UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

INSTITUTO INTERAMERICANO DE TECNOLOGÍA Y CIENCIAS DEL AGUA

"REMOCIÓN DE DICLOFENACO Y PARACETAMOL POR PROCESOS DE OXIDACIÓN AVANZADA"

TESIS
QUE PARA OBTENER EL TÍTULO DE DOCTORA EN CIENCIAS DEL AGUA

PRESENTA:
M. en C.A. MONSERRAT CASTAÑEDA JUÁREZ

DIRECTORA DE TESIS: DRA. IVONNE LINARES HERNÁNDEZ
CO-DIRECTORA: DRA. VERÓNICA MARTÍNEZ MIRANDA
TUTORA: DRA. PERLA TATIANA ALMAZÁN SÁNCHEZ

TOLUCA, ESTADO DE MÉXICO FEBRERO DE 2020
El presente trabajo de investigación fue desarrollado en el Laboratorio de Calidad del Agua del Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA) mediante el proyecto UAEMex 4482/2018/CI “Degradación de diclofenaco y paracetamol en sistemas continuos mediante procesos de oxidación avanzada: fotocatálisis, foto galvano-Fenton y foto-electrolisis. La beca CONACyT 622426 y el apoyo COMECyT 18EA0775.
AGRADECIMIENTOS

A los integrantes del comité de evaluación, por su colaboración en la revisión de este documento y por sus valiosas y acertadas sugerencias.

Al CONACyT por las becas otorgadas para los estudios de posgrado.

No te molestes en ser mejor que tus contemporáneos,

intenta ser mejor que tú mismo

Faulkner
ÍNDICE

AGRADECIMIENTOS ... III
GLOSARIO ... VIII
RESUMEN ... 1
ABSTRACT ... 3
INTRODUCCIÓN .. 5
1. ANTECEDENTES ... 7
 1.1 Procesos fotoquímicos ... 10
 1.1.2 Fotocatálisis heterogénea .. 11
 1.1.3 Óxidos de titanio ... 14
 1.2 Tratamientos galvánicos ... 19
 1.3 Electrooxidación ... 21
 1.3.1 Oxidación directa ... 22
 1.3.2 Oxidación indirecta .. 22
 1.3.3 Electrodos de DDB ... 24
2. JUSTIFICACIÓN CIENTÍFICA Y CONTEXTUAL ... 25
3. HIPÓTESIS .. 26
4. OBJETIVOS ... 26
 4.1 General ... 26
 4.2 Particulares ... 26
5. METODOLOGÍA ... 28
 5.1 Diagrama de bloques de la metodología general ... 28
 5.2 Proceso de fotocatálisis heterogénea ... 29
5.2.1 Modificación foto-electroquímica de TiO\textsubscript{2} con iones Cu2+ y/o Fe3+ 29

5.2.2 Punto de carga cero (pzc) .. 31

5.3 Pruebas de contacto con zeolita clinoptilolita ... 31

5.4 Proceso de fotocatálisis heterogénea (batch) ... 32

5.5 Proceso galvano-Fenton .. 33

5.5 Proceso de electrooxidación/foto-electrooxidación ... 35

5.5.1 Paracetamol ... 35

5.5.2 Diclofenaco ... 37

6. RESULTADOS .. 39

6.1 Artículo publicado ... 39

6.2 Artículo aceptado .. 41

6.3 Artículo enviado .. 43

6.4 Artículo enviado .. 45

6.5 Discusión general ... 47

6.5.1 Proceso de fotocatálisis para la remoción de DCF ... 47

6.5.2 Proceso de electrooxidación para la remoción de ACT .. 49

6.5.3 Proceso de electrooxidación para la remoción de DCF .. 51

6.5.4 Proceso de galvano-Fenton y galvano-Fenton solar para la remoción de ACT 51

7.- CONCLUSIONES ... 53

8.- RECOMENDACIONES .. 54

9.- PRODUCTOS ACADÉMICOS .. 55

10.- REFERENCIAS .. 70

LISTA DE FIGURAS
Figura 1. Estructuras químicas de diclofenaco y paracetamol .. 8

Figura 2. Representación esquemática de la brecha energética (band gap) (elaboración propia).. 12

Figura 3. Reacciones redox sobre la superficie de TiO₂ (Ramesh et al., 2016) 13

Figura 4: Proceso de oxidación de compuestos orgánicos propuesto por Comninellis (1994). .. 23

Figura 5. Esquema general de la metodología, a) fotocatálisis, b) Galvano-Fenton y Galvano-Fenton solar, c) Electrooxidación/foto-electrooxidación .. 29

Figura 6. Modificación electroquímica de TiO₂ ... 30

Figura 7. Reactor cilíndrico para fotocatálisis ... 33

Figura 8: Cinéticas de tratamiento de paracetamol bajo diferentes condiciones de operación empleando el diseño factorial 2³ [AL: ausencia de luz UV, PL: presencia de luz UV]. 49

LISTA DE TABLAS

Tabla 1. Tecnologías aplicadas para el tratamiento de paracetamol 9

Tabla 2. Tecnologías aplicadas para el tratamiento de diclofenaco 10

Tabla 3. Clasificación de los POA de acuerdo a su rango de longitud de onda de activación (3). ... 11

Tabla 4: Brecha energética para TiO₂ dopado con diferentes metales de transición (61). 15

Tabla 5. Métodos de dopaje de TiO₂ .. 16

Tabla 6: Métodos para soportar TiO₂ sobre sustratos inertes (76). 18

Tabla 7. Inmovilización de TiO₂ ... 19

Tabla 8. Potenciales estándar de reducción a 25°C de algunos metales (82). 20

Tabla 9. Matriz de diseño. Diseño factorial 2³ .. 30

Tabla 10. Combinaciones de tratamientos para el diseño factorial 2³ 31
Tabla 11. Normas mexicanas o métodos establecidos para cuantificar las variables de respuesta. .. 32

Tabla 12: Diseño cribado para el tratamiento de paracetamol mediante Statgraphics Centurion ... 34

Tabla 13. Factores y niveles asociados al diseño 2^3 (Modificado de: Montgomery, 2004). 37

Tabla 14. Matriz de diseño (Modificado de: Montgomery, 2004) ... 37

Tabla 15: Contenido de metal y Pcz de los materiales modificados ... 47

Tabla 16: Diseño factorial del tratamiento de electrooxidación ... 49

ABREVIATURAS Y SÍMBOLOS
ACT: Paracetamol / Acetaminofén

BDD: Boron Doped Diamond

CIT: Carbón Inorgánico Total

COT: Carbón Orgánico Total

DBOs: Demanda Bioquímica de Oxígeno

DCF: Diclofenaco

DDB: Diamante Dopado con Boro

DQO: Demanda Química de Oxígeno

FCPC: Fármacos y Productos de Cuidado Personal

GF: Galvano-Fenton

HPLC: Cromatografía de Líquidos de Alta Presión

POA: Procesos de Oxidación Avanzada

PTAR: Planta de Tratamiento de Aguas Residuales

SGF: Solar galvano-Fenton

TiO₂: Óxidos de Titanio

TOC: Total Organic Carbon

GLOSARIO

Banda de conducción:
Es la banda disponible que se encuentra por encima de la banda de valencia, permite la inserción de electrones excitados eléctrica o termodinámicamente.

Banda de valencia:

Es la banda de energía más externa ocupada por un electrón cuando el sólido semiconductor se encuentra en su estado fundamental.

Brecha energética:

Diferencia de energía entre la parte superior de la banda de valencia y la parte inferior de la banda de conducción.

Catalizador:

Compuesto o material que modifica la velocidad de una reacción, pueden o no sufrir modificaciones durante la reacción.

Celda electrolítica

Celda electroquímica no espontánea; para que ocurra una reacción es necesario aplicar una diferencia de potencial eléctrico del exterior del sistema.

Celda galvánica

Celda electroquímica cuya reacción química es espontánea debido a la diferencia de potencial de los metales (ánodo y cátodo) generando energía eléctrica.

Compuesto emergente:

Moléculas orgánicas naturales o sintéticas de tamaño medio con grupos funcionales diversos, incluye a los fármacos y productos de cuidado personal, plaguicidas, aditivos de gasolina, surfactantes. Ocasionan efectos negativos al medio ambiente a bajas concentraciones.

Dopaje:

Proceso por medio del cual se agregan impurezas en un semiconductor puro con el fin de cambiar sus propiedades eléctricas.

Fármaco:

Compuesto orgánico diseñado para generar un efecto biológico en bajas concentraciones.
Fotocatálisis:

Proceso de aceleración de una reacción en presencia de un catalizador y radiación.

Índice de biodegradabilidad (r):

Es la relación entre la capacidad química y biológica de degradación de materia orgánica presente en agua r = DBOs/DQO

Si r > 0.3 la materia orgánica es biodegradable

Si r < 0.3 la materia orgánica es no biodegradable

pKa:

Es la fuerza que tienen las moléculas al disociarse, logaritmo negativo de la constante de disociación ácida de un ácido débil. Un ácido es más fuerte a mayor pKa, una base es más fuerte a menor pKa.

Si pH < pKa, hay mayor porcentaje de ácido que no se disocia.

Si pH > pKa, hay mayor proporción de la base conjugada, el ácido se disocia en mayor proporción.

Si pH = pKa, hay una relación 1:1 entre el ácido y su base conjugada.

Semiconductor:

Materiales con propiedades eléctricas intermedias entre un conductor metálico y un aislante. Su comportamiento depende del campo eléctrico o magnético, presión, temperatura o radiación incidente.
RESUMEN

Los fármacos son compuestos orgánicos diseñados para generar un efecto biológico en bajas concentraciones, de acuerdo con sus propiedades químicas, son polares y altamente solubles por lo que los sistemas de tratamiento convencionales han resultado poco eficientes para su remoción del agua; por ello han sido encontrados en efluentes finales de plantas de tratamiento, lixiviados, sedimentos, suelos, lagos, ríos y en agua subterránea. Estos compuestos y sus subproductos no están normados ni en aguas residuales ni en agua potable. Dentro de los fármacos más utilizados a nivel mundial se encuentran el paracetamol (ACT) y el diclofenaco (DCF). El paracetamol es un antipirético con un valor de pKa de 9.5, mientras que el diclofenaco es un antiinflamatorio con valor de pKa de 3.8.

En el presente trabajo de investigación se ha llevado a cabo la modificación electroquímica y fotoelectroquímica de TiO$_2$ mediante un diseño factorial 2^3 en donde las variables que se analizaron fueron: presencia o ausencia de luz UV, tiempo de tratamiento e intensidad de corriente. De acuerdo con los resultados, se obtuvieron 24 materiales modificados los cuales se caracterizaron mediante IR y absorción atómica, dichos materiales se probaron con soluciones acuosas de diclofenaco (DCF) a diferentes concentraciones iniciales (20, 40, 60, 80 y 100 mg/L) y bajo diferentes valores de pH (4, 5, 7 y 9) empleando un colector solar. Tras 8 h de contacto, se encontró que los materiales TiFeZ-7, TiCuZ.2 y TiFeCuZ-7 mostraron los mejores porcentajes remoción de diclofenaco (97%) para todas las concentraciones iniciales a pH de 4. Además se analizaron los ciclos de regeneración, donde se demostró que existe afinidad entre los materiales modificados de Cu y el ión amonio, el cual fue comprobado mediante los resultados de IR. Por otro lado, los materiales con Fe presentaron afinidad con las moléculas de DCF para formar complejos, disminuyendo la eficiencia para los ciclos posteriores.

Se aplicaron los procesos Galvano-Fenton (GF) y Galvano-Fenton Solar (SGF), para el tratamiento de soluciones acuosas de ACT, aplicando un diseño cribado (DSD) desarrollado en el programa Statgraphics Centurion XVI.II, las variables analizadas fueron: pH (3 y 5), concentración inicial de ACT (25 y 60 mg / L), presencia o ausencia de radiación solar y dosis de H$_2$O$_2$ (0.9 y 2.5 mM). Para el sistema GF, las eficiencias máximas de remoción fueron
64.47% de COT y 49.83% de ACT, el proceso de SGF disminuyó un 79.38% de COT y 100% de ACT. Las condiciones de operación óptimas en ambos sistemas fueron a ACT de 60 mg/L, 2.5 mM de H₂O₂ y pH 5.

En la electrooxidación de ACT utilizado los sistemas DDB-Cu y DDB-Fe, las condiciones de operación óptimas fueron determinadas con base en los resultados obtenidos por UV-Vis: 1.0 A, configuración electródica DDB-Fe y presencia de luz UV, se obtuvo una degradación total (100 %) en tiempos de reacción entre 5-15 minutos a diferentes concentraciones de ACT. La oxidación anódica con DDB fue eficiente para su degradación, siendo más rápida y eficiente en presencia de luz UV (de 2.67 x 10^{-2} a 3.66 x 10^{-2} min^{-1}). Además, la mineralización del paracetamol aumentó al incrementar la concentración inicial.

Se mineralizó 98% de DCF aplicando 0.5 A, luz UV y Na₂SO₄ como electrolito soporte. Mientras que a 1.0 A, sin luz UV y NaCl, el porcentaje de mineralización fue de 97.8%.
ABSTRACT

Pharmaceuticals are organic compounds designed to generate a biological effect at low concentrations, according to their chemical properties, they are polar and highly soluble, so conventional treatment systems have proved inefficient for biorefractory compounds. Therefore, they have been found in final effluents from treatment plants, leachates, sediments, soils, lakes, rivers and in groundwater. These compounds and their by-products are not regulated in wastewater or drinking water. Among the most widely used pharmaceuticals worldwide are acetaminophen (ACT) and diclofenac (DCF). ACT is an antipyretic with a pKa value of 9.5, while diclofenac is an anti-inflammatory with a pKa value of 3.8.

In the present work, the electrochemical and photoelectrochemical modification of TiO\textsubscript{2} has been carried out using a factorial design 2^3, the variables analyzed were: presence or absence of UV light, treatment time and current intensity. According to the results, 24 modified materials were obtained which were characterized by IR and atomic absorption, these materials were tested with aqueous solutions of DCF at different initial concentrations (20, 40, 60, 80 and 100 mg/L) and under different pH values (4, 5, 7 and 9) using a solar collector. After 8 h of contact, it was found that the TiFeZ-7, TiCuZ.2 and TiFeCuZ-7 materials showed the best DCF removal percentages (97%) for all initial concentrations at pH of 4. In addition, the regeneration cycles were analyzed, the results shown the affinity between the modified Cu and the ammonium ion, which was proved by the IR results. On the other hand, the materials with Fe presented affinity with the DCF molecules to form complexes, decreasing the efficiency for subsequent cycles.

The Galvano-Fenton (GF) and Solar Galvano -Fenton (SGF) processes were applied for the treatment of ACT aqueous solutions, applying a screened design (DSD) developed in the Statgraphics Centurion XVI.II program, the variables analyzed were: pH (3 and 5), initial concentration of ACT (25 and 60 mg/L), presence or absence of solar radiation and H\textsubscript{2}O\textsubscript{2} dose (0.9 and 2.5 mM). For the GF system, the maximum removal efficiencies were 64.47% of TOC and 49.83% of ACT, the SGF process removed 79.38% of TOC and 100% of ACT. The optimal operating conditions in both systems were at 60 mg/L, 2.5 mM H\textsubscript{2}O\textsubscript{2} and pH 5.
In the electrooxidation treatment were used BDD-Cu and BDD-Fe systems, the optimal operating conditions were determined based on the results obtained by UV-Vis: 1.0 A, BDD-Fe electrode configuration and presence of UV light, it was obtained a complete degradation (100%) in reaction times between 5-15 minutes at different ACT concentrations. Anodic oxidation with BDD was efficient for degradation, being faster and more efficient in the presence of UV light (from 2.67×10^{-2} to 3.66×10^{-2} min$^{-1}$). In addition, ACT mineralization increased with increasing initial concentration.

In the electrooxidation of DCF, 98% was mineralized by applying 0.5 A, UV light and Na$_2$SO$_4$ as support electrolyte. While at 1.0 A, without UV and NaCl light the percentage of mineralization was 97.8%.
"Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada"

INTRODUCCIÓN

Los compuestos emergentes son moléculas orgánicas de origen sintético que poseen una amplia estabilidad química debido a que están conformadas en su mayoría por grupos aromáticos seguido de diversos grupos funcionales. Dentro de este tipo de compuestos se incluyen los plaguicidas, colorantes, aditivos de gasolina, fármacos y productos de cuidado personal (FPCP), hormonas, antisépticos, etc. Anualmente se producen más de 20,000,000 toneladas de FPCP y se consumen entre 100,000 - 200,000 toneladas de fármacos alrededor del mundo. La clasificación general de los fármacos incluye a los antinflamatorios, analgésicos, antibióticos, antiepilépticos y estrógenos; este tipo de compuestos son altamente solubles por lo que su presencia en sistemas acuáticos es evidente y de gran preocupación ya que presentan una amenaza potencial a la vida acuática, a la salud humana y al medio ambiente en concentraciones menores a ng/L, porque son bioacumulables, tóxicos y persistentes. Estos compuestos y sus productos de oxidación no están normados ni en aguas residuales ni en agua potable, por lo tanto, su descarga no es monitoreada.

