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Abstract Human activities are affecting the distribution of

species worldwide by causing fragmentation and isolation

of populations. Isolation and fragmentation lead to popu-

lations with lower genetic variability and an increased

chance of inbreeding and genetic drift, which results in a

loss of biological fitness over time. Studies of the genetic

structure of small and isolated populations are critically

important for management and conservation decisions.

Ambystoma rivulare is a micro-endemic Mexican mole

salamander from central Mexico. It is found in the most

ecologically disturbed region in Mexico, the Trans-Mexi-

can Volcanic Belt. The goal of this study of the population

genetics of the micro-endemic mole salamander was to

provide information to be used as a basis for future

research and conservation planning of this species and

other species of the Ambystoma genus in Mexico. The

structural analysis found two subpopulations, one for each

river sampled, with no signs of admixture and very high

levels of genetic differentiation. Medium to high levels of

heterozygosity and few alleles and genotypes were

observed. Evidence of an ancestral genetic bottleneck, low

values of effective population size, small inbreeding

coefficients, and low gene flow were also found.

Keywords Mole salamander � Conservation genetics �
Micro-endemic species � Microsatellites � Conservation

Introduction

Biodiversity of the planet is rapidly decreasing as a conse-

quence of human exploitation of land resources. Conse-

quences of decreased biodiversity include reduced species

richness (Waltert et al. 2004; Ribeiro et al. 2009), a decline in

genetic diversity (Frankham et al. 2005), and changes in the

distribution of fauna resulting fromhabitat loss (Ribeiro et al.

2009; Sarukhán et al. 2009). Loss of habitat can result in

small, isolated, and fragmented populations. These popula-

tions tend to have an increased chance of inbreeding as well

as less genetic variability due to a loss of alleles through

genetic drift (Frankham et al. 2005; Sunny et al. 2014a;

Rueda Zozaya et al. 2016), reducing their biological fitness

over time (Lande 1988; Jehle and Arntzen 2002). In order to

maintain sufficient levels of genetic variability for small,

fragmented populations and ensure their long term survival,

studies of genetic variability must be conducted so that

management strategies can be improved (Frankham et al.

2005; Palsbøll et al. 2007; Bradshaw et al. 2010).

Mexico is a biodiverse country which ranks fifth in the

number of amphibian species (Parra-Olea et al. 1999; Frı́as-

Alvarez et al. 2008) with 377 species (AmphibiaWeb 2016),

of which 259 are endemic (Parra-Olea et al. 2014; Flores-

Villela and Garcı́a-Vázquez 2014; AmphibiaWeb 2016).

However, Mexico also ranks fourth in world deforestation

rates (FAO 2006; Ellis and Porter-Bolland 2008), which

increases fragmentation and isolation of wildlife populations.
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The Trans-MexicanVolcanic Belt (TMVB) is one of themost

ecologically disturbed regions in the country due to its near-

ness to highly urbanized cities (Sunny et al. 2015). Mexico

also has 18 Ambystoma species, of which 16 are endemic

(Parra-Olea et al. 2014). Ambystoma rivulare is a micro-en-

demic mountain mole salamander that inhabits slow-flowing

streamswithin theTMVB, surroundedbyPinus hartwegii and

Abies religiosa forest. It is found in streams located above

2800 m above sea level (masl) (Barriga-Vallejo et al. 2015).

This species is endangered, along with most of the mole

salamanders of Mexico (SEMARNAT 2010; Parra-Olea

et al. 2012; Sunny et al. 2014a; IUCN 2016), largely due to

deforestation, pollution of rivers, and the introduction of

exotic species (Casas-Andreu et al. 2004; Beebee and

Griffiths 2005; Zambrano et al. 2010). However, there is

little information on the current population trend and the

status of genetic variability of this species, except within

the Special Reserve of the Monarch Butterfly (SRMB)

(Parra-Olea et al. 2012). The IUCN categorizes this species

as data deficient (Shaffer et al. 2008). Additionally, this

species is found in one of the most fragmented and dis-

turbed areas of Mexico, where the environment has been

heavily impacted by agriculture and urban settlements. In

fact, some of the largest metropolitan areas in Mexico are

in the distribution range of A. rivulare (CONAPO 2010;

Bryson et al. 2014; Sunny et al. 2015).

