp13) genomic loci, through interaction of LEF1 with 
β-catenin, AP-1, and NF-κB that augments expression of COX2 
and MMP13111. Specifically, chromosome conformation capture 
(3C) assay shows the 5’ and 3’ genomic regions of these genes 
juxtaposed after stimulation of cells with IL-1β111.
c) It must be noted here that increased levels of type I collagen 
can also induce IκBα phosphorylation without degradation, and 
p65 translocation followed by lef1 expression, resulting in EMT, in 
human pancreatic carcinoma (PANC-1), colon carcinoma (DLD1), 
and normal kidney proximal tubule epithelial (HK-2) cells107. p65 
nuclear translocation and LEF1 activation was also involved in 
HGF-induced EMT of triple negative breast cancer cells108. If 
these events occur in the presence of intact IκBα this could allow 
IκBα to neutralize tumor suppressor p53112, enabling growth of 
cancer cells with wildtype p53.
d) Inactivation of apoptotic BH3 domain proteins, which renders 
many upstream-targeted drugs ineffective85,113.
e) MUC1 protein overexpression114. MUC1 can recruit β-catenin 
and p300, and thereby activate the myc promoter independently 
from Brd4; MUC1 inhibitor, therefore, kills human lung 
adenocarcinoma cells in synergy with JQ1114.
f) The MEK/ERK pathway can sustain cancer cell viability in 
synergy with wnt and Brd4115.
g) mTOR activity. Against osteosarcoma cells, rapamycin and 
JQ1 can have synergistic cytotoxicity116. However, temsirolimus 
induces canine mammary carcinoma cells with high HER2/3 and 
Src activity to overexpress MUC1 and β-catenin117, making c-Src 
an important variable here.

Figure 2. Transcriptional regulation by NF-κB integrates signaling 
pathways through hormones and cytokines.

(A) Several genes that encode for proteins regulating cell growth, 
are themselves controlled by AP-1, GR, and NF-κB. The interactions 
between these transcription factors integrate signals from cell 
stress and hormones to change gene expression.
(B) Steroid receptors interact with signal pathways of inflammation 
and cell stress at multiple levels. These levels include both chemical 
(covalent modifications) as well as physical (steric hindrance).
(C) DNA looping in chromatin allows larger complexes to form 
between diverse proteins. The presence of ATF2 for example, 
allows recruitment of protein LEF1, which integrates noncanonical 
wnt signaling on an enhancer. The enhancer can then continue 
to operate when redundant cofactors are blocked. Wnt signaling 
was recently proposed to compensate for Brd4 in enhancing 
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myc expression of JQ1-resistant cell lines through an alternative 
enhancer of myc.
Source: author’s original figures.

Importantly, wnt signaling is also known to act systemically as 
a potent metastasis suppressor118. Therefore the activity of 
interacting pathways that regulate metastasis directly is crucial 
in evaluation of cancer gene expression. In addition, comparative 
analysis of transcripts for factors, such as c-Myc that steer cell 
metabolism, with the turnover of apoptotic proteins, can yield a 
useful lead to translational approaches in defining therapeutic 
targets, and in decreasing the potential for side-effects85,119.
	 Future translational work will assess the resulting 
synergies of rationally designed anti-inflammatory agents120 and 
match anti-inflammatory intervention to classical interventions on 
growth-factor-receptors, or hormone receptors32,121. Analysis of 
secreted cytokines or miRNA signatures can help to evaluate and 
develop new therapeutic approaches36,122. Translational research 
is thereby expected to help refine application of established 
drugs, and augment innovative strategies.
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