Los compuestos emergentes presentan una baja biodegradabilidad en sistemas de tratamiento convencionales que incluyen procesos como coagulación, floculación, sedimentación, y filtración; por ende, permanecen disueltos en fase acuosa. Se han detectado en efluentes finales de plantas de tratamiento, sedimentos, lixiviados de rellenos sanitarios, suelos, lagos, ríos y en agua subterránea.

Bajo este contexto, el paracetamol es un analgésico y antipirético disponible en diferentes presentaciones: tabletas, cápsulas, gotas y supositorios, tiene una vida media superior a 20 años, su remoción máxima en las Plantas de Tratamiento de Aguas Residuales (PTAR) es del 26%, tiene una solubilidad en agua de 50 mg/mL y pKa de 9.5. El diclofenaco es un antiinflamatorio no esteroide utilizado como analgésico, anti-artrítico y antirreumático disponible como gel o tabletas, es removido del 21 al 40% por procesos convencionales, tiene una solubilidad de 50 mg/mL y pKa es de 3.8.

Debido a que los sistemas de tratamiento convencionales han resultado poco eficientes para la remoción de estos compuestos, se han propuesto algunas tecnologías químicas, aunque la mayoría de estas generan subproductos tóxicos que requieren procesos de tratamiento
"Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada"

adicionales que incrementan los costos de tratamiento. Los Procesos de Oxidación Avanzada (POA) son utilizados cuando los compuestos orgánicos son recalcitrantes, e incluyen gran variedad de tratamientos químicos, fotoquímicos y electroquímicos que generan agentes súper oxidantes o radicales hidroxilo (HO•; E° = 2.8 V).

De acuerdo con lo previamente expuesto, el objetivo de este trabajo de investigación fue llevar a cabo la degradación de diclofenaco y paracetamol implementando diversos POA. Se aplicó un proceso de fotocatálisis heterogénea con catalizadores de TiO₂ modificados con Fe y/o Cu, utilizando como fuente de activación a la radiación solar para la remoción de diclofenaco, los materiales fueron caracterizados antes y después del tratamiento. Mediante un proceso galvánico fue promovida la reacción de Fenton debido a la diferencia de potencial entre los electrodos de Fe y Cu, dicho proceso se realizó en flujo continuo en presencia y ausencia de luz solar, para llevar a cabo la oxidación de paracetamol. Finalmente fueron aplicados dos sistemas de electrooxidación de tipo batch, el sistema DDB-DDB se aplicó en la remoción de diclofenaco y los sistemas DDB-Cu y DDB-Fe en la remoción de paracetamol, ambas configuraciones se evaluaron en presencia y ausencia de luz UV.

En el capítulo 1 se abordan las propiedades químicas de ambos fármacos, la problemática ambiental y a la salud humana que representan, así como el estado del arte acerca de los POA que han sido aplicados en cada caso. En el capítulo 2 se describen los pasos que se realizaron para cada uno de los sistemas de tratamiento, los métodos y tecnologías desarrollados; en general, las variables que se deben considerar para seleccionar un POA son la dosis del oxidante y/o catalizador, la concentración inicial del contaminante, el pH y la temperatura. Fueron aplicados diversos métodos estadísticos para evaluar la sinergia de las variables estudiadas como el diseño factorial y el diseño cribado. En el capítulo 3, los resultados obtenidos muestran que los métodos desarrollados en este estudio permiten la mineralización de diclofenaco y paracetamol utilizando energías renovables y evitando la generación de subproductos tóxicos que requieran tratamientos adicionales para su disposición. Además, se determinó el mecanismo para la remoción de diclofenaco y paracetamol en cada POA. Y en el capítulo 4, se explican las conclusiones más importantes del trabajo.
1. ANTECEDENTES

Los compuestos emergentes son moléculas orgánicas complejas naturales o sintéticas de tamaño medio con grupos funcionales diversos que pueden ser ácidos o básicos; se incluyen a los plaguicidas, Fármacos y Productos de Cuidado Personal (FPCP), colorantes, aditivos de gasolina, entre otros. Los fármacos son compuestos químicamente diferentes con un mecanismo de acción específico diseñados para generar efectos biológicos en bajas concentraciones (1,2). Anualmente se producen más de 20,000,000 toneladas de FPCP y se consumen entre 100,000 - 200,000 toneladas de fármacos alrededor del mundo (3); dentro de los que se incluyen a los antinflamatorios, analgésicos, antibióticos, antiepilépticos y estrógenos. El alto consumo de este tipo de compuestos ha provocado la contaminación química del medio ambiente debido a la descarga de efluentes agrícolas, municipales e industriales.

Los FPCP tienen una baja biodegradabilidad en sistemas de tratamiento convencionales que incluyen procesos como coagulación, floculación, sedimentación, y filtración; además pueden afectar a las bacterias de los sistemas de tratamiento biológico alterando la degradación de la materia orgánica (3); porque son polares y solubles, por tanto, no forman partículas y sedimentos, sino que permanecen disueltos en fase acuosa (hidrofilicos) (4) y pasan a través de los sistemas de tratamiento o pueden ser retenidos en los lodos; por esta razón, han sido detectados en efluentes finales, sedimentos, así como en lixiviados de rellenos sanitarios, suelos, lagos, ríos y en agua subterránea en concentraciones de µg/L y ng/L (5), siendo esta la principal ruta de entrada al medio ambiente, aunque su presencia también se debe al tratamiento inadecuado de los residuos de producción, a la disposición de los fármacos no utilizados, al uso de sólidos como abono (6) y a los residuos que se desechan sin ser metabolizados en el organismo (3).

Los FPCP presentan una amenaza potencial a la vida acuática, a la salud humana y al medio ambiente en concentraciones menores a ng/L, porque son bioacumulables (tejidos), ocasionan daño reproductivo, son tóxicos, persistentes, causan interferencias en el sistema endócrino imitando, inhibiendo o alterando la actividad de las hormonas, y contribuyen a la proliferación de agentes patógenos (2,5,7–12). Este tipo de compuestos y sus subproductos no están
normados ni en aguas residuales ni en agua potable, por lo tanto, su presencia en efluentes no es monitoreada.

Dentro de los fármacos más utilizados a nivel mundial se encuentran el paracetamol (ACT) y el diclofenaco (DCF). En la Figura 1, se muestra la estructura química de ambos compuestos.

![Estructuras químicas de diclofenaco y paracetamol](image)

Figura 1. Estructuras químicas de diclofenaco y paracetamol

El paracetamol (Acetaminofén / N-(4-hidroxifenil)acetamida) es un analgésico y antipirético disponible en diferentes presentaciones: tabletas, cápsulas, gotas y supositorios, además se utiliza como material para la producción de colorantes azoicos y productos químicos fotográficos (13); con una producción mundial aproximada de 100,000 toneladas (14). Ha sido encontrado en efluentes de PTAR en concentraciones de 4500-86800 ng/L (15,16), tiene una vida media superior a 20 años, solubilidad en agua de 50 mg/mL y pKa de 9.5.

El diclofenaco (ácido 2-(2,6-diclorofenil)amino[fenil]acético) es un antiinflamatorio no esteroide utilizado como analgésico, antiartrítico y antirreumático disponible como gel o tabletas, del cual un 15% es excretado después de su consumo sin presentar cambios (17); ha sido encontrado en efluentes de PTAR en concentraciones de 312-360 ng/L (15) y de acuerdo con Rosal et al (2010) sólo el 5% es removido mediante tratamientos biológicos (18), puede causar daños en peces y aves por la acumulación en tejidos (19), en humanos causa tumores en la tiroides y cambios hemodinámicos (20). La concentración de efecto no observado es de 1 µg/L. Debido a su solubilidad (50 mg/mL a 20°C) (21), el tratamiento de diclofenaco debe realizarse a pH>4, debido a que el valor del pKa es de 3.8 (22).

Además de los sistemas de tratamiento convencionales, existen otras tecnologías para el tratamiento de compuestos emergentes, como los terciarios y los procesos de oxidación avanzada (POA); los cuales se basan en la generación de agentes súper oxidantes y/o radicales
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

hidroxilo (HO•, E° = 2.8 V) mediante procedimientos químicos, electroquímicos, fotoquímicos o sono-químicos. La ventaja de estas tecnologías es que aumentan la biodegradabilidad de los compuestos presentes, son fáciles de automatizar y tienen alta eficiencia energética (23,24), (5,6,13,19,25–28). La selección de un POA depende de la concentración inicial del contaminante, pH, temperatura y de la dosis del oxidante y/o catalizador. Las Tablas 1 y 2 resumen algunas de estas investigaciones desarrolladas para el tratamiento de DCF y ACT mediante POAs.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Tecnología</th>
<th>Condiciones de operación</th>
<th>Porcentaje de remoción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quesada-Peñate et al. (2009) (29)</td>
<td>Ultrasonido</td>
<td>20 °C, 1134 kHz, 300 mL de solución, con concentraciones de 25, 50, 100 y 150 mg/L, 4 h de tratamiento</td>
<td>25 mg/L = 95% 50 mg/L = 82% 100 mg/L = 70% 150 mg/L = 56%</td>
</tr>
<tr>
<td>Jong-Kwon et al. (2014) (30)</td>
<td></td>
<td>28, 580 y 1000 kHz, con y sin carbón activado en polvo (1, 5, 10 y 15 mg/L), 15 °C</td>
<td>-----</td>
</tr>
<tr>
<td>Chía-Chi et al. (2013) (31)</td>
<td>Electro-Fenton</td>
<td>Reactor cilíndrico de 4 L, con electrodos de acero inoxidable, lámpara UV-A a 360 nm</td>
<td>97 % con 113 A/m², pH de 3 y 150 H₂O₂/Fe²⁺</td>
</tr>
<tr>
<td>De Luna et al. (2014) (32)</td>
<td>Electrofenton / Fenton</td>
<td>Temperatura ambiente, 2 h de tratamiento. Fe²⁺ = 0.087 mM, H₂O₂ = 16.3 mM, 38 A/m².</td>
<td>EF = 98% Fenton = 96%</td>
</tr>
<tr>
<td>Durán et al. (2011) (33)</td>
<td>Foto-Fenton</td>
<td>Lámpara UV-C y UV-A, TOC inicial 31.86 mg/L, temperatura hasta 40 °C, 10 mg/L H₂O₂, pH 2.5, Fe(II) = 2 mg/L, 120 min</td>
<td>83% DQO, 71% COT y 94% DBO₅</td>
</tr>
<tr>
<td>Jagannathan et al. (2013) (34)</td>
<td>Sonofotocatálisis con TiO₂</td>
<td>250 mL, λ< 320 nm, 25 °C, 1 mg/L de TiO₂ anatasa:rutilo (80:20), 2 h.</td>
<td>66%</td>
</tr>
<tr>
<td>Yang et al. (2008) (35)</td>
<td>Reactor cilíndrico, 150 mL de TiO₂ y paracetamol, flujo de 0.15 L/min, 26 °C, TiO₂ con diámetro de 21 nm, 80% anatasa, 20% rutilo</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Moctezuma et al. (2012) (36)</td>
<td>Fotocatálisis con TiO₂</td>
<td>2 g/L TiO₂, 250 mL de solución, O₂ = 100 mL/min, pH inicial 7.9</td>
<td>Conversión: 16% a 5 h con O₂ 96% a 5 h sin O₂ Mineralización: 59% sin O₂</td>
</tr>
<tr>
<td>Gotostos et al. (2014) (12)</td>
<td></td>
<td>500 mL (C=0.1, 0.3 y 0.5 mM), pH (5.6, 6, 6.5, 6.9 y 8.3), temperatura (30, 40 y 50 °C), catalizador K₃[Fe(CN)₆]oTiO₂ y TiO₂ (0.5, 0.75, 1, 1.5, 2 y 3 mg/L), tiempo = 9 h, luz azul λₘₐₓ = 450 nm, luz verde λₘₐₓ = 550 nm</td>
<td>Luz azul: K₃[Fe(CN)₆]/TiO₂ = 98% TiO₂ = 54% Luz verde: K₃[Fe(CN)₆]/TiO₂ = 64% TiO₂ = 28%</td>
</tr>
<tr>
<td>Dalmázio et al. (2008) (13)</td>
<td></td>
<td>100 mL de paracetamol (0.0001 mol/L), TiO₂ (0.1 g/L), lámpara monocromática (254 nm), 160 min</td>
<td>35% COT Conversión del 90%</td>
</tr>
</tbody>
</table>
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

Tabla 2. Tecnologías aplicadas para el tratamiento de diclofenaco

<table>
<thead>
<tr>
<th>Autor</th>
<th>Tecnología</th>
<th>Condiciones de operación</th>
<th>Porcentaje de remoción</th>
</tr>
</thead>
</table>
| Rizzo et al. (2009) | Fotocatálisis con TiO₂ | Temperatura ambiente, 100 mL de solución (15-80 mg/L), TiO₂ (0.2-1.6 g/L), sonicada por 3 min, lámpara UV (300-420 nm), fue monitoreado mediante UV-Vis. | 15 mg/L: 63% DQO (0.2 g/L TiO₂)
78% DQO (0.4 g/L TiO₂)
85% DQO (0.8 g/L TiO₂)
20 mg/L: 45% DQO (0.2 g/L TiO₂)
51% DQO (0.4 g/L TiO₂)
65% DQO (0.8 g/L TiO₂)
85% DQO (1.6 g/L TiO₂)
40 mg/L: 9% DQO (0.2 g/L TiO₂)
20% DQO (0.4 g/L TiO₂)
39% DQO (0.8 g/L TiO₂)
85% DQO (1.6 g/L TiO₂) |
| Calza et al. (2006) | Lámpara de Xenón (1500 W, >290 nm), temperatura de 20 °C, 15 mg/L de diclofenaco y 200 mg/L de TiO₂ | 55% | |
| Achilleos et al. (2010) | Ultrasonido: 20 kHz, tiempo de tratamiento: 15, 30, 45 y 60 min, temperatura: 20 °C
Ozono: generado in situ, tiempo de tratamiento: 5, 10, 20 y 40 min, flujo de 2.4 y 31 g/h US/O₃; tiempo de tratamiento: 5, 10, 20 y 40 min, flujo de 31 g/h | 5 mg/L = 99.5%
10 mg/L = 61%
20 mg/L = 46% | |
| Naddeo et al. (2009) | Sonólisis / Ozonización | C₀ = 5-20 mg/L, pH = 6, lámpara UV-A (350-400 nm, 9 W), temperatura de 23 °C, 60 min. | |
| Chong et al. (2017) | Sonocatálisis | C₀ = 20 mg/L, pH = 6, dosis de FeCeOₓ: 0.5 g/L, densidad ultrasonica = 3 W/cm², frecuencia ultrasonica = 20 kHz, T = 25°C, | 80% a 30 min |
| Finkbeiner et al. (2015) | Degradación sonoelectroquímica | Reactor con ultrasonido (850 kHz), electrodos de DDB (50 x 30 x 1.5 mm) Solución de 50 µL a pH de 5.8, 5 min de tratamiento | 38% con densidad de poder de 94.1 W/L
93% a 7.2 V y 1 cm de distancia de electrodos
75% a 7.2 V y 3 cm de distancia de electrodos
pH 4 = 96.8%
pH 9 = 85.1% |
| Chong et al. (2016) | Fenton heterogéneo | C₀ = 20 mg/L, pH = 5, dosis de FeCeOₓ de 0.5 g/L, H₂O₂ = 10 mmol/L, temperatura ambiente y agitación continua | CeO₂ = 22.98%
FeCeOₓ = 83% con Fe:Ce, 1:9 |

1.1 Procesos fotoquímicos

Los procesos fotoquímicos para el tratamiento de aguas utilizan radiación UV o UV/Vis para generar especies reactivas cuyo objetivo es degradar y/o transformar compuestos orgánicos en subproductos, que pueden ser más o menos estables y/o tóxicos (3). Presentan velocidades de
reacción mayores que las mismas tecnologías en ausencia de radiación, esto permite el ahorro de energía, reactivos y el uso de sistemas de reacción más compactos. La principal ventaja de este tipo de procesos es que pueden utilizar la radiación solar como fuente de energía lo que otorga a estos procesos un valor medioambiental, aunque dependen principalmente del pH, tipo de matriz, estación del año y latitud. La región fotoquímica activa del espectro electromagnético para este tipo de reacciones es la región ultravioleta (UV), que se divide en cinco zonas: Visible (780-400 nm), UV-A (400-315 nm), UV-B (315-280 nm), UV-C (280-200 nm) y UV de vacío (VUV) (200-100 nm). La energía de los fotones de la radiación UV es del orden de la energía de activación de muchas reacciones fotoquímicas, por lo que se usan longitudes de onda específicas para cada proceso, como lo muestra la Tabla 3.