The aim of this study was to assess two small, frag-

mented populations of A. rivulare found in the Nevado de

Toluca Volcano (NTV) natural protected area, part of the

TMVB, by examining their genetic diversity and structure,

level of inbreeding, current effective population size, and

evidence for bottlenecks. The NTV was declared a natural

protected area in 1936, but lack of communication between

the government and communal land holders prevented

proper implementation of protection laws. Consequently,

the presence of human settlements, parks, trout farming,

illegal logging and other human activities has continued to

affect the biodiversity of this area (Candeau and Franco

2007). Based on this species’ life history and the poor

condition of the natural protected area, we expected to find

low genetic variability, a high degree of genetic structure,

small effective population sizes, and low gene flow in these

populations. These results will provide valuable informa-

tion for making management decisions to help preserve A.

rivulare in the NTV.

Materials and methods

Study site and population sampling

Population sampling was conducted in the NTV (18�
590 N) in two small rivers surrounded by small alpine

grassland, near a sacred fir and pine forest (Abies religiosa

and Pinus hartwegii), at an altitude of 3200 masl. The

sampling site is a recreational park with ecotourism

activities, trout farming, and cattle and sheep grazing

(Fig. 1). Tissue samples from 54 individuals were collected

in the first river, and from 32 individuals in the second

river. In order to represent all maturity stages of A. rivulare

in the data, tissue was obtained from both adults and larvae.

Sampling of larvae was limited ([10 %) and efforts were

made to avoid sampling siblings. A total of 14 sampling

sites were chosen after considering the characteristics of

different micro-environments presented by the rivers

(presence of ponds, flow rates, substrate type, amount of

vegetation, etc.). Individuals were captured with a fishing

net and a 2 mm2 tail clip was collected. This methodology

is low-impact and does not affect the survival or growth of

the mole salamanders (Arntzen et al. 1999; Polich et al.

2013). Tissue samples were preserved in 90 % ethanol and

then frozen at -20 �C until processing could be completed.

All mole salamanders were released immediately at the

point of capture.

DNA extraction and microsatellite amplification

DNA extraction was performed with a commercial kit

(Vivantis GF-1 Tissue DNA extraction kit). Genomic DNA

was used as a template for amplification of nine

microsatellite loci: At 52.2, At 52.10, At 52.143, At 60.3,

At 52.115, At 52.6, At 52.34, At 52.20, and At 52.1 (Parra-

Olea et al. 2007). PCR reactions were performed in a

Techne thermocycler. Amplified products were multi-

plexed on an ABI Prism3730xl and sized in PEAK

SCANNER V1.0 (Applied Biosystems 2006) software

using ROX-500 as an internal size standard. Allele sizes

were measured and binned with the software TANDEM

(Matschiner and Salzburger 2009).

Microsatellite analysis

Potential scoring errors and genetic structure

The presence of null alleles and other genotyping errors

was determined using the software MICROCHECKER

(Van Oosterhout et al. 2004).

We used the software STRUCTURE 2.3.4 (Pritchard

et al. 2000) to infer the population structure. Due to the

lack of genetic structure found in previous studies, the

results of exploratory analyses of these data (K = 10,

K = 8, K = 5, K = 3, K = 2 and K = 1; results not

shown), and the results of a Delta K (DK) Evanno plot (see

results), we decided to explore values of K from 1 to 8. The

analysis was run ten times per K value in order to deter-

mine the maximum value of posterior likelihood [lnP(D)].

