

Universidad Autónoma del Estado de México. **Facultad de Ciencias**

Desarrollo del códigode simulación SIMAT (SIMulaciones Atomísticas) en GPU's para estudiar sistemas biológicos a granescala: Seminario de Investigación VI 2017B

> Nombre de la Unidad de Aprendizaje: SEMINARIO DE INVESTIGACIÓN VI SEMINARIO INTERDISCIPLINARIO VI (**Doctorado**)

Autor: Dr. Jorge Mulia Rodríguez Coautor: M. en C. Luis Rolando Guarneros Nolasco

Septiembre de 2017

GUÍA EXPLICATIVA DE USO GENERAL PARA LA UNIDAD DE APRENDIZAJE DE SEMINARIO DE INVESTIGACIÓN VI (SEMINARIO INTERDISCIPLINARIO V) (DOCTORADO)

	Página	
I. Objetivo	7	
II. Antecedentes	8	
III. Métodos	9	
IV. Dinámica molecular (DM)	10	
V. Algoritmo de integración: Velocity Verlet	11	
VI. Condiciones iniciales	12	
VII. Condiciones periódicas de frontera	13	
VIII. Potencial de interacción: Intramolecular e Intermolecular	14	
IX. Diagrama de flujo de una DM	15	
X. Aplicaciones para dinámica molecular en Unidades de Procesamiento Gráfico (GPU's) acreditados por Nvidia	16	

	Página
XI. Cómputo de alto rendimiento en GPU's.	25
XII. Resultados preliminares: Performance Dina Vs Simat	30
XIII. Bibliografía	40

I. TRAYECTORÍA ACADÉMICA

DOCTORADO EN CIENCIAS

DOCTORADO EN CIENCIAS (INTEGRADO)

 \square

II. UNIDAD DE APRENDIZAJE

Unidad de Apren	Unidad de Aprendizaje: Seminario de Investigación V						
Periodo lectivo	Horas totales	Horas	Teóricas	Horas Prácticas	Créditos		
Quinto	2		0	2	2		
Unidades de Apr	endizaje Anteceo	lentes	Unidad	es de Aprendizaje	Consecuentes		
Seminario	de Investigación	IV	Seminar	io de Investigación	VI		
Fecha de elabora	ción:		Elaboro):			
Mayo 2014			Comité	curricular y colabor	adores		
Objetivo general:							
Intercambiar con	ocimientos básic	os e inter	disciplina	rios en torno a l	los protocolos de		
investigación de lo	os estudiantes y la	IS LGAC de	el Plan de	Estudios.			
Contenido temáti	ico:						
Exposiciones indiv	viduales del proto	colo y avai	ices en in	vestigación por part	e del estudiante de		
acuerdo a las activ	idades establecid	as en su pro	otocolo de	e tesis.			
Pláticas de especia	ilistas invitados.						
Actividades de ap	orendizaje:						
Asistencia y part	icipación en cad	a Coloqui	o semesti	al de doctorantes,	asi como en las		
actividades acadér	nicas relacionada	s con las L(GAC del j	posgrado.			
El titular de la U.	A promoverá act	ividades de	e reflexió	1 sobre la ética en	la investigación y		
aplicación del co	mocimiento para	establece	r el com	promiso y respons	abilidad de cada		
estudiante de inclu	tirla en su quehac	er científic	o.				
El titular de la UA	, promoverá activ	idades de r	eflexión s	obre conceptos de j	usticia, dignidad y		
equidad de las per	sonas en el ámbit	o científico					
Adicionalmente el	l titular de los se	minarios d	lará segui	miento a los avanc	es de los alumnos		
<mark>conforme a los pro</mark>	stocolo de tesis ar	robados po	or la Comi	isión Académica.			
Procedimiento de	evaluación:						
La calificación co	rresponde a una e	valuación (diagnóstic	a de la presentación	1 por escrito y oral		
de acuerdo a las a	ctividades estable	cidas en su	1 protocol	o de tesis, con la fir	ialidad de conocer		
los conocimientos	s y avances pre	vios adqui	ridos dur	ante el semestre o	lel estudiante. Se		
evaluarà la present	evaluará la presentación por escrito y la defensa oral, considerando los siguientes criterios con						
sus escalas respect	nvas:						
1. Tema principal	50%		, .				
(Antecedentes, obj	jetivos e hipotesis	, materiale	s y metod	os, conocimiento de	il tema)		
2. Tecnicas de presentación 10%							
(Claridad de la exposición y secuencia de la presentación)							
3. Ayudas visuales	3 10%						
4. Reacción y discusión de la audiencia 10%							
 Desarrollo academico del estudiante a las preguntas formuladas durante sus intervenciones or el estudiante 2004 							
Pibliografia	70						
Dibliografia Derrister av tester	ormanializadar	acarda com	las LC	AC del Deservede -	u al matacala da		
investigación de ci	especializados :	acorde con	LIAS LG	AC del Posgrado j	y el protocolo de		
Artículos especiali	izados seleccione	dos nor el •	itular de l	a Unidad da Arrond	lizaia		
Paras de dates	izados seleccióna	uos por el t	nular de l	a omdad de Aprend	uzaje.		
Dases de datós.							