<table>
<thead>
<tr>
<th>Longitud de onda (nm)</th>
<th>POA</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-200</td>
<td>H₂O / VUV</td>
</tr>
<tr>
<td>200-300</td>
<td>H₂O₂ / UV, O₃ / UV, Desinfección / UV</td>
</tr>
<tr>
<td>300-400</td>
<td>Foto-Fenton, TiO₂ / UV</td>
</tr>
<tr>
<td>400-500</td>
<td>Ferrioxalato</td>
</tr>
</tbody>
</table>

En el proceso de fotocatálisis se utilizan catalizadores para promover la formación de dichas especies oxidantes; existen 2 tipos de fotocatálisis: la homogénea y la heterogénea. En la homogénea, el catalizador se encuentra en la misma fase que el medio de reacción, mientras que en la heterogénea, se tienen por lo menos dos fases: el medio de reacción (líquido o gas) y el catalizador (sólido).

1.1.2 Fotocatálisis heterogénea

La fotocatálisis heterogénea consiste en la activación de un catalizador por acción de la luz UV para producir radicales hidroxilo (HO·); ha sido utilizada para el tratamiento de aguas residuales que contienen compuestos orgánicos xenobióticos como colorantes (41), plaguicidas (42–44) y fármacos (45–49). La principal ventaja es la posibilidad de incorporar la radiación solar (fotones) como fuente de activación y el bajo costo en comparación con otras tecnologías. Los catalizadores que se utilizan en este proceso deben poseer propiedades de semiconducción, como: TiO₂, ZnO, V₂O₅ y WO₃. Un material semiconductor posee una banda de valencia y una
banda de conducción, la banda de conducción permite el paso de corriente eléctrica por excitación de los electrones en presencia de un campo eléctrico externo.

Entre ambas bandas existe una brecha energética (band gap), que es la diferencia de energía entre la parte superior de la banda de valencia y la parte inferior de la banda de conducción, como lo muestra la Figura 2.

![Figura 2. Representación esquemática de la brecha energética (band gap) (elaboración propia)](image)

Cuando la radiación UV absorbida por el catalizador es mayor que la brecha energética, un electrón es promovido hacia la banda de conducción creando una pareja: con un electrón libre cargado negativamente (\(e_{cb}^-\)) y el hueco de dicho electrón, cargado positivamente (\(h_{vb}^+\)). El electrón y el hueco positivo (\(e_{cb}^-\) y \(h_{vb}^+\)) migran hacia la superficie del catalizador e inician las reacciones de oxidación y reducción, como se observa en la Figura 3 (50). Si el objetivo es oxidar compuestos orgánicos, las reacciones se llevan a cabo en \(h_{vb}^+\), y si se requiere eliminar metales pesados (Pt, Hg, U), se aprovecha la acción de los electrones (51).

Los compuestos orgánicos persistentes (COP) pueden ser oxidados directamente en \(h_{vb}^+\) (Ec. 1), o pueden reaccionan con moléculas de agua y \(\text{HO}^-\), generando \(\text{HO}^-'\) (Ec. 2 y 3) (36).

\[
\begin{align*}
 h_{vb}^+ + \text{COP} & \rightarrow \text{CO}^+ \\
 h_{vb}^+ + \text{H}_2\text{O} & \rightarrow \text{HO}^- + \text{H}^+ \\
 h_{vb}^+ + \text{HO}^- & \rightarrow \text{HO}^-
\end{align*}
\]

Ec. 1 Ec. 2 Ec. 3
Figura 3. Reacciones redox sobre la superficie de TiO₂ (Ramesh et al., 2016)

Si los huecos positivos no reaccionan, pueden recombinarse rápidamente (30 ns) liberando el exceso de energía como calor (recombinación no raditativa) o con emisión de fotones (recombinación raditativa) (Ec. 4) (12,35),(52).

\[e_{cb}^- + h_{vb}^+ \rightarrow TiO_2 \] \hspace{1cm} \text{Ec. 4}

Por otro lado, los electrones en la banda de conducción (\(e_{cb}^-\)) interactúan con el oxígeno molecular para formar el radical superóxido y peróxido de hidrógeno que a su vez generan radicales HO\(^-\) (Ec. 5 y 6):

\[e_{cb}^- + O_2 \rightarrow O_2^- \] \hspace{1cm} \text{Ec. 5}
\[O_2^- + H_2O_2 \rightarrow OH^- + HO^- + O_2 \] \hspace{1cm} \text{Ec. 6}

Los radicales que se forman en la superficie de los catalizadores son altamente reactivos y promueven la oxidación de compuestos orgánicos (53), los subproductos resultan ser estructuras menos complejas, agua, iones inorgánicos y CO\(_2\) (54).

En cualquier proceso fotocatalítico existen diferentes factores que afectan el proceso como: la dosis de catalizador, el pH, diseño del reactor, intensidad de la radiación, aireación, especies iónicas y la concentración inicial de los contaminantes (12,55).
1.1.3 Óxidos de titanio

Un catalizador es un compuesto o sustancia que modifica la velocidad de una reacción química, pueden encontrarse una gran variedad de estos, sin embargo, en las reacciones fotoquímicas se pueden utilizar: óxidos (TiO$_2$, ZnO, ZrO$_2$, CeO$_2$, Fe$_2$O$_3$, WO$_3$, SrTiO$_3$) o sulfuros (CdS, ZnS) (56). Para la selección adecuada de un catalizador heterogéneo, se debe tomar en cuenta: la resistencia a la fotocorrosión, la actividad catalítica y el pH de operación. Además, los principales factores que afectan el rendimiento de la fotocatálisis respecto al catalizador son: tamaño, área superficial, volumen de poro, estructura porosa, fase cristalina, área superficial expuesta (56,57).

El dióxido de titanio(IV) (TiO$_2$) es un semiconductor tipo n (3,4) que absorbe radiación electromagnética en la región UV (58), es químicamente estable, amigable con el ambiente, estable en todo el rango de pH, inerte, no tóxico, anfótero, con propiedades antibacterianas y de semiconducción, su principal ventaja es que los h_{vb}^+ generados tiene alto potencial de oxidación ($E^°=+2.53$ V) y que los e_{cb} ($E^°=−0.52$ V) forman radicales superóxido (59) Es utilizado en catálisis, fotocatálisis, celdas solares, sensores y generadores termoeléctricos ya que es fotoactivo, estable a la fotocorrosión y tiene un costo bajo.

Para la producción de TiO$_2$ se requiere como materia prima: ilmenita (43-61% de TiO$_2$ y 34-49% de óxido de hierro), rutilo (90-98 % de rutilo y Fe, Zr, V, Cr, Al, Si, Mg), rutilo sintético (se obtiene de la ilmenita), leucoxeno y anatasa natural (30-40% de TiO$_2$) (60). Dependiendo del proceso se pueden obtener 3 formas cristalinas de TiO$_2$: anatasa (octaédrica), rutilo (tetragonal) y brookita (ortorrómbica), sin embargo, la anatasa tiene mayor fotoactividad, y es utilizada a nivel industrial en pigmentos de pinturas, cosméticos y para preservar alimentos. La brecha energética para la anatasa es de 3.2 eV y 3.03 eV para rutilo (50). El TiO$_2$ de la marca Aldrich tiene un diámetro de partícula de 150-200 nm, diámetro de aglomerado de partículas de 300 nm y área superficial de partícula de 9.6 m2/g (60). La longitud de activación de TiO$_2$ es <387 nm, esta longitud de onda corresponde al 3% de la radiación solar (61). La activación induce la transición de electrones y genera el par electrón-hueco (62). La activación, formación del hueco positivo e interacción con el COP se muestran en las ecuaciones 7 a 11.

$$TiO_2 + hv \rightarrow e_{cb}^- + h_{vb}^+$$

Ec. 7
a) Captura del electrón foto generado.

\[Ti^{IV}OH + e_{cb}^- \rightarrow Ti^{III}OH \]

Ec. 8

\[Ti^{IV}OH + h_{vb}^+ \rightarrow (Ti^{IV} - HO^-) \]

Ec. 9

b) Atrapamiento interfacial de electrones y agujeros por especies adsorbidas.

\[Ti^{III}OH + O_2 \rightarrow Ti^{IV}OH + O_2^- \]

Ec. 10

\[(Ti^{IV}OH) + COP \rightarrow Ti^{IV}OH + COP^+ \]

Ec. 11

La recombinación del par electrón-hueco puede ser parcialmente suprimida en presencia de aceptores de electrones en la superficie del material (52), por esta razón algunos metales de transición (Zn, Ni, Mn, Co, Cu, Cr, Fe, Mb, V, Ge), no metales (N, C, S), óxidos metálicos (Na_2O, ZrO_2, Al_2O_3, CeO_2) (63), se han utilizado para dopar a los TiO_2, y modificando la recombinación del electrón-hueco y disminuyendo la band gap (61) para favorecer el uso de la radiación solar como fuente de activación (\(\lambda > 400 \text{ nm} \)), como lo muestra la Tabla 4.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Band gap (eV)</th>
<th>(\lambda) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>2.78</td>
<td>446</td>
</tr>
<tr>
<td>V</td>
<td>1.53</td>
<td>810</td>
</tr>
<tr>
<td>Cr</td>
<td>1.81/1.55</td>
<td>685/800</td>
</tr>
<tr>
<td>Mn</td>
<td><1.55</td>
<td>>800</td>
</tr>
<tr>
<td>Fe</td>
<td>1.52</td>
<td>816</td>
</tr>
<tr>
<td>Co</td>
<td>1.56</td>
<td>795</td>
</tr>
<tr>
<td>Ni</td>
<td>1.75</td>
<td>707</td>
</tr>
<tr>
<td>Cu</td>
<td>2.15</td>
<td>577</td>
</tr>
<tr>
<td>Zn</td>
<td>2.89</td>
<td>429</td>
</tr>
</tbody>
</table>

El dopaje se favorece en presencia de luz UV-Vis debido a que la carga negativa de los electrones libres atrae a los iones metálicos positivos y genera vacancias (huecos), evitando la recombinación del par electrón-hueco, aumentando la oxidación de los COP (62). Los dopantes catiónicos añaden niveles de impurezas (orbitales de tipo d) en la banda de conducción...
modificando su estructura electrónica, funcionan como captadores de electrones y desplazan el borde de absorción (Ec. 12 y 13) (64). Tanto el pH como el potencial influyen sobre la modificación de TiO$_2$ con cationes metálicos (52), sin que haya algún tipo de relación con la actividad foto catalítica del TiO$_2$ / metal (62).

\[M^{n+1} + e^{-}_{cb} \rightarrow M^{(n-1)+} \]
\[M^{n+1} + h^+_{cb} \rightarrow M^{(n+1)+} \]
(Ec. 12, Ec. 13)

De acuerdo con la Tabla 5, han sido desarrollados diversos métodos para llevar a cabo el proceso de dopaje como lo son: deposición química, electrodeposición, impregnación, entre otros, cada método cambia la estructura cristalina y la textura de los TiO$_2$.

<table>
<thead>
<tr>
<th>Autor</th>
<th>Método</th>
<th>Condiciones experimentales</th>
<th>Especie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al. (2013)</td>
<td>Electrodeposición</td>
<td>Anodización electroquímica con sistema de 3 electrodos: TiO$_2$ (trabajo), Ag/AgCl (referencia) y Pt (contraelectrodo), electrolito: 0.4 M CuSO$_4$ en 3 M de ácido láctico. pH = 11, 25 °C, potencial de -0.8V Vs Ag/AgCl. Se secaron a 50 °C por 24 h.</td>
<td>CuO</td>
</tr>
<tr>
<td>Simamora et al. (2012)</td>
<td>Impregnación</td>
<td>Cu(NO$_3$)$_2$; H$_2$O, 25 °C, 6 h de tratamiento y calcinado a 673 K por 2 h.</td>
<td>CuO</td>
</tr>
<tr>
<td>Korzhak et al. (2008)</td>
<td>Impregnación</td>
<td>Mezcla de CuCl$_2$ y TiO$_2$ (sintetizado por hidrólisis, transición sol-gel, y calcinación)</td>
<td>Cu0</td>
</tr>
<tr>
<td>Wu et al. (2009)</td>
<td>Impregnación</td>
<td>Cu(NO$_3$)$_2$; 3H$_2$O (Cu$^{2+}$ 0.1 g/mL), 4 g de TiO$_2$ agitados durante 15 min, la mezcla fue sometida a luz infrarroja (200 W), se secó y calcinada a 423, 532, 623 y 723 K por 2 h.</td>
<td>Cu$^+$</td>
</tr>
<tr>
<td>Chen et al. (2013)</td>
<td>Precipitación</td>
<td>CuNO$_3$ hemihidratado glicerol (1:2) y 10 g de TiO$_2$ se agregaron y agitaron. Se añadió NaOH 0.5 M hasta pH = 12. Se secó a 70 °C y después se calció a 300 °C por 2 h.</td>
<td>Cu$^{2+}$/CuO</td>
</tr>
<tr>
<td>Arun et al. (2016)</td>
<td>Sol-gel</td>
<td>Disolver isopropxido de titanio en etanol y mezclarlo con agua destilada con agitación. Después se agrega CuO agitando 2 h, posteriormente la solución es sonicada por 3 h y el precipitado que se forma es filtrados y lavado. Se seca a 100 °C por 5 h y se calcina a 400 °C.</td>
<td>CuO</td>
</tr>
<tr>
<td>Chen et al. (2012)</td>
<td>Fotoreducción</td>
<td>Mezcla de agua deionizada, ácido fórmico, CuCl$_2$ y una solución de TiO$_2$ con sonicación, el pH se ajusta a 6, y se utiliza una lámpara de Hg</td>
<td></td>
</tr>
<tr>
<td>Chiang (2002)</td>
<td>Reducción foto catalítica de iones Cu</td>
<td>CuNO$_3$ y formiato de sodio (que actúa como secuestrador de huecos). El TiO$_2$ es suspendido en agua y sonicado por 30 min para deshacer cualquier aglomerado. La fotoreducción se lleva a cabo a pH de 3.8, ajustando con HNO3. Se crea una atmósfera de nitrógeno para que las especies de Cu fotoreducidos no puedan ser oxidadas nuevamente, la temperatura de la solución se mantiene en 30 °C con baño de agua y se utiliza una lámpara UVA (λ${max}$< 385 nm)</td>
<td></td>
</tr>
</tbody>
</table>
Dentro de los metales más utilizados para llevar a cabo el dopaje de óxidos de titanio se encuentran el Fe y el Cu. El dopaje con iones de Cu ha sido utilizado para la remoción de cianuro (62), azul de metileno (72), la producción de hidrógeno (73), etc. Los iones de Cu modifican la estructura química y ocasionan que sea más abierta y flexible, además alargan el enlace Ti-O, disminuyen el número de coordinación alrededor de los iones Cu e inducen vacancias de oxígeno.

 Dependiendo del método que se utilice para llevar a cabo el dopaje, se han encontrado diversas formas químicas del Cu dentro de TiO₂ como: Cu⁰, Cu²⁺, CuO, Cu(OH)₂, CuCrO₄, CuS, CuAlO₂ (71).

El dopaje de TiO₂ con Fe resulta en la reducción de la brecha energética a 2.40 eV, el cual permite una mayor absorción en la región de luz visible, además el Fe³⁺ (0.79 Å) tiene un tamaño similar al Ti⁴⁺ (0.75 Å) (74). El nivel de energía del ion Fe³⁺ está por encima del borde de la banda de valencia de TiO₂, el electrón fotoexcitado migra desde el nivel de energía del dopante hasta la banda de conducción. El dopaje con Fe aumenta los sitios de captura.

Algunas investigaciones sobre fotocatálisis utilizando TiO₂ han sido llevadas a cabo con suspensiones de polvo fino de TiO₂ en aguas residuales o soluciones acuosas, la desventaja de este proceso es que las partículas pequeñas (50 - 100 nm) dificultan el proceso de separación de las soluciones. Por esta razón se han aplicado diversos métodos para fijar o inmovilizar los TiO₂ sobre otros materiales manteniendo la misma fotoactividad que los polvos finos (75). Dependiendo del precursor de Ti utilizado y del tipo de material, existen en general 2 métodos desarrollados: los métodos que utilizan suspensiones en fase líquida y los métodos en fase vapor. La Tabla 6 muestra algunos ejemplos para cada caso.