690 Genetica (2016) 144:689–698
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For each analysis we used 100,000 Markov chains fol-

lowing a burn-in period of 50,000 chains (Espindola et al.

2014).

A Dirichlet parameter was used to assess the degree of

admixture; allele frequencies in each genetic group were

correlated with the allele frequencies of an ancestral

population, without prior information on population ori-

gin. We used the software STRUCTURE HARVESTER

0.6.92 (Earl and vonHoldt 2011) to determine the most

probable number of clusters to best represent our data.

Following the method of Evanno et al. (2005), we sear-

ched for the maximum value of DK (i.e. the ad hoc

quantity related to the second order rate of change of the

log probability of data) with respect to the number of

clusters. We also used the software GENELAND 3.2.2

(Guillot et al. 2005) to infer population structure.

GENELAND 3.2.2. implements a Bayesian algorithm

through a Markov chain Monte Carlo procedure using

genetic data and geographical coordinates. The program

was run using the assumptions of a correlated allelic

frequencies model and true spatial model (Guillot et al.

2005). We performed 10 independent runs of 1,000,000

iterations (thinning = 100, burn-in = 1000) using

K = 10, K = 5, K = 3, K = 2, and K = 1 (Vázquez-

Domı́nguez et al. 2012; Sunny et al. 2014a). Finally, we

used an analysis of molecular variance (AMOVA) to

analyze the distribution of the genetic variance between

and within populations, based on FST values, with 10,000

permutations in the program ARLEQUIN 3.5.1.2 (Ex-

coffier and Lischer 2010).

Genetic diversity

Linkage disequilibrium (LD) between all pairs of loci

across all populations and conformance to Hardy–Wein-

berg equilibrium (HWE) expectations was evaluated using

GENEPOP 4.2 (Raymond and Rousset 1995), which con-

ducts exact tests (10,000 dememorization steps, 1000 bat-

ches and 10,000 iterations). A false discovery rate (FDR)

test was performed using R 2.8.1 Q-VALUE (R Develop-

ment Core Team 2013) in order to analyze the significance

of data obtained. With GENALEX (Peakall and Smouse

2006), we estimated the observed (Na) and effective

number (Ne) of alleles per locus as well as the observed

(Ho) and expected heterozygosity (He). FSTAT 2.9.3.2

(Goudet 2002) software was used to obtain an estimate of

allelic richness (A). In addition, we used SMOGD 1.2.5

(Crawford 2010) software, with 1000 bootstrap replications

for each parameter, to calculate several estimators of

genetic population differentiation such as GST_est (Nei et al.

1983), G0ST_est (Hedrick 2005; Jost 2008), DST, D, and Dest

(Jost 2008). We estimated Nei’s genetic distance (Nei

1972) between sampling locations with GENALEX.

Gene flow, effective population size, inbreeding

and bottlenecks

The gene flow was estimated with MIGRATE-N 3.6 (Beerli

2008), which utilizes Bayesian inferences. The Brownian

motion model was used and we conducted five independent

runs of four long chains of 10,000,000 genealogies, sampled

Fig. 1 a Map of Mexico showing the Trans-Mexican Volcanic Belt in light gray and in dark grey the State of Mexico. b State of Mexico,

c Raı́ces, Zinacantepec, the black dots are the study sites
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every 1000 steps, and a burn-in of 1,000,000 steps. The four

heated chains had temperatures: T1 = 1.0, T2 = 1.5,

T3 = 3.0 and T4 = 1,000,000. Default values were applied

for the remaining parameters; effective immigration (M) rate

and effective population size (H) were obtained.

To estimate the number of migrants per generation

(Nem), we used the two populations defined by the

STRUCTURE analysis M was multiplied by H (Beerli

2009, 2012). The effective population size (Ne) was

determined by examining LD in the software NE ESTI-

MATOR 2.01 (Do et al. 2014). As an inbreeding measure,

we used the relatedness estimator (rqg) of Queller and

Goodnigh (1989), calculated by the software GENALEX.