Desarrollo del código de simulación SIMAT (SIMulaciones Atomísticas) en GPU's para estudiar sistemas biológicos a gran escala.

I. Objetivo

Implementar novedosos algoritmos para realizar simulaciones moleculares de sistemas biológicos a gran escala en diversos ensambles estadísticos como volumen y energía constante (NVE), volumen y temperatura constante (NVT) y presión y temperatura constante (NPT), a través de un nuevo código desarrollado en unidades de procesamiento gráfico GPU's denominado SIMAT (SIMulaciones Atomísticas).

II. Antecedentes

Los métodos para análisis presentan dos limitantes para estudiar sistemas de gran tamaño como las proteínas: **partículas del sistema y el tiempo de integración**

Multiscale modeling enables spanning range of time and length scales

^[1] R. W. Tourdot, et al., IET Systems Biology, 2014, 8(5), 198-213

III. Métodos

IV. Dinámica molecular (DM)

Resuelve las ecuaciones clásicas de movimiento para un sistema de N partículas con masa m_i y posiciones r_i a un tiempo t que interaccionan por medio de un potencial de interacción de átomos.

[2] R. López-Rendón, 2007.

V. Algoritmos de integración: Velocity Verlet

$$\mathbf{r}_{i}(\Delta t) = \mathbf{r}_{i}(0) + \frac{d\mathbf{r}_{i}}{dt}\Delta t + \frac{1}{2}\frac{d^{2}\mathbf{r}_{i}}{dt^{2}}\Delta t^{2} + \dots$$
$$\mathbf{v}_{i}(\Delta t) = \mathbf{v}_{i}(0) + \frac{d\mathbf{v}_{i}}{dt}\Delta t + \frac{1}{2}\frac{d^{2}\mathbf{v}_{i}}{dt^{2}}\Delta t^{2} + \dots$$

$$\begin{aligned} \mathbf{r}_i(\Delta t) &= \mathbf{r}_i(0) + \mathbf{v}_i(0)\Delta t + \frac{\mathbf{F}_i(0)}{2m_i}\Delta t^2 \\ \mathbf{v}_i(\Delta t) &= \mathbf{v}_i(0) + \frac{\Delta t}{2m_i} \Big[\mathbf{F}_i(0) + \mathbf{F}_i(\Delta t)\Big] \end{aligned}$$

[2] R. López-Rendón, 2007.

VI. Condiciones Iniciales

VII. Condiciones periódicas de frontera

[2] R. López-Rendón, 2007.

VIII. Potencial de Interacción: Intramolecular e Intermolecular

$$V(r^{N}) = \sum_{\text{bonds}} \frac{1}{2} k_{b} (l - l_{0})^{2} + \sum_{\text{angles}} \frac{1}{2} k_{a} (\theta - \theta_{0})^{2}$$

$$+ \sum_{\text{torsions}} \frac{1}{2} V_{n} [1 + \cos(n\omega - \gamma)]$$

$$+ \sum_{j=1}^{N-1} \sum_{i=j+1}^{N} \left\{ \epsilon_{i,j} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - 2 \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right] + \frac{q_{i}q_{j}}{4\pi\epsilon_{0}r_{ij}} \right\}$$

$$(2) \text{ R. López-Rendón, 2007.}$$

$$14$$

IX.Diagrama de flujo de una DM

X. Aplicaciones para dinámica molecular en GPU acreditadas por Nvidia

ACEMD

 150 ns/day DHFR Speed up Supported Features
 Written for use only on GPU's

NAMD

- 4.0 ns/day F1-ATPase Speed up Supported Features
- Full slectrostatics with PME and most simulation features