En la selección del material de soporte se puede considerar algunos aspectos:

a) El área superficial expuesta a la solución para garantizar velocidades razonables.

b) El soporte debe ser inerte al medio de reacción.

c) Alta adherencia del TiO₂ al soporte; (para evitar la lixiviación durante la abrasión)

d) Garantizar la mínima interacción del catalizador con el material de soporte.
e) La estabilidad de la película de catalizador tiene que ser adecuada para mantener la misma actividad después de procesar grandes volúmenes y asegurar que no haya fenómenos de envejecimiento y/o envenenamiento del catalizador (76).

Tabla 6: Métodos para soportar TiO\textsubscript{2} sobre sustratos inertes (76).

<table>
<thead>
<tr>
<th>Métodos que utilizan suspensiones en fase líquida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspensiones de TiO\textsubscript{2} prefrabricado (STPF)</td>
</tr>
<tr>
<td>Esta ruta está basada en la preparación de suspensiones de TiO\textsubscript{2} particulado en un dispersante adecuado. La suspensión se pone en contacto con el sustrato y se forma una película compuesta por partículas adheridas a la superficie; se evapora entonces el solvente y se seca la película para eliminar los restos de solvente. Habitualmente, se repite la operación para disminuir imperfecciones. Finalmente la película se fija con un tratamiento térmico adecuado que conduzca a la “sinterización” de las partículas entre ellas y con el sustrato; la temperatura depende fuertemente del sustrato.</td>
</tr>
<tr>
<td>Método sol-gel</td>
</tr>
<tr>
<td>Las partículas de TiO\textsubscript{2} se generan en el mismo medio dispersante. Como precursores se utilizan alcóxidos de titanio o TiCl\textsubscript{4}. El proceso involucra los siguientes pasos:</td>
</tr>
<tr>
<td>1. Hidrólisis del precursor con formación de grupos OH terminales</td>
</tr>
<tr>
<td>2. Condensación por formación de uniones ≈Ti-O-Ti≡ con pérdida de agua</td>
</tr>
<tr>
<td>3. Condensación cruzada con formación de polímeros o partículas submicrométricas</td>
</tr>
<tr>
<td>4. Gelificación con formación de una estructura tridimensional</td>
</tr>
<tr>
<td>5. Deshidratación y densificación por calentamiento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Métodos en fase vapor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporación</td>
</tr>
<tr>
<td>Se lleva a cabo en una cámara a 10^{-5} Torr de presión en la cual se sitúa una fuente de vapor y un substrato. Una corriente eléctrica circula y disipa calor por lo que la presión de vapor del material se incrementa y libera átomos, que son lanzados hacia la cámara depositándose sobre el substrato donde se está formando la película.</td>
</tr>
<tr>
<td>Deposición química de vapor</td>
</tr>
<tr>
<td>Los constituyentes en fase vapor reaccionan para formar una película sólida en la superficie del substrato, que se encuentra a temperatura elevada. El proceso se caracteriza por la difusión, adsorción y reacción química de los reactantes en la superficie, seguidos por la desorción y difusión de productos de la superficie.</td>
</tr>
<tr>
<td>Sputtering</td>
</tr>
<tr>
<td>Una cámara sometida a presiones menores que 10^{-3} torr contiene argón y dos electrodos, el cátodo con el material a depositarse y el ánodo o substrato. Los iones de argón son acelerados eléctricamente al blanco, arrancando átomos y electrones, los átomos del blanco al llegar al substrato forman la película, mientras que los electrones ionizan al argón.</td>
</tr>
</tbody>
</table>

Diversos materiales como carbón activado, vidrio, y zeolitas han sido utilizados, la Tabla 7 muestra los procesos llevados a cabo para lograr dicho soporte. La ventaja de inmovilizar TiO\textsubscript{2} sobre zeolitas es que integra la actividad fotocatalítica de los mismos con las propiedades de adsorción de las zeolitas creando un efecto sinérgico. La estructura porosa de las zeolitas con bajas concentraciones de TiO\textsubscript{2} es foto catalíticamente más eficiente que los polvos finos (74).
"Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada"

Tabla 7. Inmovilización de TiO₂

<table>
<thead>
<tr>
<th>Autor</th>
<th>Material</th>
<th>Condiciones experimentales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al. (2014) (77)</td>
<td>Pintura comercial líquida de estireno-acrilico</td>
<td>Preparar TiO₂-Cu mediante foto reducción, después se añadió a la pintura con agitación rápida (2800 rpm) y se secó a 250 °C</td>
</tr>
<tr>
<td>Khalilian, et al. (2015) (78)</td>
<td>Perlas de vidrio</td>
<td>Técnica de recubrimiento por inmersión. Se secó a 60 °C durante 4 h y calcinados a 500 °C por 1 h</td>
</tr>
<tr>
<td>Vaiano, et al. (2015) (79)</td>
<td>El TiO₂ fue modificado con nitrógeno por el proceso de sol-gel (TTIP, pH = 2, alcohol isopropílico), después a esta solución se añadieron las perlas de vidrio por 10 min y calcinadas a 450 °C por 30 min, el proceso se realizó 3, 4 y 6 veces.</td>
<td></td>
</tr>
<tr>
<td>Rao et al. (2012) (80)</td>
<td>Guijarro</td>
<td>Los guijarros fueron pulverizados y suspendidos junto con el TiO₂ en una mezcla de etanol-agua (80:20) y secados a 60-70 °C. Este método se repitió 5 veces y al final se secó a 150 °C por 8 h</td>
</tr>
<tr>
<td>Borges et al. (2016) (75)</td>
<td>Cenizas volcánicas</td>
<td>Método hidrotermal, se añadieron las cenizas y el TiO₂ en una solución 1 M de NaOH y se calentó a 140 °C. Se lavaron con HCl 0.1 M y hasta pH = 7, y secado a 140 °C por 22 h</td>
</tr>
<tr>
<td>Hanaor y Sorrell (2014) (81)</td>
<td>Arena</td>
<td>El arena se agrega gradualmente a una solución de tetraisopropóxido de titanio (TTIP) en 50 mL de isopropanol, agitada rápidamente, se hidrolizó con relación de agua:TTIP de 4:1 para evitar aglomerados, se secaron a 850 °C</td>
</tr>
<tr>
<td>Wang et al. (2011) (74)</td>
<td>Zeolita</td>
<td>Polvos de zeolita natural (clinoptilolita) se mezclaron con agua destilada y se calentaron a 70 °C, se añadieron soluciones de TiCl₄ y FeCl₃ y el pH se ajustó a 2, se agitó durante 4 h manteniendo la temperatura. Se dejó reposar 12 h y se secaron a 80 °C por 2 h. Finalmente se calcinaron a 400 °C por 2 h.</td>
</tr>
</tbody>
</table>

1.2 Tratamientos galvánicos

Las celdas galvánicas son celdas electroquímicas que producen energía eléctrica a partir de reacciones de óxido-reducción espontáneas. Ésta consta de dos metales con una diferencia de potencial positiva conectados mediante un puente salino.

Cada celda galvánica tiene dos semi celdas o electrodos, en donde un metal oxida o reduce al otro, y el mismo número de electrones son transferidos en ambas direcciones (Ec. 17-19):

\[A^{n+} + ne^- \leftrightarrow A \] \hspace{1cm} (Ec. 17)
\[B^{m+} + me^- \leftrightarrow B \] \hspace{1cm} (Ec. 18)
\[nB^{m+} + mA \leftrightarrow nB + mA^{n+} \] \hspace{1cm} (Ec. 19)

El cátodo es el electrodo donde tiene lugar la reducción, el ánodo atrae cationes. La ventaja de este tipo de sistemas es que la velocidad de reacción es alta y tiene una baja producción de lodos.
Para que se lleve a cabo la reacción espontánea dentro del sistema, es necesario calcular el potencial estándar de la celda a partir de los potenciales estándar de reducción de cada uno de los metales implicados, utilizando la serie electroquímica (Tabla 8):

<table>
<thead>
<tr>
<th>Semireacción</th>
<th>E° (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Li^+(ac) + e^- \rightarrow Li(s)$</td>
<td>-3.05</td>
</tr>
<tr>
<td>$K^+(ac) + e^- \rightarrow K(s)$</td>
<td>-2.93</td>
</tr>
<tr>
<td>$Ba^{2+}(ac) + 2e^- \rightarrow Ba(s)$</td>
<td>-2.90</td>
</tr>
<tr>
<td>$Ca^{2+}(ac) + 2e^- \rightarrow Ca(s)$</td>
<td>-2.87</td>
</tr>
<tr>
<td>$Na^+(ac) + e^- \rightarrow Na(s)$</td>
<td>-2.71</td>
</tr>
<tr>
<td>$Al^{3+}(ac) + 3e^- \rightarrow Al(s)$</td>
<td>-1.66</td>
</tr>
<tr>
<td>$Fe^{2+}(ac) + 2e^- \rightarrow Fe(s)$</td>
<td>-0.44</td>
</tr>
<tr>
<td>$Cu^{2+}(ac) + 2e^- \rightarrow Cu(s)$</td>
<td>+0.34</td>
</tr>
<tr>
<td>$Fe^{3+}(ac) + e^- \rightarrow Fe^{2+}(ac)$</td>
<td>+0.77</td>
</tr>
</tbody>
</table>

El potencial estándar formado por Fe^0 y Fe^{2+} es -0.44 V (ánodo), y entre Cu^0 y Cu^{2+} es +0.34 V (cátodo), el par Fe-Cu genera un potencial de +0.78 V, de acuerdo con la ecuación 20.

$$E_{celda}^\circ = E_{cátodo}^\circ - E_{ánodo}^\circ$$ \hspace{1cm} (Ec. 20)

Se han desarrollado diferentes sistemas bimetálicos como: Fe-Pd para la remoción de compuestos nitro y nitroso (83), sin embargo los sistemas bimetálicos que utilizan electrodos de Fe han resultado efectivos para degradar compuestos orgánicos e inorgánicos (84), halogenados y no halogenados, de acuerdo con las siguientes ecuaciones:

$$Fe^0 + 2H_2O \rightarrow Fe^{2+} + H_2 + 2HO^-$$ \hspace{1cm} (Ec. 21)

$$Fe^0 + R - Cl + H^+ \rightarrow Fe^{2+} + R - H + Cl^-$$ \hspace{1cm} (Ec. 22)

El mecanismo se basa en las propiedades redox del Fe^0, el cual sirve como donador de electrones para la oxidación o reducción de especies, por ejemplo, H_2O para formar hidrógeno gas. Sin embargo, recientemente se ha establecido que en este tipo se sistemas es posible formar reacciones de tipo Fenton, en presencia de oxígeno bajo condiciones de pH ácidas (85).

Los iones hidroxilo son generados durante la oxidación del Fe por la reducción del oxígeno disuelto en el agua:
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

\[\text{Fe}^0 \rightarrow \text{Fe}^{2+} + 2e^- \quad (\text{Ec. 23}) \]

\[O_2 + 2H_2O + 4e^- \rightarrow 4HO^- \quad (\text{Ec. 24}) \]

Durante la reacción, se desarrolla una capa de oxo-hidróxidos de hierro (Fe(OH)_2, Fe(OH)_3, FeOOH, Fe_2O_3, Fe_3O_4), los cuales minimizan su efectividad ya que hay menos sitios activos y la celda galvánica pierde su fuerza (84), sin embargo algunas partículas depositadas sobre la superficie del electrodo tienen un poder de oxidación residual.

Los metales secundarios usados (Cu, Ni, Pd, etc.) ayudan a catalizar la reacción y a disminuir la formación de óxido sobre la superficie del electrodo de Fe. Los metales de transición inducen y promueven las reacciones redox dentro del sistema ya que forman una pareja galvánica (ej. Fe-Cu), el Fe (ánodo) el cual pierde sus electrones y el Cu (cátodo) gana electrones, mientras que la solución acuosa actúa como puente salino (85). La disolución del metal ocurre en los sitios anódicos, liberando iones que pueden formar óxidos sobre el electrodo de Fe (86). Este tipo de sistemas han sido desarrollados para la eliminación de azul de metileno (87), degradar compuestos de alta energía (84), degradación de explosivos (86), etc.

En el sistema galvano-Fenton (GF) se utiliza una celda con ánodo de Fe y cátodo de Cu para promover la reacción entre estos metales debido a la diferencia de potencial, ocasionando la liberación de Fe^{2+} al sistema, debido a la oxidación del ánodo (Ec. 23). Por otro lado, al agregar H_2O_2, reacciona con los iones de Fe^{2+}, para generar radicales hidroxilo, como en la reacción de Fenton convencional (88). En presencia de radiación solar el sistema fue nombrado solar galvano-Fenton (SGF).

Alcalá-Delgado et al. (2018) y Castillo-Suárez et al. (2019) reportaron que la toxicidad del agua residual industrial y de lixiviados de rellenos sanitarios disminuyó tratando los efluentes en sistemas batch y continuo GF y SGF. Estos sistemas fueron eficientes y amigables con el ambiente.

1.3 Electrooxidación

La oxidación electroquímica o electrooxidación (EO) es el procedimiento electroquímico más popular para eliminar contaminantes orgánicos presentes en aguas residuales. Es la aplicación de corriente a una celda electroquímica que contiene uno o más pares de electrodos (cátodos y
ánodos), sumergidos en una solución (electrolito) capaz de permitir la transferencia de electrones, para facilitar el proceso se agregan iones conocidos como: “electrolito soporte”.

Puede ocurrir en 2 vías:

1.3.1 Oxidación directa

También es llamada oxidación anódica. Proceso en el que se generan especies oxidantes las cuales son capaces de mineralizar la materia orgánica presente (HO'), este proceso se basa en la oxidación directa del compuesto orgánico sobre el electrodo para evitar la pérdida de eficiencia por la descomposición de agua.

1.3.2 Oxidación indirecta

El proceso se lleva a cabo en el medio acuoso mediante la formación de intermediarios electroactivos como lo son el Cl₂, ClO⁻, H₂O₂, etc. Estas especies oxidantes conduce a la eliminación total o parcial de los contaminantes (23, 89).

En general, la capacidad de oxidación depende de la naturaleza del ánodo junto con variables operacionales como pH, concentración del sustrato, temperatura, agitación y/o caudal. Comninellis (1994) propuso un esquema donde dio a conocer el curso de la oxidación electroquímica de compuestos orgánicos de acuerdo al tipo de material anódico [M], el cual se muestra en la Figura 4 (90). En este esquema se explica el mecanismo de oxidación electroquímica mediante electrodos de óxidos metálicos, surgiendo así la clasificación del tipo de material anódico como “activos” y “no activos”.

Los procesos de oxidación de compuestos orgánicos sobre electrodos “activos” (a, b, c, d) pueden generar:

a) Ruptura del agua para producir radicales hidroxilo.

b) Formación del óxido metálico superior.

c) Oxidación parcial (selectiva) de los compuestos orgánicos, R, vía la formación del óxido metálico.

d) Evolución de oxígeno a través de la descomposición química del óxido metálico.

Y sobre los “no activos” (e, f) se puede generar:
e) Combustión de los compuestos orgánicos a través de los radicales hidroxilo.

f) Evolución del oxígeno por la oxidación electroquímica de los radicales hidroxilo.

Los electrodos activos Tienen propiedades de actividad catalítica promoviendo la adsorción de reactivos y/o productos en la superficie del electrodo. Ejemplo de ellos son los ánodos de Fe, Cu, Pt, RuO₂ e IrO₂. En los electrodos no activos los reactivos y los productos no interactúan fuertemente con la superficie del electrodo. Ejemplo de ellos son los ánodos de DDB, PbO₂, SnO₂.

La aplicación de la oxidación electroquímica al tratamiento de efluentes contaminados con compuestos orgánicos permite reducirlos, transformarlos o eliminarlos. Mediante la selección adecuada de los electrodos y del electrolito, se generan radicales con un poder oxidante superior al de cualquier sustancia química oxidante convencional, y dan lugar a la oxidación de la materia orgánica, dando como productos CO₂ y H₂O, o la conversión de los compuestos tóxicos a compuestos menos complejos (91).