To test for significant differences among mean population

relatedness, we calculated the upper and lower 95 % con-

fidence intervals for the expected range of rqg using 9999

permutations. These intervals correspond to the range of rqg
that would be expected if reproduction were random across

the populations. Also, we calculated confidence intervals

for estimates of mean relatedness within a population to

95 % by bootstrap resampling (9999 permutations). Pop-

ulation rqg values that fall above the 95 % expected values

indicate that processes such as inbreeding or genetic drift

are increasing relatedness. Finally, we used the coefficient

of inbreeding (FIS), calculated by GENEALEX, as an

indicator of total inbreeding in the population.

We used the software BOTTLENECK 1.2.02 (Cournet

and Luikart 1996; Piry et al. 1999) to search for evidence of

genetic bottlenecks events. We estimated the observed and

expected heterozygosity under the infinite allele model

(IAM), stepwise mutation model (SMM), and the two-phase

model (TPM) with settings at 90 % SMM, 10 % IAM, and

10 %variance and also using the default values (70 %SMM,

30 % IAM, and 10 % variance). Both parameter settings

were run with 10,000 replicates. Excess heterozygosity was

tested with a Wilcoxon test. Finally, historical bottlenecks

were tested with the Garza-Williamson (M) index, which

was calculated with ARLEQUIN 3.5.1.2 software (Excoffier

and Lischer 2010) and with CRITICAL M software (Garza

andWilliamson 2001). A critical M (Mc) value was obtained

using 10,000 simulations and parameters from the two-phase

mutation model, as described in Garza and Williamson

(2001). M-values lower than the critical number, are

indicative of historical population declines (Cournet and

Luikart 1996; Garza and Williamson 2001).

Results

Potential scoring errors and genetic structure

Null alleles and other genotyping errors were not detected

at any loci.

The highest log likelihood given by STRUCTURE was

observed when K = 2 (LnPr = -1769.7); the DK method

also chose two populations as the best model (Fig. 2). With

GENELAND, three subpopulations were defined

(LnPr = -2705.93). Since STRUCTURE assigned almost

every individual to the river where it was collected, and the

maximum value of DK (Evanno et al. 2005) analysis also

suggested the presence of two subpopulations, we per-

formed posterior analysis with two subpopulations. Popu-

lation sampling was done in two independent streams, so

using two subpopulations for analysis seemed to accurately

represent the structure of A. rivulare at this study site. We

defined these populations as Stream 1 (SUBP1: N = 54)

and Stream 2 (SUBP2: N = 32). Other genetic structure

analysis showed low genetic structure between the two

populations (FST = 0.076, GST_est = 0.068, G0ST_est =

0.300, DST = 1.258, D = 0.299, Dest = 0.285, Nei’s =

0.328; Table 1 and 2). The FST calculated by AMOVA

(FST = 0.076) revealed that most of the genetic diversity is

attributed to variation among populations (72 %;

p = 0.000), and only a small amount (21 %; p = 0.000)

occurs among individuals or within populations.

Genetic variability

FDR correction found departures from HWE at loci At

52.10 and At 52.115 because of a heterozygote deficit

(FIS = -0.340). Linkage disequilibrium was not detected

at any loci. Across the nine loci in the two populations, 68

alleles were identified, with a range of 2–7 (average 3.778)

alleles per locus. SUBP1 had a total of 38 alleles, with 2–6

alleles per locus (mean = 4.222). SUBP2 had 2–5 alleles

per locus (mean = 3.333) and a total of 30 alleles

(Table 1; Fig. A2). Between the two populations, 91

genotypes were found (Table A3). There was a range of

2–10 (average 6.222) genotypes per locus for SUBP1 and

2–7 (average of 3.888) for SUBP2. Twenty-nine

heterozygous genotypes and 27 homozygous genotypes

were found in SUBP1, with a total of 56 genotypes. SUBP2

had a total of 35 genotypes, 18 heterozygous and 17

homozygous. SUBP1 showed lower observed and expected

heterozygosity values (Ho = 0.761, He = 0.622) as com-

pared to SUBP2 (Ho = 0.837, He = 0.591; Table 1).