GROMACS

 165 ns/day DHFR Speed up Supported Features
 Implicit (5x)
 Explicit (2x) solvent

HOOMD-Blue

 2x Speed up Supported Features
 Written for use only on GPU's LAMMPS # 3.5 - 18x Speed up Supported Features # Lennard-Jones # Gay-Berne # Tersoff

* Las aceleraciones esperadas dependen mucho de la configuración del sistema. A menos que se indique de otra forma, la aceleración vale para todo el código. Rendimiento de la GPU comparado con socket de CPU x86 con múltiples núcleos. Rendimiento de la GPU comparado a partir de los recursos admitidos por la GPU. Puede ser un kernel por la comparación del rendimiento del kernel ¿Por qué desarrollar un nuevo código para estudiar sistemas biológicos con simulación molecular?

- / Métodos (DM)
- / Otro modelo de potencial de interacción
- / Diferente algoritmo de integración
- / Nuevo código en GPUs
- / Problema biológico a resolver

Método a implementar

 Se basa en métodos propuestos anteriormente y basados en los operadores de Liouville para el desarrollo de algoritmos en diferentes ensambles (López-Rendón[1])

$$\Gamma(t) = e^{iLt} \Gamma(0)$$

$$e^{iL\Delta t} = e^{iL_2\Delta t/2} e^{iL_1\Delta t} e^{iL_2\Delta t/2}$$

[1] R. López-Rendón, 2007.

Ensambles implementados

Ensamble NVE: Energía Constante

Ensamble NVT: Temperatura constante

Termostato

de Nosé-Hoover

$$\begin{aligned} \dot{\mathbf{r}}_i &= \frac{\mathbf{p}_i}{m_i} \\ \dot{\mathbf{p}}_i &= \mathbf{F}_i - \frac{p_\eta}{Q} \mathbf{p}_i \\ \dot{\eta} &= \frac{p_\eta}{Q} \\ \dot{p}_\eta &= \sum_{i=1}^N \frac{\mathbf{p}_i^2}{m_i} - dNk_BT \end{aligned}$$

Cadenas de Termostato de Nosé-Hoover

$$\begin{aligned} \dot{\mathbf{r}}_i &= \frac{\mathbf{p}_i}{m_i} \\ \dot{\mathbf{p}}_i &= \mathbf{F}_i - \frac{p_{\eta_1}}{Q_1} \mathbf{p}_i \\ \dot{\eta}_k &= \frac{p_{\eta_k}}{Q_k} \qquad k = 1, \dots, M \\ \dot{p}_{\eta_k} &= G_k - \frac{p_{\eta_{k+1}}}{Q_{k+1}} p_{\eta_k} \\ \dot{p}_{\eta_M} &= G_M \end{aligned}$$

$$G_1 = \sum_{i=1}^{N} \frac{\mathbf{p}_i^2}{m_i} - dNk_BT \qquad G_k = \frac{p_{\eta_{k-1}}^2}{Q_{k-1}} - k_BT$$

[12] Hoover, W. G.,1985 [13] Martyna, et al, 1992

Ensamble NVT: Temperatura constante

$$\begin{aligned} \text{Thermo} &- \mathbf{Update} \left(\frac{\Delta t}{2}, \{\eta\}, \{p_{\eta}\}, \mathbf{p}_{i} \right) \\ \text{for } i = 1 \quad \text{to } N \qquad \mathbf{p}_{i} \left(\frac{\Delta t}{2} \right) &\longleftarrow \quad \mathbf{p}_{i}(0) + \frac{\Delta t}{2} \mathbf{F}_{i}(0) \\ \text{for } i = 1 \quad \text{to } N \qquad \mathbf{r}_{i} (\Delta t) &\longleftarrow \quad \mathbf{r}_{i}(0) + \frac{\Delta t}{m_{i}} \mathbf{p}_{i} \left(\frac{\Delta t}{2} \right) \\ \text{Calcular las fuerzas } \mathbf{F}_{i}(\Delta t) \\ \text{for } i = 1 \quad \text{to } N \qquad \mathbf{p}_{i}(\Delta t) &\longleftarrow \quad \mathbf{p}_{i} \left(\frac{\Delta t}{2} \right) + \frac{\Delta t}{2} \mathbf{F}_{i}(\Delta t) \\ \text{Thermo} - \mathbf{Update} \left(\frac{\Delta t}{2}, \{\eta\}, \{p_{\eta}\}, \mathbf{p}_{i} \right) \end{aligned}$$