La principal ventaja de este tipo de proceso es evitar la introducción de reactivos en disolución. Además, otorga otras ventajas como versatilidad, compatibilidad ambiental, eficiencia en el uso de la energía, facilidad de automatización, y relación costo/beneficio (92).
1.3.3 Electrodos de DDB

Los electrodos a base de carbón han sido usados en electroquímica debido a sus ventajas: bajo costo, amplia ventana de potencial, son electroquímicamente inertes y tienen actividad electrocatalítica para una gran variedad de reacciones redox. Los electrodos de diamante tienen una completa hibridación sp³ y estructura tetraédrica que da una alta dureza y baja conductividad eléctrica. La introducción de átomos de B o N (dopaje) en su estructura induce la conductividad eléctrica. La primera publicación sobre electrodos de diamante con propiedades de conductividad eléctrica fue por Pleskov en 1987, desde entonces se han realizado un gran número de investigaciones respecto a la síntesis y su aplicación (electroanálisis, fotoelectroquímica, electrocatálisis, etc).

Los electrodos de diamante son obtenidos por una deposición química de vapor sobre un filamento caliente (HFCVD) en un soporte calentado a 800-850 °C. El silicón es el soporte más utilizado, también se pueden utilizar algunos metales como W, Mo, Ti y Nb. El gas precursor es una mezcla de compuestos orgánicos volátiles (metano, acetona, metanol) e hidrógeno. El principal agente dopante es el B, el cual le confiere al diamante la propiedad de semiconductor. El boro puede ser introducido en la mezcla de gases como un compuesto volátil (trimetil borato o B₂H₆), o como sólido localizado cerca del sustrato durante el crecimiento de la capa de diamante. La cantidad de B introducida debe ser entre 10¹⁸-10²⁰ átomos/cm³. Otro método de síntesis es a través de altas temperaturas (1400-1600 °C) y presiones (5-6 GPa) (HTHP), mediante la cristalización del diamante con soluciones de boro.

Los electrodos de DDB, tienen alta estabilidad química, comparados con electrodos de carbón como grafito, tiempo de vida prolongado, alta dureza, estabilidad térmica y baja reactividad química que resulta en una amplia ventana de potencial para reducir u oxidar diferentes compuestos químicos (93–96).
2. JUSTIFICACIÓN CIENTÍFICA Y CONTEXTUAL

Anualmente se consumen más de 100,000 - 200,000 toneladas de fármacos alrededor del mundo; México es el segundo mercado más grande de América Latina en la industria farmacéutica, y es un importante productor de medicinas de alta tecnología, además, 14 de las 15 principales empresas a nivel internacional se encuentran ubicadas en el país, por lo que México se ha posicionado como uno de los principales centros manufactureros del sector a nivel mundial. En México hay 678 unidades económicas especializadas en la industria farmacéutica. Algunas de las principales empresas de la industria son: Merck, Boehringer Ingelheim, Schering Plough, Bayer, Astrazeneca, Pfizer, Glaxosmithkline, Baxter, Eli Lilly Company y Novartis, entre otras, ubicadas principalmente en la ciudad de México [216], Jalisco [123], Estado de México [63], Puebla [34] y Michoacán [28] (97).

Los sistemas de tratamiento convencionales se han visto limitados por la alta estabilidad química de estos compuestos y resultan ser poco eficientes para removerlos del agua residual y lodos; como consecuencia son descargados hacia cuerpos de agua, ya que más de 600 compuestos han sido detectados en el agua superficial alrededor del mundo, ocasionando que los organismos acuáticos y terrestres se vean afectados (98), por tal motivo es necesario desarrollar nuevas estrategias sustentables que minimicen el impacto en dichos organismos.

La justificación científica de este proyecto, contempló la modificación fotoelectroquímica de óxidos de titanio empleando electrodos de Fe y Cu, soportados en zeolita; con la finalidad de oxidar 2 compuestos emergentes (diclofenaco y paracetamol) en solución acuosa mediante fotocatálisis heterogénea. Así mismo se evaluó la regeneración del material modificado. Por otro lado, se aplicó el proceso de galvano-Fenton utilizando un sistema Fe/Cu en flujo continuo que, debido a la diferencia de potenciales, genera una reacción espontánea que al contacto con peróxido de hidrógeno favorece la reacción de Fenton y la oxidación de materia orgánica. Finalmente se aplicó un sistema de electrooxidación y foto-electrooxidación utilizando configuraciones electródicas DDB-DDB, DDB-Cu y DDB-Fe para promover la oxidación de ambos fármacos utilizando sistemas de tipo batch. En este proyecto se estudiaron e implementaron tecnologías de oxidación avanzada más sustentables, reduciendo el consumo de energía eléctrica y aprovechando la energía renovable proveniente del sol o bien generando energía propia mediante reacciones redox espontáneas.
3. HIPÓTESIS

Los Procesos de Oxidación Avanzada fotocatálisis, galvano-Fenton y electrooxidación, son viables en el tratamientos y mineralización de compuestos emergentes (paracetamol y diclofenaco) presentes en sistemas acuosos.

4. OBJETIVOS

4.1 General

Llevar a cabo el tratamiento de compuestos emergentes (paracetamol y diclofenaco) en sistemas acuosos mediante procesos de oxidación avanzada: fotocatálisis, galvano-Fenton y electrooxidación.

4.2 Particulares

1. Preparar soluciones acuosas de paracetamol y diclofenaco a diferentes concentraciones y establecer la metodología para su determinación analítica.

2. Establecer las condiciones de operación para llevar a cabo la modificación electroquímica de los óxidos de titanio con hierro y/o cobre en presencia de luz UV, intensidad de corriente, y tiempo de reacción.

3. Caracterizar el catalizador, mediante MEB y EDS, IR, difracción de rayos X y absorción atómica para determinar la concentración de hierro y cobre.

5. Aplicar el proceso Galvano-Fenton en continuo a soluciones acuosas de paracetamol considerando como variables de estudio dosis del catalizador, dosis de peróxido de hidrógeno, tiempo de tratamiento y pH.
6. Proponer el mecanismo para la degradación de paracetamol y diclofenaco, mediante espectroscopia IR, UV, fluorescencia y cromatografía de líquidos (HPLC).

7. Evaluar la regeneración y ciclos de aplicación del catalizador de TiO$_2$ modificado.

8. Determinar las condiciones óptimas de operación del sistema de electrooxidación para la mineralización del paracetamol: intensidad de corriente (0.5 y 1.0 A), tiempo de tratamiento (3 h), presencia y ausencia de luz, configuración electródica (DDB-Fe y DDB-Cu) y concentración inicial (10, 50, 80 mg/L).

9. Determinar las condiciones óptimas de operación del sistema de electrooxidación para la degradación de diclofenaco: intensidad de corriente (0.5 y 1.0 A), tiempo de tratamiento (0-6 h), presencia y ausencia de luz UV, electrolito soporte (NaCl y Na$_2$SO$_4$) y concentración inicial (10, 50, 150 mg/L).

10. Realizar el estudio cinético para la degradación de diclofenaco y paracetamol, obtener las constantes cinéticas y el tiempo de vida media de la reacción de oxidación.

11. Caracterizar fisicoquímicamente la solución acuosa al inicio y al final de cada proceso, mediante COT y DQO.

12. Difundir los resultados mediante congresos y artículos científicos.
5. METODOLOGÍA

5.1 Diagrama de bloques de la metodología general

La Figura 4 muestra la metodología general llevada a cabo en este proyecto de investigación, a continuación se describe cada una de las etapas.

a) Proceso de fotocatálisis heterogénea

b) Proceso de Galvano-Fenton y Galvano-Fenton solar
c) Proceso de electrooxidación/foto-electrooxidación

![Diagrama de proceso](attachment:Diagrama.png)

Figura 5. Esquema general de la metodología, a) fotocatálisis, b) Galvano-Fenton y Galvano-Fenton solar, c) Electrooxidación/foto-electrooxidación

5.2 Proceso de fotocatálisis heterogénea

5.2.1 Modificación foto-electroquímica de TiO$_2$ con iones Cu$^{2+}$ y/o Fe$^{3+}$

Este proceso se realizó con el fin de obtener óxidos de titanio modificados con Fe y/o Cu: TiO$_2$-Cu$^{2+}$, TiO$_2$-Fe$^{3+}$ y TiO$_2$-Cu$^{2+}$-Fe$^{3+}$.

Para conocer la morfología (anatasa, rutilo o brookita) de TiO$_2$, se realizó difracción de Rayos X (DRX), Microscopía Electrónica de Barrido (MEB) con Análisis Elemental (EDS), y espectroscopía de infrarrojo. Los equipos utilizados fueron Difractómetro Siemens D5000 acoplado a un ánodo de cobre con tubo de rayos X, Espectrofotómetro Affinity-15 Fourier Shimadzu y microscopio JEOL JSM-6610LV.

Los óxidos de titanio fueron modificados electroquímicamente con la finalidad de disminuir la brecha energética y aumentar la capacidad de oxidación de compuestos orgánicos con luz solar. La modificación foto-electroquímica se llevó a cabo sonicando 1.5 g de TiO$_2$ con 15 mL de agua destilada durante 5 min. Al final del tiempo de sonicación, se colocaron en un vaso de precipitados, donde se adicionaron 5 g de zeolita de tipo clinoptilolita (tamizada a tamaño de partícula mayor a 1 mm y menor a 2.8 mm), lavada y secada a temperatura ambiente, además
30 mL más de agua y 15 mL de etanol, como sustancia orgánica de sacrificio y como solvente para facilitar el proceso de inmovilización con la zeolita, con un volumen total de celda de 45 mL (Figura 5).

Figura 6. Modificación electroquímica de TiO$_2$

El proceso se realizó a temperatura ambiente con agitación de 600 rpm al pH de la solución de TiO$_2$ (aproximadamente 6.5), se adicionó 1 g de NaCl (0.57 M) como electrolito soporte. Se utilizó un diseño factorial 2^3, para optimizar el proceso y mejorar el rendimiento; las variables que se analizaron fueron: tiempo de modificación, intensidad de corriente y presencia o ausencia de luz UV, los niveles asociados se muestran en la Tabla 9. El orden estándar de un diseño 2^3 para estimar cualquier efecto es determinar el contraste de cada uno, a diferentes combinaciones de tratamientos (Tabla 10).

Para los experimentos en presencia de luz UV, se utilizó una lámpara de onda corta ($\lambda = 254$ nm). Las dimensiones de los electrodos de Fe y Cu fueron de 5 X 2.3 X 0.5 cm, con una superficie de contacto de 3.5 cm y la distancia entre ellos de 0.8 cm. A partir de esto se determinó la superficie de contacto real que es de 0.0021 m2 (21 cm2) y la relación área/volumen de 16.15 m2/m3.

Tabla 9. Matriz de diseño. Diseño factorial 2^3

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Nivel 1</th>
<th>Nivel 2</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luz UV</td>
<td>Si</td>
<td>No</td>
<td>A</td>
</tr>
<tr>
<td>Intensidad de corriente (A)</td>
<td>0.5</td>
<td>1.0</td>
<td>B</td>
</tr>
<tr>
<td>Tiempo de reacción (min)</td>
<td>30</td>
<td>60</td>
<td>C</td>
</tr>
</tbody>
</table>
Tabla 10. Combinaciones de tratamientos para el diseño factorial 2³

<table>
<thead>
<tr>
<th>Número de corrida</th>
<th>Factores</th>
<th>Combinación de tratamientos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A B C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>+ - -</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>- + -</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>+ + -</td>
<td>AB</td>
</tr>
<tr>
<td>5</td>
<td>- - +</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>+ - +</td>
<td>AC</td>
</tr>
<tr>
<td>7</td>
<td>- + +</td>
<td>BC</td>
</tr>
<tr>
<td>8</td>
<td>+ + +</td>
<td>ABC</td>
</tr>
</tbody>
</table>

Después del proceso electrolítico se realizó el proceso de inmovilización, para ello los materiales se dejaron secar a temperatura ambiente durante 1 día, posteriormente se aplicó un tratamiento térmico en la mufla a 550 °C durante 10 min y se dejó enfriar a temperatura ambiente, con este método se garantiza que los óxidos de titanio son fijados y adheridos en la zeolita. Los mejores materiales de Fe, Cu y Fe-Cu fueron caracterizados por las mismas técnicas para conocer la morfología y composición, también se determinó la cantidad de Fe y Cu en cada uno de los 3 mejores materiales mediante absorción atómica e IR.

5.2.2 Punto de carga cero (pzc)

Para determinar el pzc de la zeolita clinoptilolita, TiO₂, y los mejores materiales después de la fotocatálisis, se pusieron en contacto 100 mg de cada material con 10 mL de una solución 0.1 M de NaNO₃ ajustada a pH entre 2 y 10 (con NaOH o HNO₃), después de 96 h de contacto las muestras se centrifugaron y filtraron, y se midió el pH final del sobrenadante. Para el tratamiento de resultados, se utilizó el método establecido por Almazán-Sánchez et al (2016) (99).

5.3 Pruebas de contacto con zeolita clinoptilolita

Se realizaron pruebas de contacto con zeolita clinoptilolita, para ello, a 100 mg de zeolita se le adicionaron 10 mL de solución acuosa de diclofenaco de 20, 40, 60, 80 y 100 mg/L durante 4 h en presencia de luz UV (λ = 254 nm) con pH inicial entre 5 y 7 para todas las soluciones, al final se determinó la concentración de DCF en UV-Vis a 276 nm.
Posteriormente se realizaron pruebas de contacto variando el pH inicial de la solución en 4, 5, 7 y 9 utilizando las mismas concentraciones iniciales, el tiempo de contacto fue de 8 h.

5.4 Proceso de fotocatálisis heterogénea (batch)

Se realizaron pruebas en batch, para ello se colocaron 100 mg de cada uno de los materiales modificados con Fe, Cu y Fe-Cu con 10 mL de solución a pH de 4, 5, 7 y 9. La concentración inicial del DCF se varió entre 20, 40, 60, 80 y 100 mg/L. Se colocaron en un colector solar durante 8 h y se analizó la concentración final por espectrofotometría UV-Vis al término del tratamiento.

Posteriormente, a partir de los datos obtenidos se determinó el pH de trabajo y se realizó una cinética con concentración inicial de diclofenaco de 10 mg/L, la cual se monitoreó a los 10, 30, 60, 90, 120, 180, 240, 300, 360, 420 y 480 minutos y se determinó DQO, COT, CT y la concentración final de DCF medida por UV-Vis y HPLC, las variables de respuesta se determinaron de acuerdo con las normas mexicanas o métodos establecidos en la Tabla 11.

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>NORMA MEXICANA O MÉTODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>COT</td>
<td>Método de combustión</td>
</tr>
<tr>
<td>CT</td>
<td>Método de combustión</td>
</tr>
<tr>
<td>DQO</td>
<td>NMX-AA-030/2-SCFI-2011</td>
</tr>
<tr>
<td>Cuantificación de Diclofenaco</td>
<td>UV-Vis, 276 nm para diclofenaco</td>
</tr>
</tbody>
</table>

Las muestras se filtraron y los materiales se dejaron secar a temperatura ambiente. Después fueron caracterizados por IR, y se analizó el segundo y tercer ciclo bajo las mismas condiciones.

Para el análisis de HPLC, se utilizó un equipo Agilent 1260 Infinity LC system con detector de matriz de diodos (DAD). La separación cromatográfica se realizó en una columna analítica LC Zorbax SB C_{18} (5 μm, 150 mm × 4,6 mm). La fase móvil fue agua/ácido acético al 0,2% (v/v) y acetonitrilo. La velocidad de flujo fue de 1 mL/min, y la temperatura del calentador de columna fue de 30 ºC. Se aplicó un flujo isocrático para detectar DCF a 275 nm y paracetamol a 243 nm.
5.5 Proceso galvano-Fenton

El proceso se realizó empleando un reactor cilíndrico de borosilicato de 20 cm de longitud con un volumen de 62.83 cm3, el área de las placas metálicas fue de 108.24 cm2, con una relación área/volumen de 172.27 m3/m2. El tubo fue colocado sobre una base de madera y se utilizó una lámina parabólica de aluminio MIRO-SUN® para concentrar los rayos UV. Estas láminas garantizan un 95% de reflexión. El reactor fue operado a temperatura ambiente en forma continua utilizando una bomba peristáltica con un flujo de entrada/salida de 1.5 mL/min y un tiempo de retención hidráulico (TRH) de 40 min. Para obtener el diseño experimental, se utilizó el programa Statgraphics Centurion en la modalidad de diseño cribado (DSD), las variables que se analizaron fueron: la concentración inicial, la dosis de H$_2$O$_2$, la presencia o ausencia de radiación solar y el pH, de acuerdo con la Tabla 12. Para evaluar el comportamiento del ACT durante el proceso se tomaron alícuotas a diferentes tiempos y se utilizaron como variables de respuesta: espectrofotometría UV-Vis a 243 nm y COT. Además se monitoreó la temperatura de muestreo, el voltaje de la celda, pH final, conductividad, solidos totales disueltos (STD), H$_2$O$_2$ residual y la concentración de Fe$^{2+}$ mediante O-Fenantrolina. También fue determinado el mecanismo de oxidación utilizando técnicas complementarias como HPLC, IR y fluorescencia. La radiación solar se midió utilizando un radiómetro Vantage Pro2® (Davis Instruments). Se utilizó un sensor (# 6490, Davis Instruments) con una resolución de 0.1 a MED <20 y una precisión del 5% en el rango de 0 a 199 MED (dosis mínima de eritema), y se usó un rango de longitud de onda de 280 a 360 nm. Los ensayos se realizaron entre las 11:30 a.m. y las 2:30 p.m. en el Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), México.