Gene flow, effective population size, relatedness

and bottlenecks

With regard to gene flow, the MIGRATE-N estimates of H
for the two populations were 0.00273 for SUBP1 and

0.00412 for SUBP2. Migration rates per generation from

SUBP1 to SUBP2 were 1.08 and from SUBP2 to SUBP1

were 0.137. With an allelic frequency of 0.05, the Ne in the
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LD model was 19.9 for SUBP2 and 7.7 for SUBP2. The FIT
statistic for the whole population, used as an indicator of

inbreeding, showed low inbreeding values (FIT = -0.248;

Table 2). We found that mean pairwise relatedness (rqg)

within populations (Fig. 3) was generally in accordance

with that observed in other Ambystoma populations (Parra-

Olea et al. 2012; Sunny et al. 2014a; Percino-Daniel et al.

2016). The SUBP1 population had low values of inbreed-

ing (mean rqg = 0.098, confidence interval

(CI) = 0.022–0.039) and SUBP2 had medium to high

values (mean rqg = 0.445, CI = 0.048–0.058). The

BOTTLENECK analysis did not detect any signs of the

recent and/or sharp demographic changes which are typical

of bottleneck events. However, critical M (Mc) values were

significantly higher (SUBP1: Mc = 1.5 and SUBP2:

Mc = 1.05) than M values (SUBP1 M = 0.47534 and

SUBP2 M = 0.36772) in both subpopulations, indicating

historical reductions in effective population size or histor-

ical bottlenecks.

Discussion

This is the first population genetics study of A. rivulare in

the NTV. This species is very sensitive to environmental

changes such as pollution of streams. Anthropogenic

activities have already caused the loss of approximately

50 % of amphibian diversity worldwide (Marsh and

Trenham 2001; Storfer et al. 2009).

Genetic structure

Our genetic structure analysis found two subpopulations,

one for each river sampled, with no signs of admixture and

Fig. 2 Ambystoma rivulare genetic structure: a, b DK value of Evanno et al. (2005) plots for detecting the number of K groups that best fit the

data. c Population genetic structure partitioned into K components representing the ancestry fractions in LnPr (K = 2) = -1769.7 populations

Table 1 A. rivulare genetic diversity values in the SUBP1 and in the

SUBP2 populations

N Na Ne Np Ho He FIS

SUBP1 54 4.222 4.222 15 0.761 0.622 -0.225

SUBP2 32 3.333 3.333 7 0.837 0.561 -0.512

Total mean 3.778 2.605 11 0.799 0.591 -0.360

N sample size, Na number of alleles, Ne number of effective alleles,

Np number of private alleles, Ho observed heterozygosity, He

expected heterozygosity, FIS fixation index
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a very high level of genetic differentiation. This is a trend

which commonly occurs in mole salamanders (Savage

et al. 2010; Parra-Olea et al. 2012; Sunny et al. 2014a, b)

residing at high elevations. Mountain habitats are associ-

ated with severe topographical, climatic, and ecological

conditions (Savage et al. 2010). The sampled rivers stem

from different tributaries, are separated by low vegetation

cover, and experience low air and water temperatures with

different durations and intensities. Cows and sheep graze

near these streams and other human activities such as

tourism, horseback riding, and mountain biking take place

in the area. All of these factors can significantly limit gene

flow between populations (Naughton et al. 2000; Wang

et al. 2009; Johnson et al. 2010; Savage et al. 2010; Sunny

et al. 2014a) leading to high levels of genetic structure

(Funk and Dunlap 1999; Tallmon et al. 2000). The bio-

logical and life history features that characterize amphib-

ians in general, like the fine genetic structure over very

short distances (Savage et al. 2010; Sunny et al. 2014a, b)

resulting from female philopatry (Savage et al. 2010; Wang

and Summers 2010; Pauly et al. 2012) and low dispersal

ability (Trenham and Shaffer 2005; Gamble et al.