Ensamble NPT: Presión y Temperatura constante

$$\dot{\mathbf{r}}_i = \frac{\mathbf{p}_i}{m_i} + \frac{p_{\epsilon}}{W} \mathbf{r}_i$$

$$\dot{\mathbf{p}}_i = \mathbf{F}_i - \left(1 + \frac{1}{N}\right) \frac{p_{\epsilon}}{W} \mathbf{p}_i - \frac{p_{\eta_1}}{Q_1} \mathbf{p}_i$$

Volumen

$$\dot{V} = \frac{dV}{W} p_{\epsilon}$$

$$\dot{p}_{\epsilon} = dV(P_{\text{int}} - P_{\text{ext}}) + \frac{1}{N} \sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{m_{i}} - \frac{p_{\xi_{1}}}{Q_{1}'} p_{\epsilon}$$

Termostato

$$\begin{split} \dot{\eta}_k &= \frac{p_{\eta_k}}{Q_k} \qquad k = 1, ..., M \\ \dot{p}_{\eta_k} &= G_k - \frac{p_{\eta_{k+1}}}{Q_{k+1}} p_{\eta_k} \\ \dot{p}_{\eta_M} &= G_M \end{split}$$

Barostato

$$\dot{\xi}_{k} = \frac{p_{\xi_{k}}}{Q'_{k}} \qquad k = 1, ..., M$$

 $\dot{p}_{\xi_{k}} = G'_{k} - \frac{p_{\xi_{k+1}}}{Q'_{k+1}} p_{\xi_{k}}$
 $\dot{p}_{\xi_{M}} = G'_{M}$

[13] Martyna, et al, 1992

Ensamble NPT: Presión y Temperatura constante

24

[3] M. Tuckerman, et al, (2006).

XI. Cómputo de alto rendimiento en GPU's

Cómputo de Alto Rendimiento en GPU's: Capacidad de procesamiento

Cómputo de Alto Rendimiento en GPU's

Compute Unified Device Architecture (CUDA) es una arquitectura de cálculo paralelo de Nvidia.

Las GPU's poseen miles de núcleos que procesan las cargas de trabajo de forma paralela y muy eficiente.

Cómputo de Alto Rendimiento en GPU's

Proceso de compilación en CUDA

Grid						
Block	(0, 0)	Block	(1, 0)	Block	(2, 0)	
Block		Block	(1, 1)	Block	(2, 1)	
/	/			\setminus	\backslash	
	/					
	/	Block	(1, 1)			
d (0, 0)	Thread	(1, 0)	Thread	(2, 0)	Thread (3, 0)
d (0, 1)	Thread	(1, 1)	Thread	(2, 1)	Thread (3, 1)
d (0, 2)	Thread	(1, 2)	Thread	(2, 2)	Thread (3, 2)
	Grid Block Block d (0, 0) d (0, 1) d (0, 2)	Grid Block (0, 0) Block (0, 1) Block (0, 1) d (0, 0) Dread d (0, 2) Thread	Grid Block (0, 0) Block (0, 1) Block (0, 1) Block (0, 0) Thread (1, 0) d (0, 2) Thread (1, 2)	Block (0, 0) Block (1, 0) Block (0, 1) Block (1, 1) Block (1, 1) Block (1, 1) d (0, 0) Thread (1, 0) Thread (1, 1) d (0, 2) Thread (1, 2) Thread (1, 2)	Block (0, 0) Block (1, 0) Block (1, 0) Block (0, 1) Block (1, 1) Block (1, 1) Block (0, 1) Block (1, 1) Block (1, 1) Block (1, 1) Block (1, 1) Block (1, 1) Block (1, 1) Thread (1, 0) Thread (2, 0) d (0, 2) Thread (1, 2) Thread (2, 2)	Block (0, 0) Block (1, 0) Block (2, 0) Block (0, 1) Block (1, 1) Block (2, 1) Block (1, 1) Block (1, 1) Block (2, 1) Block (1, 1) Block (1, 1) Block (2, 1) Block (1, 1) Block (2, 1) Block (2, 1) Block (1, 1) Block (2, 1) Block (2, 1) Block (1, 1) Thread (1, 0) Thread (2, 0) Along (1, 1) Thread (2, 1) Thread (2, 1) Along (1, 2) Thread (2, 2) Thread (2, 2)