![Figura 7. Reactor cilíndrico para fotocatálisis](image-url)
Se realizó una cinética de degradación en el sistema SGF utilizando la dosis de H_2O_2 optimizada, el pH y la concentración inicial de ACT. La concentración de ACT se analizó a 0, 5, 10, 20, 30, 40, 50, 60, 70, 80 y 90 minutos de tiempo de tratamiento usando HPLC, UV-Vis y COT. Se consideraron los modelos de cero, primer, segundo orden y el modelo de dos etapas Behnajady-Modirshahla-Ghanbery (BMG) para la determinación de las constantes cinéticas. Estos modelos se presentan a continuación.

Orden cero:

$$C_t = C_0 - kt$$

Primer orden:

$$C_t = C_0 e^{-kt}$$

Segundo orden:
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

\[C_t = \frac{C_0}{(C_0 k t + 1)} \]

Modelo Behnajady-Modirshahla-Ghanbery (BMG) model:

\[C_t = \left(\frac{t}{(m + bt)} + 1 \right) C_0 \]

Donde \(C_0 \) es la concentración inicial, \(C_t \) es la concentración en el tiempo de reacción \(t \), y \(m \) y \(b \) son las constantes del modelo BMG. El programa Statistica 10 StatSoft® se utilizó para ajustar los datos experimentales y obtener las constantes. Los modelos fueron evaluados en términos de su ajuste respecto a la energía acumulada en el reactor.

La espectroscopía de fluorescencia se realizó utilizando un espectrofluorómetro LS-55 (Perkin Elmer, EE. UU.) con una lámpara de xenón (150 W) como fuente de excitación y el paquete de software WINLAB (Perkin Elmer). La matriz de excitación-emisión 3D (EEM-3D) se construyó a partir de 45 espectros de emisión con un rango de longitud de onda de emisión (\(\lambda_{em} \)) de 250-600 nm; la longitud de onda de excitación (\(\lambda_{exc} \)) varió de 200-420 nm en incrementos de 5 nm. Para evitar las perturbaciones de Rayleigh y Raman que se originan en el agua, se analizó un blanco de agua desionizada y se aplicó como un filtro a 290 nm. Los espectros EEM-3D del blanco se restaron de cada uno de los espectros EEM-3D. Para este análisis, los datos EEM-3D se exportaron a excel utilizando el programa "Migración". La intensidad de fluorescencia fue baja y las muestras no se diluyeron para el análisis.

5.5 Proceso de electrooxidación/foto-electrooxidación

5.5.1 Paracetamol

El proceso de electrooxidación se realizó en una celda electrolítica con un volumen de 400 mL. El proceso se realizó a temperatura ambiente con agitación de 400 rpm (en una parrilla de agitación) a pH de 5.5, el electrolito soporte fue NaCl (2.5 g/L). Inicialmente, la concentración de paracetamol fue de 80 mg/L. Se analizaron dos configuraciones electródicas (ánodo/cátodo): DDB-Cu y DDB-Fe, intensidad de corriente (0.5 A y 1.0 A) y en presencia o ausencia de luz.
Como tratamiento previo para el uso de los electrodos de Fe y Cu, estos se limpiaron con una lija a fin de eliminar los óxidos y demás interferentes que pudieran alojarse en la superficie. Las dimensiones de los electrodos de hierro y cobre fueron de 3.3 x 1.4 x 0.3 cm. A partir de esto se determinó la superficie de contacto real que fue de 0.00116 m² (11.64 cm²) para los electrodos de hierro y cobre, mientras que para el DDB, las dimensiones fueron de 5.0 x 1.0 x 0.2 cm y la superficie de contacto real de 0.0011 m² (11 cm²), con estos datos se determinó la densidad de corriente (J) para 0.5 y 1 A que corresponde a 45.45 y 90.91 mA/cm², respectivamente. La distancia entre ánodo-cátodo fue de 0.8 cm. Para suministrar la energía necesaria, como parte del sistema se utilizó una fuente de poder regulada marca Steren y un multímetro que ayudó a regular la intensidad de corriente aplicada. Todos los experimentos se realizaron por triplicado. El tiempo de tratamiento fue de 3 h y los tiempos de monitoreo fueron de 5, 10, 15, 30, 45, 60, 90, 120, 150 y 180 minutos; en cada uno se tomaron alícuotas de 5 mL. A las muestras colectadas se les determinó pH final y la concentración del ACT (mg/L) se realizó por UV-Vis. Determinadas las mejores condiciones de operación, se caracterizaron las soluciones después del tratamiento mediante COT, CT, IR, DQO, DBO₅ y fluorescencia.

Se propuso un diseño factorial 2³, cuyo objetivo es evaluar las interacciones y efectos de un factor, considerando dos niveles de las variables en estudio, generando conclusiones válidas sobre un rango de condiciones. Las variables (factores) consideradas fueron: intensidad de corriente, presencia y ausencia de luz UV y configuración electródica; los niveles asociados se muestran en la Tabla 13. En la Tabla 14 se describe la matriz del diseño y los signos algebraicos para calcular los efectos del mismo, respectivamente; datos con los cuales se resolvió el algoritmo de Yates.

Para el proceso de foto-electrooxidación se utilizó la misma celda electrolítica, bajo una lámpara UV de onda corta (λ= 254 nm); de acuerdo al diseño factorial y una concentración inicial de ACT 80 mg/L, el proceso fue monitoreado en los mismos tiempos que para el tratamiento de electrooxidación y se utilizaron las mismas variables de respuesta. Una vez analizados los resultados y obtenidas las mejores condiciones de operación, se varió la concentración inicial de ACT de 50 y 10 mg/L, a una densidad de corriente (J) de 90.91 mA cm².
Tabla 13. Factores y niveles asociados al diseño 2\(^3\) (Modificado de: Montgomery, 2004).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Nivel 1 (-)</th>
<th>Nivel 2 (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensidad de corriente (X)</td>
<td>0.5 A</td>
<td>1.0 A</td>
</tr>
<tr>
<td>Luz UV (Y)</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>Configuración electrodica (Z)</td>
<td>DDB-Fe</td>
<td>DDB-Cu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corrida</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

5.5.2 Diclofenaco

Se empleó una celda electrolítica asistida de un electrodo DDB, tal y como se muestra en la figura 8, en la cual fueron tratados 400 mL de la solución de diclofenaco (150 mg/L) durante 6 horas a temperatura ambiente con una agitación de 400 rpm a pH de 5-6, se utilizaron NaCl y Na\(_2\)SO\(_4\) como electrolito soporte. Se analizaron dos intensidades de corriente (0.5 A y 1.0 A), electrolito soporte (NaCl (2.5 g/L) y Na\(_2\)SO\(_4\) (1.25 g/L)) y presencia o ausencia de luz UV (lámpara UV de onda corta, \(\lambda=254\)nm). Las dimensiones del DDB fueron de 3.0 x 20.5 x 0.2 cm con un arreglo ánodo-cátodo-ánodo-cátodo-ánodo, en donde cada electrodo cuenta con una superficie de contacto real de 0.011 m\(^2\) (115.32 cm\(^2\)) y una distancia entre los electrodos de 0.3 cm; además se calculó la relación área/volumen que es de 28.83 m\(^2\)/m\(^3\). La fuente de poder utilizada fue una fuente regulada (EXTECH 382213).

La cinética de reacción se realizó tomando una alícuota de 5 mL de la solución acuosa a los siguientes tiempos: 5, 10, 30, 60, 120, 180, 240, 300, 330, y 360 min. Se determinó el pH, DQO, COT y concentración del diclofenaco por espectroscopia UV-Vis de cada muestra. A las soluciones acuosas de diclofenaco con concentraciones de 50 y 10 mg/L se les aplicó el proceso
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

de oxidación avanzada a una intensidad de corriente de 1 A (J= 25.29 A/m²), en ausencia de luz UV y utilizando NaCl como electrolito soporte.

El electrodo de DDB se limpió con una solución de Na₂SO₄ (5 g/L; pH= 2), y se le suministró corriente eléctrica durante 20 minutos, a la intensidad de corriente de trabajo, posteriormente se enjuagó con agua desionizada dos veces. Este proceso de limpieza se realizó al finalizar cada experimento de electrooxidación.
6. RESULTADOS

6.1 Artículo publicado

Título: Synthesis of TiO$_2$ catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemical-thermal method for the degradation of diclofenac by heterogeneous photocatalysis.

Factor de impacto: 3.261

ISSN: 10106030

Vol. 380

DOI: 10.1016/j.jphotochem.2019.04.045
Synthesis of TiO$_2$ catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemical-thermal method for the degradation of diclofenac by heterogeneous photocatalysis

Monserrat Castañeda-Juáreza, Verónica Martínez-Mirandaa, Perla Tatiana Almazán-Sánchezb, Ivonne Linares-Hernándeza,, Fortunata Santoyo-Tepolea, Guadalupe Vázquez-Mejíaa

aInstituto Interamericano de Tecnología y Ciencias del Agua, Universidad Autónoma del Estado de México, Km 14.5, carretera Toluca-Acolman, C.P. 50200 San Cayetano, Toluca, Estado de México, Mexico

bCONACyT-Instituto Nacional de Investigaciones Nucleares. Departamento de Química. Carretera México-Toluca S/N, La Marquesa, C.P. 52750 Ocoyoacac, Estado de México, Mexico

cEscuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prologación de Carpio y Plan de Ayada, Col. Santo Tomás, Miguel Hidalgo, C.P. 11340 Ciudad de México, Mexico

A R T I C L E I N F O

Keywords: Electrochemical synthesis Thermal treatment Regeneration Oxidation Diclofenac Heterogeneous photocatalysis

A B S T R A C T

Aqueous solutions of diclofenac (DCF) were treated by heterogeneous photocatalysis using TiO$_2$ catalysts doped with Cu, Fe, and Cu/Fe supported on the zeolite clinoptilolite, which were prepared by a photo/electrochemical method combined with thermal treatment. The parameters evaluated in the preparation of doped TiO$_2$ catalysts were the treatment time (30 and 60 min), current intensity (0.5 and 1 A), and presence/absence of UV light. The doped materials were characterized by X-ray diffraction, scanning electron microscopy in conjunction with energy dispersive spectroscopy, absorption atomic and infrared spectroscopy, as well as point of zero charge measurements. The concentration of metal in the modified materials was 2.3 g Fe/g for TiFeZ-7, 2.3 g Cu/g TiCuZ-2, and 3.3 g Fe/g and 1.4 g Cu/g for TiFeCuZ-7. The photocatalysis process was carried out at different pH values (4, 5, 7, and 9) and aqueous DCF concentrations (20, 40, 60, 80, and 100 mg/L). The results indicated that the optimal pH for the oxidation of DCF was 4 with efficiencies over 97%. The degradation kinetics at 10 mg/L indicated the mineralization of DCF during the treatment, where the materials doped with copper afforded superior removal of organic matter with efficiencies of 89.5%, 82.2%, and 84.3% for the TOC, COD, and DCF concentration, respectively, as determined by HPLC, revealing the interesting catalytic effect of this metal in such a photocatalysis process.
6.2 Artículo aceptado

Título: Oxidation of N-acetyl-para-aminophenol (acetaminophen) by a galvanic Fenton and solar galvanic Fenton processes

Factor de impacto: 4.674

ISSN: 0038092X
Oxidation of N-acetyl-para-aminophenol (acetaminophen) by a galvanic Fenton and solar galvanic Fenton processes

Monserrat Castañeda-Juáreza, Luis Antonio Castillo-Suáreza, Verónica Martínez-Mirandaa, Perla Tatiana Almazán-Sánchezb, Ivonne Linares-Hernándeza, Violeta Lugo-Lugoc, Mario Esparza-Sotoa

aInstituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, carretera Toluca-Atlacomulco, C.P 50200 Toluca, Estado de México, México

bCONACyT-Instituto Nacional de Investigaciones Nucleares. Departamento de Química. Carretera México-Toluca S/N, La Marquesa, C.P. 52750 Ocoyoacac, Estado de México, México.

cUniversidad Autónoma Metropolitana, División de Ciencias Básicas e Ingeniería, Departamento de Recursos de la Tierra, Unidad Lerma, Av. de las Garzas N°.10, Colonia el Panteón, Lerma de Villada, C.P. 52005, Lerma, Estado de México, México.

(* acorresponding author: ilinaresh@uaemex.mx)

Abstract

Aqueous solutions of acetaminophen (ACT) were successfully treated using continuous solar galvanic Fenton (SGF) and galvanic Fenton (GF) processes. Definitive screening design (DSD) was used to verify the influence of several experimental parameters and their interactions, the variables were: the pH (3 and 5), initial ACT concentration (25 and 60 mg/L), presence or absence of solar irradiation, and H$_2$O$_2$ dose (0.9 and 2.5 mM). For the GF system, the maximum removal efficiencies were 64.47\% for total organic carbon (TOC) and 49.83\% for ACT. For the SGF process, 79.38\% TOC and 100\% ACT removal were achieved. The optimal conditions in both systems were an initial ACT concentration of 60 mg/L, 2.5 mM H$_2$O$_2$, and pH 5. Under these conditions, the GF and SGF systems produced iron concentrations of 6.53 mg/L and 10.62 mg/L, respectively, at 40 minutes of retention time. The presence of solar irradiation increased the TOC and ACT removal efficiencies. The kinetic constants were obtained at 80 mg/L ACT, at which the SGF showed greater removal of organic matter than the GF. The ACT removal efficiency was 97.99\% by HPLC in the first ten minutes, demonstrating the reduction in the required retention time. The maximum TOC removal of 90\% was achieved at 90 min, a pH of 3.5, an H$_2$O$_2$/Fe$^{2+}$ ratio of 5.17, and 625 mV.
6.3 Artículo enviado

Título: Photo-electrooxidation treatment of acetaminophen in aqueous solution using BDD-Fe and BDD-Cu systems.

Revista: *Journal Environmental Technology*. Indizada en Thomson Reuters, Journal Citation Factor de impacto: 1.918

ISSN: 0959-3330
Photo-electrooxidation treatment of acetaminophen in aqueous solution using BDD-Fe and BDD-Cu systems

Ana Gabriela Sierra-Sánchez¹, Ivonne Linares-Hernández¹, Verónica Martínez-Miranda¹, Perla Tatiana Almazán-Sánchez², Elia Alejandra Teutli-Sequeira¹, Monserrat Castañeda-Juárez¹*, Mario Esparza-Soto¹.

¹ Instituto Interamericano de Tecnología y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km.14.5, carretera Toluca-Atlacomulco, C.P 50200 Toluca, Estado de México, México

(*) corresponding author: e-mail monse.castanedajuarez@gmail.com

ABSTRACT

In this study, acetaminophen (ACT) in an aqueous solution was treated with electrooxidation and photo-electrooxidation processes. An electrochemical cell was used for the treatment of different concentrations of ACT (10, 50 and 80 mg L⁻¹). A 2³ factorial design was proposed, and the variables studied were the current intensity (0.5 and 1.0 A), electrode configuration (BDD-Fe¹ and BDD-Cu) and presence/absence of UV light; NaCl (2.5 g L⁻¹) was used as supporting electrolyte, the initial pH was 5.5, and the treatment time was 3 h. The aqueous solutions were characterized before and after the treatment using FT-IR, UV-Vis, COD, BODs, TOC, TC, and fluorescence spectroscopy. The optimal operating conditions using an initial ACT concentration of 80 mg L⁻¹ were 1.0 A, BDD-Fe configuration and UV light (254 nm). The removal efficiencies were 100 % of ACT and 82.75 % of TOC after 15 min of treatment. At concentrations of 50 and 10 mg L⁻¹, 77.16 % and 50.29 % of TOC were removed after 10 and 5 minutes of treatment, respectively. Finally, the kinetic study showed an increase in the rate constants when the UV light was applied.