2006, 2007; Searcy and Shaffer 2008; Summitt 2009;

Savage et al. 2010; Sunny et al. 2014a; Percino-Daniel

et al. 2016), favor the genetic structure observed. In fact, A.

rivulare is a species which, even after metamorphosis,

consistently remains in the same river (Shaffer et al. 2008).

Genetic variability

Two loci (At 52.10 and At 52.115) showed significant

deviation from HWE because of a heterozygote deficiency.

These deviations are common in threatened species with

fragmented and isolated populations (Degne et al. 2007;

Spear and Storfer 2010; Parra-Olea et al. 2012; Sunny et al.

2014a, 2015; Percino-Daniel et al. 2016). Analyses showed

low levels of inbreeding and no presence of null alleles. It

is also unlikely that a Wahlund effect is acting, since the

two subpopulations were analyzed separately. So, the

observed deviation from HWE could be the result of

Table 2 A. rivulare measures

of genetic differentiation for the

populations and for each locus

Locus FIS FIT FST GST_est G0ST_est DST D Dest

At 52.2 -0.586 -0.524 0.039 0.033 0.084 1.032 0.062 0.053

At 52.10 -0.402 -0.064 0.241 0.229 1.000 2.000 1.000 1.000

At 52.143 -0.354 -0.164 0.140 0.134 0.593 1.370 0.540 0.530

At 60.3 -0.314 -0.310 0.003 -0.003 -0.015 1.006 0.011 -0.012

At 52.115 -0.199 -0.191 0.007 0.002 0.009 1.014 0.028 0.007

At 52.6 -0.209 -0.209 0.000 -0.006 -0.017 1.000 0 -0.011

At 52.34 -0.500 -0.181 0.212 0.202 0.919 1.820 0.901 0.899

At 52.20 -0.216 -0.200 0.013 0.005 0.031 1.028 0.054 0.026

At 52.1 -0.431 -0.387 0.031 0.018 0.092 1.051 0.097 0.074

Mean -0.360 -0.248 0.076 0.068 0.300 1.258 0.299 0.285

FIS, FST and FIT—fixation indices estimated according to Weir and Cockerham (1984), GST_est—nearly

unbiased estimator of relative differentiation (Nei et al. 1983), G0ST_est—standardized measure of genetic

differentiation (Hedrick 2005), DST—between-subpopulation component of diversity or the effective

number of distinct subpopulations, D—actual differentiation and Dest—estimator of actual differentiation

(Jost 2008)

Fig. 3 Mean within-populations pairwise relatedness coefficient rqg
across the Ambystoma populations studied. The black bars are 95 %

upper and lower expected values for a null distribution generated

from 999 permutations of data from all populations, and enclose the

values expected if breeding were panmictic across the populations;

relatedness in the two populations fell outside of the range expected

under panmixia. Blue bars represent the observed mean relatedness in

each population or species, with the upper and lower bootstrap value

for each population

694 Genetica (2016) 144:689–698

123



genetic drift (Hedrick 2005). Genetic drift is considered to

be the main cause of long-term loss of genetic variation and

it leads to an increased chance of inbreeding, the foremost

genetic factor threatening short-term survival of popula-

tions (Frankham et al. 2005; Vega et al. 2007; Sunny et al.

2014b).

The genetic variability found in this study was slightly

higher than the figure reported for A. rivulare from the

SRMB (Parra-Olea et al. 2012). This may be due to the

constant anthropogenic pressures occurring in the SRMB

(Vidal et al. 2014), where there are high rates of logging,

agriculture, livestock production, fires, and ecotourism

activities, despite its status as a natural reserve (WWF

2004; Champo-Jiménez et al. 2012). Over the course of

four months, 87,337 people, from Mexico and around the

world, visited the SRMB (Vidal et al. 2014). In the NTV,

local people are leading the movement for implementation

of improved conservation strategies for the forest and also

for A. rivulare populations. This site is used for ecotourism

activities, which benefit the local people, so by conserving

the forest and the Ambystomas they ensure continuation of

their income.