XII. Resultados preliminares: performance Dinavs Simat

Preliminares NVE: Dina vs SIMAT

31

Preliminares NVE: Dina vs SIMAT

32

Preliminares NVE: Dina vs SIMAT

Energia Total

Preliminares NVT: Dina vs SIMAT

Temperatura

Energia Cinetica

Preliminares NVT: Dina vs SIMAT

Energia Potencial

Preliminares NVT: Dina vs SIMAT

36

Tiempos Preliminares:

Dina vs SIMAT

- 500 átomos
- 5000 pasos

Discusiones preliminares

•El ensamble NVE en SIMAT muestra algunas variaciones en el cálculo de las energías tanto potencial como cinética, aunque estas se encuentran dentro del margen de error estadístico, comparado con el software Dina del grupo de investigación del Dr. Alejadré.

•El ensamble NVT en SIMAT muestra un desempeño apropiado en el cálculo de las energías, comparado con el software Dina del grupo de investigación del Dr. Alejadré.

•Los algoritmos implementados en el software Dina están desarrollados en Fortran, por lo que los resultados de ejecución son lentos. Al migrarlos a la tecnología de GPU'spermitió reducir los tiempos de ejecución.

•Realizar una optimización de las funciones del código para reducir los tiempos de procesamiento.

Actividades complementarias

- Red de Venómica Computacional y Bioingeniería Molecular a Multiescala
- Primera Escuela Mexicana de Fisicoquímica Teórica, Octubre, 2016, Mérida, Yucatán
- XIV Reunión Mexicana de Fisicoquímica Teórica, Noviembre 2015, Tonalá, Jalisco.
- ^e 2nd Workshop in High Throughput Molecular Dynamics, Noviembre, 2016, Barcelona, España.

XIII. Bibliografía

[1] R. W. Tourdot, R. P. Bradley, N. Ramakrishnan, R. Radhakrishnan, Multiscale Computational Models in Physical Systems Biology of Intracellular Trafficking, IET Systems Biology, 2014, 8(5), 198-213

[2] R. López-Rendón, Simulación con dinámica molecular de soluciones acuosas de etanolaminas en presencia de gases ácidos (Tesis, Universidad Autónoma Metropolitana Iztapalapa, 2007).

[3] M. Tuckerman, J. Alejandre, R. López-Rendón, A. Jochim, and G. Martyna, J. Phys. A: Math. Gen. 39, 5629 (2006).

[4] J Chem Theory Comput. 2013, 9, 3267-3281. Sweet JC, Nowling RJ, Cickovski T, Sweet CR, Pande VS, Izaguirre JA.

[5] J Chem Phys. 2014, 141, doi: 10.1063/1.4895044. Schwantes CR, McGibbon RT, Pande VS.

[6] Curr Opin Struct Biol. 2013, 23, 58-65. doi: 10.1016/j.sbi.2012.11.002. Lane TJ1, Shukla D, Beauchamp KA, Pande VS.

[7] F. Mendoza-Ambrosio, Interacciones moleculares y propiedades interfaciales de hidrocarburos y agua. (Tesis, Universidad Autónoma Metropolitana Iztapalapa, 2010).

[8] M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, GROMACS User Manual versión 5.0.7, <u>www.gromacs.org</u> (2015)

[9] John E. Stonea, David J. Hardya, Ivan S. Ufimtsevb, and Klaus Schultenc, GPU-Accelerated Molecular Modeling Coming Of Age, J. Mol Graph Model. 2010 September ; 29(2): 116–125. doi:10.1016/j.jmgm.2010.06.010.

[10] Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell TJ. A survey of general- purpose computation on graphics hardware. Comput. Graph. Forum 2007;26:80–113.

[11] Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proc. IEEE 2008;96:879-899

[12] Hoover, W.G. Canonical dynamics-equilibrium phase-space distributions. Phys. Rev. A, 1985, 31,1695.

[13] Martyna, G. J. And Tuckerman. M.E. and Klein, M. L. Nosé Hoover Chains: The canonical ensemble via continuos dynamics. J. Chem. Phys., 1992, 97,2625.

[14] Design Guide, Cuda C programming Guide, Nvidia, march 2015.