Keywords: electrooxidation, photo-electrooxidation, acetaminophen (ACT), UV light, BDD.
6.4 Artículo enviado

Título: Tratamiento del diclofenaco en solución acuosa mediante electro-oxidación utilizando electrodos de DDB

Revista: Revista de Tecnología y Ciencias del Agua.

Factor de impacto: 0.290
Tratamiento del diclofenaco en solución acuosa mediante electro-oxidación utilizando electrodos de DDB

Treatment of diclofenac in aqueous solution by electro-oxidation using BDD electrodes

Resumen

El consumo de productos farmacéuticos como los anti-Inflamatorios no esteroideos, entre ellos el ácido 2-[2-(2,6-dicloroanilino)fenil]acético, mejor conocido como diclofenaco, ha ido en aumento debido a su fácil adquisición, como consecuencia se han tenido repercusiones al ambiente ya que es excretado a través de la orina, ocasionando un riesgo potencial al ser descargados en cuerpos de agua y creando persistencia en el ambiente y en los procesos de tratamiento de aguas residuales. Razón por la cual es necesario utilizar procesos alternativos de oxidación avanzada, debido a que han demostrado ser eficientes en la degradación de compuestos xenobióticos. El objetivo de esta investigación fue aplicar un sistema de electro-oxidación y fotoelectro-oxidación, mediante una configuración DDB-DDB con la finalidad de determinar las variables de operación para la oxidación del diclofenaco en solución acuosa. Las condiciones óptimas del estudio fueron: intensidad de corriente de 1 A (J= 25.29 A/m²), el valor de pH de la muestra (5-6), NaCl como electrolito soporte, en ausencia de luz UV, tiempo de tratamiento de 360 minutos, la eficiencia de remoción fue 97.8% en términos de concentración de diclofenaco. El COT, DQO Y DBO₅ presentaron eficiencias del 64.4%, 89.3% y 100% respectivamente. La cinética de degradación del diclofenaco se ajustó a un modelo de pseudo primer orden, con un valor de tiempo de vida media para la mejor condición de 63.89 minutos y una k=1.08x10⁻² min⁻¹. Los porcentajes de remoción en HPLC fueron 99.64%, 98.76% y 95.15% para las concentraciones de 150, 50 y 10 mg/L.

Palabras clave: oxidación electroquímica, diclofenaco, luz UV, ánodo de DDB, radical hidroxilo, HPLC.
Discusión general

En el presente trabajo de investigación se llevó a cabo el tratamiento de paracetamol y diclofenaco aplicando diferentes POA: fotocatálisis, galvano-Fenton y electrooxidación. Los resultados mostraron que existe una dependencia del valor del pKa de cada fármaco asociado al tipo de tratamiento. Además se evaluaron diferentes condiciones de operación en cada tipo de tratamiento: pH, dosis de H₂O₂, presencia o ausencia de radiación solar, tiempo de tratamiento, entre otros, con el objetivo de encontrar las condiciones óptimas de operación en cada caso y elucidar los mecanismos de remoción aplicando diferentes técnicas analíticas como HPLC, fluorescencia e IR.

6.5.1 Proceso de fotocatálisis para la remoción de DCF

En el proceso de fotocatálisis, los catalizadores se prepararon utilizando óxidos de Titanio comerciales, que fueron dopados mediante un método electroquímico empleando electrodos de Fe y/o Cu, para realizar el soporte en zeolita se utilizó un tratamiento térmico gradual. Los parámetros evaluados en la preparación de los materiales de TiO₂ dopados fueron el tiempo de tratamiento (30 y 60 min), la intensidad de corriente (0,5 y 1 A) y la presencia o ausencia de luz UV. Los materiales dopados se caracterizaron por difracción de rayos X, microscopía electrónica de barrido con análisis elemental, absorción atómica, IR y punto de carga cero (Pcz). El contenido de metal en los materiales modificados y el punto de carga cero se muestran en la Tabla 15.

<table>
<thead>
<tr>
<th>Material</th>
<th>Fe (mg/g)</th>
<th>Cu (mg/g)</th>
<th>Teórico (mg/L)</th>
<th>Fe</th>
<th>Cu</th>
<th>Pcz</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiFeZ-7</td>
<td>2342.96</td>
<td></td>
<td>15430</td>
<td>2319.95</td>
<td></td>
<td>6.51</td>
</tr>
<tr>
<td>TiCuZ-2</td>
<td></td>
<td>2272.4</td>
<td>6588</td>
<td></td>
<td>2272.29</td>
<td>6.50</td>
</tr>
<tr>
<td>TiFeCuZ-7</td>
<td>3316.32</td>
<td>1360.8</td>
<td>13168 Cu 15438 Fe</td>
<td>3293.31</td>
<td>1360.69</td>
<td>6.00</td>
</tr>
<tr>
<td>zeolita</td>
<td>23.01</td>
<td>0.108</td>
<td></td>
<td></td>
<td></td>
<td>5.52</td>
</tr>
</tbody>
</table>

Los materiales mostraron un bajo contenido de titanio, silicio y aluminio, lo que sugiere que los TiO₂ recubrieron la zeolita, mientras que los metales se depositan solo en la superficie.

Posteriormente los materiales fueron probados con soluciones acuosas de DCF, el proceso se realizó a diferentes valores de pH (4, 5, 7 y 9) y concentraciones iniciales de DCF (20, 40, 60, 80 y 100 mg/L). Los resultados indicaron que a valor de pH 4, los porcentajes de remoción
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

son mayores a 97% para las concentraciones iniciales de 20 a 60 mg/L, mientras que para 80 y 100 mg/L el porcentaje de remoción fue menor a 88%. A pH 5, las eficiencias de remoción alcanzaron el 58% para las concentraciones de 40 a 100 mg/L. Finalmente a pH de 7 y 9 las eficiencias disminuyeron a 47%, por lo que se determinó que el pH óptimo para la oxidación de DCF es 4. Esto se relaciona con el valor del pKa y del Pcz, a pH>pKa, la molécula se encuentra más ionizada, por lo que ocurrió un efecto sinérgico, el Pzc es de 6.52 por lo que existió una atracción electrostática con la forma ionizada del DCF.

La cinética de degradación a 10 mg/L se realizó para evaluar su eficiencia a baja concentración, el TiFeZ-7 se preparó en las siguientes condiciones: 1 A duran... (continuación)
6.5.2 Proceso de electrooxidación para la remoción de ACT

El proceso de electrooxidación se llevó a cabo utilizando un diseño factorial 2^3, en donde se analizó: intensidad de corriente, configuración electródica y presencia o ausencia de luz UV. La concentración inicial para determinar las mejores condiciones fue de 80 mg L$^{-1}$.

Los resultados se resumen en la Tabla 16, donde el mejor porcentaje de remoción en UV-Vis (100 %) se obtuvo en el experimento “a”, utilizando una configuración electródica DDB-Fe, 1 A y presencia de luz UV con 15 min de tratamiento. Gráficamente, en la Figura 8, se observa el comportamiento sinérgico de los tres factores en estudio, pues se muestra un rápido decaimiento en la concentración de ACT.

Tabla 16: Diseño factorial del tratamiento de electrooxidación.

<table>
<thead>
<tr>
<th>Interacción</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>y*</th>
<th>% de degradación</th>
<th>Tiempo de tratamiento (min)</th>
<th>Consumo energético (kWh m$^{-3}$)</th>
<th>Tarifa monetaria (MXN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>0.5</td>
<td>Si</td>
<td>DDB-Fe</td>
<td>0.3</td>
<td>99.59</td>
<td>60</td>
<td>12.125</td>
<td>7.032</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>Si</td>
<td>DDB-Fe</td>
<td>0</td>
<td>100</td>
<td>15</td>
<td>7.8125</td>
<td>4.531</td>
</tr>
<tr>
<td>b</td>
<td>0.5</td>
<td>No</td>
<td>DDB-Fe</td>
<td>5</td>
<td>93.89</td>
<td>45</td>
<td>9.093</td>
<td>5.274</td>
</tr>
<tr>
<td>ab</td>
<td>1</td>
<td>No</td>
<td>DDB-Fe</td>
<td>2.1</td>
<td>97.36</td>
<td>60</td>
<td>31.25</td>
<td>18.125</td>
</tr>
<tr>
<td>c</td>
<td>0.5</td>
<td>Si</td>
<td>DDB-Cu</td>
<td>0</td>
<td>100</td>
<td>45</td>
<td>9.093</td>
<td>5.274</td>
</tr>
<tr>
<td>ac</td>
<td>1</td>
<td>Si</td>
<td>DDB-Cu</td>
<td>1</td>
<td>98.82</td>
<td>45</td>
<td>23.437</td>
<td>13.593</td>
</tr>
<tr>
<td>bc</td>
<td>0.5</td>
<td>No</td>
<td>DDB-Cu</td>
<td>7.13</td>
<td>91.58</td>
<td>60</td>
<td>12.125</td>
<td>7.032</td>
</tr>
<tr>
<td>abc</td>
<td>1</td>
<td>No</td>
<td>DDB-Cu</td>
<td>5.8</td>
<td>93.04</td>
<td>30</td>
<td>15.625</td>
<td>9.062</td>
</tr>
</tbody>
</table>

*Concentración (mg L$^{-1}$) de ACT determinada por espectrofotometría UV-Vis.
Concentración inicial de ACT: 80 mg L$^{-1}$.
X= Intensidad de corriente, Y= Presencia de Luz UV, Z= Configuración electródica.

Figura 8: Cinéticas de tratamiento de paracetamol bajo diferentes condiciones de operación empleando el diseño factorial 2^3 [AL: ausencia de luz UV, PL: presencia de luz UV].
Dado que la densidad de corriente aumenta a medida que lo hace la intensidad de corriente, se necesita menos tiempo de electrólisis para la degradación total. Esto presupone un aumento en el porcentaje de degradación en los experimentos a los que se les aplicó 1 A, en la configuración electródica DDB-Cu (interacciones “bc” y “abc”) el porcentaje de degradación aumenta de 91.58% a 93.04% entre 0.5 y 1.0 A, con un tiempo de tratamiento de 60 y 30 minutos, respectivamente, esto se relaciona con la mayor generación de radicales HO’ en la superficie del DDB. En este caso, con cualquiera de las dos configuraciones electródicas e intensidades de corriente aplicadas, la eficiencia de remoción fue mayor en presencia de luz UV.

Respecto a la configuración electródica, la eficiencia de degradación en menor tiempo utilizando metales de transición como cátodo (Fe y Cu) se debe a que participan como catalizadores de reacción ya que pueden reaccionar bajo numerosos estados de oxidación y actuar como donadores o aceptores de electrones; como consecuencia de ello se forman nuevos compuestos que proveen una ruta de reacción alternativa con una energía de activación más baja. Al utilizar DDB-Fe se alcanzó un porcentaje de degradación de 100% a 15 min de tratamiento, mientras que con DDB-Cu, el tiempo de tratamiento se triplicó para obtener el mismo porcentaje de mineralización.

La tasa de degradación disminuye desde pH 5.5 a 7 y 9 debido a que un mayor número de especies HO’ se recombinan para formar H₂O₂ y no interactúan con el ACT. En condiciones ácidas, la recombinación de radicales HO’ es menos efectiva y más lenta que el ataque de HO’ al ACT. El pH inicial en este estudio fue de 5.44 a 5.6, por lo que la degradación se favoreció.

Para evaluar la formación y degradación de compuestos aromáticos intermedios durante el proceso de reacción de degradación fotocatalítica, las muestras se analizaron por espectrofotometría UV-Vis. El ACT tiene una banda de absorción máxima de 243 nm que coincide con los enlace C=C del anillo aromático. Esta banda representa la transición de un estado fundamental a uno más activo, con la misma distribución de electrones pero con una ligera diferencia en la energía vibratoria. El pico característico (λ= 243 nm) desapareció gradualmente durante los 15 min de tratamiento.
En presencia de luz UV la constante de velocidad fue mayor ($3.66 \times 10^{-2} \text{ min}^{-1}$), que en ausencia de luz UV ($2.67 \times 10^{-2} \text{ min}^{-1}$), corroborando el impacto de este parámetro durante la remoción de ACT.

6.5.3 Proceso de electrooxidación para la remoción de DCF

Este POA fue realizado con base a un diseño factorial 2^3, en donde los tres factores estudiados se presentan con dos niveles de interés, los experimentos fueron realizados a un pH entre 5-6.4, sin embargo, al utilizar como electrolito soporte Na_2SO_4, el pH disminuyó hasta 2.31. El pka del diclofenaco es de 3.8, por lo que se observó un proceso de precipitación-redisolución-degradación del diclofenaco, ya que a pH mayor al pKa se favorece la solubilidad porque el grado de ionización es mayor, por el contrario a pH menor al pKa de la molécula no se encuentra ionizada. La radiación UV tiene como objetivo romper los enlaces químicos cuando la energía fotónica absorbida supera la energía de enlace, cuando el enlace está roto, un electrón desapareado permanece en cada fragmento y se forman radicales. Al incidir radiación UV a soluciones acuosas de diclofenaco, es posible fragmentar un enlace de C-Cl (Energía de disociación del enlace= 330 kJ/mol) que da como resultado la formación de un radical de cloro y un electrón desapareado. Esta afirmación sugiere que el porcentaje de degradación al usar NaCl como electrolito soporte debe incrementar en presencia de luz UV, sin embargo, a 0.5 A ($J=12.64 \text{ A/m}^2$) en ausencia de luz UV la eficiencia fue de 77.7%; mientras que a 0.5 A en presencia de luz UV, la eficiencia alcanza el 77.1%. Por otra parte, a 1 A ($J= 25.29 \text{ A/m}^2$) en presencia de luz UV, se obtuvo el 80.3% de mineralización y en ausencia de luz UV la eficiencia se incrementó a 97.8%. Por lo que la radiación UV no presentó un efecto positivo en la degradación de diclofenaco.

6.5.4 Proceso de galvano-Fenton y galvano-Fenton solar para la remoción de ACT

Se aplicó un diseño cribado como método estadístico para verificar la influencia de varios parámetros y sus interacciones, las variables fueron: pH (3 y 5), concentración inicial de ACT (25 y 60 mg/L), presencia o ausencia de radiación solar y dosis de H_2O_2 (0.9 y 2.5 mM). En los sistemas GF y SGF, la concentración de ACT y COT se investigaron como variables de respuesta.
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

Cuando la dosis de \(\text{H}_2\text{O}_2 \) se incrementa de 0.9 a 2.5 mM, la eficiencia de eliminación de ACT y COT aumenta a 100% y 79.38%, respectivamente. Con la dosis más baja de \(\text{H}_2\text{O}_2 \), se logró una eliminación de COT de 29.9% y una eliminación de ACT de 86.67% a 367.78 kJ/L de energía acumulada. Estos resultados demuestran que a mayor concentración de \(\text{H}_2\text{O}_2 \) y en presencia de luz UV se mejora la eficiencia de eliminación de ACT y COT. En los procesos basados en Fenton, el \(\text{H}_2\text{O}_2 \) es la principal fuente de radicales \(\text{HO}^\bullet \). En el sistema GF en ausencia de luz UV, se logró la remoción de 49.83% y 82% de ACT a dosis de \(\text{H}_2\text{O}_2 \) de 2.5 y 0.9 mM, respectivamente. En las mismas condiciones, la eliminación de COT fue de 64.47% y 40.74%. Estos resultados indican que el proceso de GF condujo a una degradación parcial y una mineralización deficiente; por lo tanto, la presencia de luz UV es un factor importante en la eliminación de ACT. La relación de \(\text{H}_2\text{O}_2/\text{Fe}^{2+} \) utilizadas en esta investigación oscilaron entre 14.99 y 3.07, y la proporción óptima fue 8 (85 mg/L \(\text{H}_2\text{O}_2 \)/10.62 mg/L \(\text{Fe}^{2+} \)) para 60 mg/L ACT (0.39 mM).

Para el sistema GF, las eficiencias máximas de remoción alcanzadas son 64.47% de COT y 49.83% para ACT. Para el proceso de SGF, se removió el 79.38% de COT y 100% de ACT. Las condiciones óptimas en ambos sistemas fueron 60 mg/L de ACT, 2.5 mM \(\text{H}_2\text{O}_2 \) y pH 5. Bajo estas condiciones, los sistemas GF y SGF generaron concentraciones de hierro de 6.53 mg/L y 10.62 mg/L, respectivamente a 40 minutos de tiempo de retención. La presencia de radiación solar aumentó las eficiencias de remoción de COT y ACT.
7.- CONCLUSIONES

En el presente trabajo de investigación se ha llevado a cabo la modificación electroquímica y fotoelectroquímica de TiO$_2$, se obtuvieron 24 materiales modificados los cuales se probaron con soluciones acuosas de diclofenaco a diferentes concentraciones y bajo diferentes valores de pH. Tras 8 h de contacto, se encontró que los materiales TiFeZ-7, TiCuZ-2 y TiFeCuZ-7 mostraron los mejores porcentajes de remoción (97%) para todas las concentraciones iniciales a pH de 4.