Despite the presence of anthropogenic pressures, and

contrary to our expectations, the Ho values obtained for

these populations were higher than those found for most of

the other mole salamander species in Mexico (Parra-Olea

et al. 2012; Percino-Daniel et al. 2016) and were similar to

values observed in species that have been demographically

stable (Goprenko et al. 2007; Dlugosh and Parker 2008;

Greenwald et al. 2009; Purrenhage et al. 2009; Wang et al.

2009). However, the average number of alleles in these

populations was very low. This is important to note

because the genetic diversity of this species could be

starting to decline due to habitat fragmentation, anthro-

pogenic activities, and isolation (Noël and Lapointe 2010).

Unfortunately, it is also very likely that the amount of

logging and other human land use will increase in the near

future because the government has recently changed the

protection status of the NTV (DOF 2013; Mastretta-Yanes

et al. 2014).

Gene flow, effective population size, inbreeding

and bottlenecks

We found little evidence of gene flow, just one migrant per

generation from SUBP1 to SUBP2. This is a common trend

in mole salamander populations, especially in high moun-

tain populations (Savage et al. 2010; Parra-Olea et al. 2012;

Sunny et al. 2014a). This trend is likely the result of

intrinsic biological characteristics of the species such as its

limited dispersive capacity and highly philopatric tenden-

cies (Savage et al. 2010). Some studies concluded that a

minimum of one migrant per generation is sufficient to

avoid the effects of consanguinity, but in small and fluc-

tuating populations, 3–10 migrants per generation are

necessary to prevent inbreeding (Vucetich and Waite

2000). Given the levels of gene flow observed, these sub-

populations could be in process of inbreeding. Low gene

flow and the onset of inbreeding could contribute to the low

number of alleles found in the subpopulations and the low

values of Ne obtained. Other factors such as bottlenecks,

genetic isolation, asymmetry in the proportions of males

and females, and differences in reproductive success

between individuals may also be involved in generating

low Ne values (Tennessen and Zamudio 2003; Myers and

Zamudio 2004; Semlitsch 2008; Wang 2009).

Mole salamanders typically have low Ne values (Spear

et al. 2006; Wang 2009; Savage et al. 2010; Parra-Olea

et al. 2012, Sunny et al. 2014a; Percino-Daniel et al. 2016)

resulting from high asymmetry in reproductive success

among the members of a population (Savage et al. 2010). If

only a few individuals successfully breed each year, the

variance in mating success may contribute strongly to low

overall effective population sizes (Savage et al. 2010). We

found low to moderate levels of inbreeding, possibly

because we collected most of the individuals between

March and August, when largely gilled larva and eggs are

found (Sunny et al. 2014b; Monroy-Vilchis et al. 2015;

Lemos-Espinal et al. 2016). The rqg values observed in this

study fell above the 95 % intervals for the expected values,

which indicates that inbreeding or genetic drift are

increasing the relatedness. The rqg values found in the two

subpopulations fell outside of the range expected under

panmixia,, another possible explanation for the low Ne

found. The inbreeding values of SUBP2 are very similar

that those found in the A. rivulare population in the SRMB

(Parra-Olea et al. 2012). Given the population history,

lineage effects, and the environmental conditions encoun-

tered by the populations in this study, the amount of

inbreeding is surprisingly low (Keller and Waller 2002;

Parra-Olea et al. 2012).

Finally, we did not find evidence for a recent genetic

bottleneck, perhaps indicating that the conservation plans

currently being implemented by the local people are

effective. However, we found signatures of ancestral

genetic bottlenecks, possibly associated with a founder

effect suffered when theses populations were separated

from a larger ancestral population.