Por otro lado, se aplicó un sistema galvánico para promover la reacción de Fenton, el cual fue llamado Galvano-Fenton (GF), para el tratamiento de soluciones acuosas de paracetamol. De acuerdo con los resultados, se encontró que las condiciones óptimas de operación ocurren a 77.5 mg/L de ACT, pH de 3.53, dosis de H$_2$O$_2$ de 3.3 mM y en presencia de radiación solar, con un porcentaje de remoción de paracetamol de 97.9% a 5 minutos de tratamiento. COT de 90% a 90 minutos de tratamiento. Además, el sistema galvánico generó 625 mV de corriente a 89.6°C, se liberaron 8.8 mg/L de Fe$^{2+}$ con una relación H$_2$O$_2$/Fe$^{2+}$ de 1.44. El efluente final tuvo un pH de 4.49, conductividad eléctrica de 363.3 µS/cm, 12.7 mg/L SDT y no presentó H$_2$O$_2$ residual.

Se aplicó un sistema de electrooxidación para degradar ACT y sus productos intermedios de reacción en solución acuosa a diferentes concentraciones. Se obtuvo una degradación total (100 %) a 1.0 A, configuración electrodica DDB-Fe y presencia de luz UV. El proceso de foto-electrooxidación es un método prometedor para la degradación de ACT en aguas residuales contaminadas, las constantes de velocidad de degradación se incrementaron proporcionalmente en presencia de luz UV (de 2.67 x 10$^{-2}$ a 3.66 x 10$^{-2}$ min$^{-1}$).

El proceso de electrooxidación con una configuración DDB-DDB, resultó ser eficiente para la mineralización de diclofenaco. Dentro de las variables de estudio, el electrolito soporte es la variable que tiene más efecto dentro del proceso y se favorece al adicionar NaCl. Las condiciones óptimas fueron a una intensidad de corriente de 1 A (J= 25.29 A/m²), NaCl como electrolito soporte, en ausencia de luz UV, en un tiempo de 360 minutos, la remoción fue de 97.8% de diclofenaco, mientras que el COT, DQO Y DBO$_5$ mostraron eficiencias de 64.4%, 89.3% y 100% respectivamente.
8.- RECOMENDACIONES

Analizar concentraciones menores de ACT y DCF que se asemejen a las reportadas en cuerpos de agua naturales y en efluente e influentes de PTAR, empleando como variables de respuesta la concentración medida por HPLC.

Para estudios posteriores de electrooxidación con DDB es recomendable realizar los experimentos con Na₂SO₄ utilizando un buffer, con la finalidad de controlar el pH. Así mismo se recomienda hacer la determinación de compuestos clorados, para conocer los compuestos derivados de cloro presentes como productos de la degradación.

Para los experimentos de fotocatálisis se recomienda evaluar dosis mayores y menores de los catalizadores, evaluando también los tiempos de tratamiento requeridos. También se recomienda hacer un análisis a profundidad sobre el tratamiento térmico analizando temperaturas mayores y menores, así como el tiempo de exposición.

En el tratamiento de GF y SGF se recomienda evaluar diferentes dosis de H₂O₂ y evaluar tiempo de retención mayores y menores con la finalidad de encontrar el tiempo de tratamiento óptimo.
9.- PRODUCTOS ACADÉMICOS

Asesor externo de tesis de licenciatura

Licenciatura en Química. Universidad Autónoma del Estado de México

Nombre: Ana Gabriela Sierra Sánchez

Fecha de examen: 29 de Mayo de 2018

Tema: “Tratamiento del N-(4-hidroxifenil) acetamida en solución acuosa mediante fotoelectrooxidación utilizando una configuración DDB-Fe y DDB-Cu”.

XXIII Congreso de Sociedad Iberoamericana de Electroquímica (SIBAE). Del 3 al 8 de Junio de 2018, Cusco, Perú.

a) “Síntesis electroquímica de Ferrato(VI) y su aplicación en el tratamiento de azul índigo y agua residual textil”. Monserrat Castañeda Juárez, Ivonne Linares-Hernández, Verónica Martínez-Miranda, Gabriela Roa-Morales. Cartel

Estancia de Investigación

Lugar: Central de Instrumentación de Espectroscopía de la Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional

Investigador: Dra. Fortunata Santoyo Tepole

Duración: 28 de Julio al 28 de Agosto de 2018
Proyecto: “Determinación y adecuación de la metodología para la detección y cuantificación de diclofenaco y paracetamol mediante HPLC-DAD”

Lugar: Laboratorio de Ingeniería Electroquímica y Medioambiental, Universidad de Castilla-La Mancha, Cuidad Real, España.

Investigador: Dr. Manuel Andrés Rodrigo Rodrigo

Duración: 15 de Febrero al 02 de Agosto de 2019

Proyecto: “Remoción de contaminantes presentes en fase gas mediante procesos de oxidación avanzada”

1er. Coloquio de investigación en ingeniería y 10° Curso-Taller Temas actuales en Ciencias del Agua

Tema: Degradación de paracetamol y diclofenaco mediante Fotocatálisis

Bienal estudiantil de ciencias y tecnología 2018

Tema: “Remoción de diclofenaco mediante óxidos de titanio modificados electroquímicamente”

4to Simposio Anual de Recursos Hídricos 2018 UAM Lerma

Tema: Remoción de diclofenaco mediante TiO₂ dopados con metales de transición

2do. Coloquio de investigación en ingeniería y 11° Curso-Taller Temas actuales en Ciencias del Agua

Tema: Degradación de diclofenaco mediante Fotocatálisis

Tema: Degradación del ácido 2-[2-(2,6-dicloroanilino)fenil] acético en solución acuosa mediante electrooxidación y fotoelectrooxidación.
"Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada"

Artículos publicados/aceptados:

Artículos enviados:

Capítulo de libro:

Status: Aceptado y en proceso de publicación (carta de aceptación)

Cursos:

“Análisis de Datos por Statgraphics Centurion”

Impartido por: Dr. Luis Antonio Castillo Suárez
"Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada"

A través de la Subdirección Académica de la Facultad de Química
Otorga la

CONSTANCIA A
M. en C.A. Monserrat Castañeda Juárez

Como Asesor Externo del trabajo:
"Tratamiento del N-(4-hidroxifenil) acetamida en solución acuosa mediante
fotoelectrocristalización utilizando una configuración DDB-Fe y DDB-Cu"

En la modalidad de: Tesis
Del pasante: Ana Gabriela Sierra Sánchez
Con No. de cuenta: 1013210
De la licenciatura: Químico
Fecha de la evaluación profesional: 29 de mayo de 2018

Exhortándole a continuar cumpliendo como hasta ahora con profesionalismo su
compromiso institucional.

Esta constancia ha sido avalada por los H.H. Consejos Académico y de Gobierno en las
sesiones ordinarias del 29 y 30 de marzo de 2016.

ATENTAMENTE
“2018, Año del 190 Aniversario de la Universidad Autónoma del Estado de México”

Dr. Víctor Raúl Guerrero
Subdirector Académico

Toluca, México, 17 de mayo de 2018
Certificado de Presentaciones

El Comité Organizador tiene el placer de informar que la comunicación, aceptada como presentación póster, titulada

Síntesis electroquímica de Ferrato(VI) y su aplicación en el tratamiento de azul índigo y agua residual textil

S2-P38

por los autores:

Dra. Gabriela Roa-Morales

ha sido presentada durante el

XXIII Congreso de la Sociedad Iberoamericana de Electroquímica

del 3 al 8 de Junio de 2018 en Cusco, Perú.

Dr. Adolfo La Rosa-Toro Gómez

Presidente de la Comisión Organizadora SIBAE 2018

Sociedad Peruana de Electroquímica
Certificado de Presentaciones

El Comité Organizador tiene el placer de informar que la comunicación, aceptada como presentación póster, titulada

Tratamiento del N-(4-hidroxifenil) acetamida en solución acuosa mediante oxidación electroquímica y fotoelectroquímica

S1-P38

por los autores:

Dra. Ivonne Linares Hernández Quimica Ana Gabriela Sierra Sánchez Maestra Monserrat Castañeda Juárez

Dra Perla Tatiana Almazán Sánchez Dra Verónica Martínez Miranda Dra. Guadalupe Vázquez Mejía

ha sido presentada durante el

XXIII Congreso de la Sociedad Iberoamericana de Electroquímica

del 3 al 8 de Junio de 2018 en Cusco, Perú.

Dr. Adolfo La Rosa-Toro Gómez

Presidente de la Comisión Organizadora SIBAE 2018
Sociedad Peruana de Electroquímica
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

Prof. Dr. Manuel Andrés Rodrigo Rodrigo
Full Professor of Chemical Engineering

Ciudad Real, 20/08/2019

Mediante el presente escrito informo que Dra. Monserrat Castañeda Juárez ha realizado un estancia de investigación en el Laboratorio de Ingeniería Electroquímica y Ambiental del Departamento de Ingeniería Química de la Facultad de Ciencias y Tecnologías Químicas de la Universidad de Castilla La Mancha durante el periodo 1 de marzo de 2019 al 1 de agosto de 2019, en la que ha desarrollado el proyecto de investigación “Tratamiento de efluentes gaseosos contaminados con perchloroceteno por tecnología electroquímica.”.

He de informar que todos los objetivos planteados en este ambicioso proyecto han sido alcanzados con éxito, como consecuencia de la enorme cantidad de trabajo que ha desarrollado Mons se en estos seis meses y de su gran capacidad de análisis de resultados. Como consecuencia se están preparando varias publicaciones para ser enviadas a revistas de alto índice de impacto.

Además de la enorme valía científica que ha demostrado Mons y de su capacidad de abordar retos de gran magnitud, he de resaltar su valía personal, ya que ha actuado como un auténtico nexo de unión en el Laboratorio, favoreciendo un buen ambiente de trabajo y la colaboración científica con los distintos estudiantes de doctorado y postdoctorado del laboratorio.

Como consecuencia, quiero resaltar mi enorme satisfacción con su estancia y por ende con el grupo dirigido por la Profesora Ivonne Linares, además de agradecer a la UAM la ayuda concedida a Mons, de la que espero que en breve se convierta en una investigadora de gran prestigio internacional.

Atentamente,

[Signature]

Prof. M.A. Rodrigo
"Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada"

Ciudad de México a 20 de junio de 2018

DRA. IVONNE LINARES HERNÁNDEZ
PROFESORA INVESTIGADORA
CENTRO INTERAMERICANO DE RECURSOS DEL AGUA

Por este medio le comunico que Monserrat Castañeda Juárez, alumna de Doctorado en Ciencias del Agua, realizará una estancia de investigación bajo mi cargo en la Central de Instrumentación de Espectroscopía de la ENCB-IPN, en el período comprendido del 28 de julio al 28 de agosto del presente año.

Durante la estancia de investigación se hará una revisión bibliográfica y adecuación de metodología para la detección y cuantificación mediante HPLC-DAD de los fármacos diclofenaco y paracetamol, así como de sus posibles intermediarios de degradación formados durante el tratamiento avanzado.

Sin otro particular por el momento, reciba un afectuoso saludo.

ATENTAMENTE

DRA. FORTUNATA SANTOYO TEPOLE
JEFA DE LA CENTRAL DE INSTRUMENTACIÓN DE
ESPECTROSCOPIA- ENCB-IPN
Tel. 57296300 ext. 62519
fsantoyo@ipn.mx

Prolongación de Carrillo y Plan de Agua s/n, Col. Santo Tomás, Miguel Hidalgo, C.P. 11340, Ciudad de México.
Tel. 57296300 ext. 62661 y 62693.
Correo electrónico: cm8@ipn.mx
La Secretaría de Investigación y Estudios Avanzados

Otorga la presente

Constancia

a

Monserrat Castañeda Juárez

Por su participación en la Bienal Estudiantil de Ciencias y Tecnología, 2018.

Toluca, Estado de México, 23 de noviembre de 2018.

PATRIA, CIENCIA Y TRABAJO

“2018, Año del 190 Aniversario de la Universidad Autónoma del Estado de México”

Dr. en C. I. Amb. Carlos Eduardo Barrera Díaz
Secretario de Investigación y Estudios Avanzados
La Universidad Autónoma del Estado de México

a través de la

Facultad de Ingeniería

otorga la presente

Constancia a:

Monserrat Castañeda-Juárez, Ivonne Linares Hernández,
Perla Tatiana Almazán-Sánchez, Guadalupe Vazquez-Mejía y
Verónica Martínez-Miranda

por su participación como ponente con el trabajo:

Degradación de paracetamol y diclofenaco mediante Fotocatálisis

en el Primera Edición del Coloquio de investigación en Ingeniería y el 10° Curso-Taller “Temas actuales en ciencia del agua”, con la temática “Aplicaciones de la Ingeniería a problemas actuales”

Realizado del 24 al 26 de octubre de 2018, en la ciudad de Toluca, Estado de México, México.

Dra. María Dolores Durán García
Directora de la Facultad de Ingeniería

Dr. en I. Daury García Pulido
Coordinador del Centro Interamericano de Recursos del Agua

“2018, Año del 190 Aniversario de la Universidad Autónoma del Estado de México”
La Facultad de Ingeniería y el Instituto Interamericano de Tecnología y Ciencias del Agua otorgan la presente

CONSTANCIA

a:

Monserrat Castañeda Juárez, Ivonne Linares Hernández, Verónica Martínez Miranda y Perla Tatiana Almazán Sánchez

Por su participación como ponente(s) de la presentación titulada “Degradación de diclofenaco mediante Fotocatálisis”, en el marco del 2º Coloquio de Investigación en Ingeniería y 11º Curso-Taller “Temas actuales en Ciencias del Agua”, el cual tuvo lugar dentro de las instalaciones de este Organismo Académico, del 27 al 29 de noviembre de 2019.

“PATRIA, CIENCIA Y TRABAJO”

[Signaturas de autoridades]
REVISTA INTERNACIONAL DE CONTAMINACIÓN AMBIENTAL

Ciudad Universitaria, 12 de noviembre de 2019

Monserrat Castañeda Juárez
Instituto Interamericano de Tecnología y Ciencias del Agua
México
PRESENTE

Por este medio tengo el agrado de comunicarle que su trabajo ELECTROSYNTHESIS OF SODIUM AND POTASSIUM FERRATE FOR THE TREATMENT OF INDIGO BLUE AQUEOUS SOLUTIONS AND DENIM WASTEWATER, bajo la autoría de Monserrat Castañeda Juárez, Verónica Martínez Miranda, Perla Tatiana Almazán Sánchez, Ivonne Linares Hernández, Guadalupe Vázquez Mejía, fue aceptado en la Revista Internacional de Contaminación Ambiental Vol. 36 (3) correspondiente a agosto 2020. Sin embargo, su publicación estará sujeta a que hayan enviado las figuras en el formato correcto.

Atentamente,

M. en E. Claudio M. Amescua García
Editor Ejecutivo

http://www.revistas.unam.mx/index.php/rica
Dra. Ivonne Linares Hernández

Por medio de la presente se confirma la recepción del capítulo “Procesos Fenton en el tratamiento de aguas” (autores Monserrat Juárez-Castañeda, Luis Antonio Castillo-Suérez, Ivonne Linares-Hernández y Flor Avendano-Sanjuan), el cual será incluido en la obra “Procesos de Oxidación Avanzada en el Tratamiento de Agua”. El capítulo por el momento será sometido a revisión y se le hará saber si se requiere alguna modificación o se publicará en su versión actual.

Sin más por el momento, agradezco la atención prestada a la presente.

Reciba usted un cordial saludo.

Dr. en C. L.Amb. Carlos Eduardo Ráurez Díaz

Secretario de Investigación y Estudios Avanzados de la Universidad Autónoma del Estado de México
Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada
10.- REFERENCIAS

14. Mane SN, Gadalkar SM, Rathod VK. Intensification of paracetamol (acetaminophen) synthesis from hydroquinone using ultrasound. Ultrason - Sonochemistry [Internet]. 2018; Available from: https://doi.org/10.1016/j.ultsonch.2018.07.029

21. Andrea M, Franco E De, Carvalho CB De, Bonetto MM, Soares RDP, Carvalho CB De, et al. Accepted Manuscript. 2018;

23. Brillas E, Martínez-Huitle CA. Decontamination of wastewaters containing synthetic

Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

Remoción de diclofenaco y paracetamol por procesos de oxidación avanzada

97. Negocios UDI De. Industria Farmacéutica.