Conservation implications

All of the Ambystoma species of the TMVB (including A.

rivulare, A. altamirani, A. leorae, A. mexicanum, A.

granulosum, A. andersoni, A. velasci and A. lermaense) are

threatened by habitat loss, fragmentation, and contamina-

tion of rivers and lakes. Amphibians are extremely

Genetica (2016) 144:689–698 695

123



sensitive to local habitat changes (Castellano and Valone

2006; Ribeiro et al. 2009), more so than other vertebrate

taxa (White et al. 1997; Ribeiro et al. 2009), because of

their low dispersal capacities and small home ranges (Huey

1982). Therefore, to maintain populations of A. rivulare, it

is necessary to implement informed conservation strategies

to preserve the highly endangered habitat of this species.

The NTV is a high mountain region of the TMVB, the most

disturbed region in Mexico, with only 1346.9 km2 (1.1 %)

of Abies forest and 6507.7 km2 (5.4 %) of Pinus forest

remaining (Sunny et al. 2015). Most of the streams are

contaminated and overexploited, a condition which has put

most of the Ambystoma species in Mexico in a threatened

situation. This study shows that the current conservation

efforts being enacted by the local people are working, but,

in order to improve protection of this species, it is neces-

sary to communicate information to the local people. The

genetic structure information from this study can be used as

a basis for future research and conservation planning for

the Ambystoma Genus. Furthermore, A. rivulare may be

used as a proxy for other amphibian species in the region.
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rivulare (Taylor, 1940) from México using leukocyte profiles.

Herpetol Conserv Biol 10(2):592–601

Beebee TJ, Griffiths RA (2005) The amphibian decline crisis: a

watershed for conservation biology?Biol Conserv 125(3):271–285

Beerli P (2008) Migrate version 3.0: a maximum likelihood and

Bayesian estimator of gene flow using the coalescent. http://

popgen.sc.fsu.edu/Migrate/Migrate-n. Accessed 13 Nov 2014

Beerli P (2009) How to use migrate or why are Markov chain Monte

Carlo programs difficult to use? In: Bertorelle G, Bruford MW,

Hauffe HC, Rizzoli A, Vernesi C (eds) Population genetics for

animal conservation: volume 17 of conservation biology.

Cambridge University Press, Cambridge, pp 42–79

Beerli P (2012) Migrate documentation. http://popgen.sc.fsu.edu/

migratedoc.pdf. Accessed 17 Aug 2015

Bradshaw CJA, Brook BW, Whiteman NK (2010) The conservation

biologist’s toolbox—principles for the design and analysis of

conservation studies. In: Sodhi NJ, Ehrlich PR (eds)

Conservation biology for all. Oxford University Press, Great

Britain, pp 330–333

Bryson RW, Linkem CW, Dorcas ME, Lathrop A, Jones JM,

Alvarado-Dı́az J, Grünwald CI, Murphy RW (2014) Multilocus

species delimitation in the Crotalus triseriatus species group

(Serpentes: Viperidae: Crotalinae) with the description of two

new species. Zootaxa 3:475–496

Candeau DR, Franco MS (2007) Dinámica y condiciones de vida de

la población del Parque Naciona Nevado de Toluca (PNNT) en

la generación de presión a los sistemas circundantes. Investig

Geogr 62:44–68

Casas-Andreu G, Cruz-Aviña R, Aguilar-Miguel X (2004) Un regalo
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Genetica (2016) 144:689–698 697

123

http://faostat.fao.org/
http://www.iucnredlist.org
http://www.iucnredlist.org


Herrera-Haro J (2016) Genetic variability and structure of jaguar

(Panthera onca) in Mexican zoos. Genetica 144:59–69

Sarukhán J, Koleff P, Carabias J, Soberon J, Dirzo R (2009) Capital
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