A MAXWELL THEORY FOR THE SCATTERING OF TM POLARIZED

ELECTROMAGNETIC BEAMS

BY A DOUBLE METALLIC SLIT

J. Sumaya-Martínez*, F.M. Laris-Avila and G. Montiel-Gonzalez

* Facultad de Ciencias, Universidad Autónoma del Estado de México. Instituto Literario #100 Col. Centro, Toluca, México C.P. 50000. Correo: jsm@uaemex.mx

Resumen.

Se presenta una teoría vectorial de la difracción de haces Hermite–Gauss sobre una pantalla metálica de espesor h con dos rendijas de ancho ℓ y separación d. los haces inciden oblicuamente con polarización TM. Estudiamos numéricamente los patrones de difracción en campo lejano como función de los parámetros opto–geométricos: longitud de onda λ , ancho de rendija ℓ , separación d, ángulo de incidencia θ_i y orden del polinomio de Hermite m. Por otra parte, en la región vectorial de la difracción dada por $\lambda/\ell > 0.2$ donde λ es la longitud de onda incidente, se analiza numéricamente la energía difractada a lo largo de la dirección del haz incidente (E_i) y la validez de la propiedad de la difracción escalar $E_i = N\tau/\lambda$ donde τ es el coeficiente de transmisión y N el número de rendijas.

Abstract

We present a rigorous theory for oblique incident Hermite-Gaussian beams, diffracted by two slits of width ℓ and separation d, in a thick metallic screen for the case of polarization TM(S). The far field spectra as a function of several opto-geometrical parameters, wavelength λ , slit width ℓ , separation d, incidence angle θ_i and Hermite order m is analyzed. In the vectorial diffraction region given when $\lambda/\ell > 0.2$, where ℓ is the incident wavelength and as a function of the separation between slits d; we have numerically analyzed: the far field spectra, the energy diffracted along the incident beam direction (E_i), and the validity of an approximate diffraction (scalar) property, namely E_i = N τ/λ .

Palabras clave:

Difracción, Esparcimiento, Doble rendija.

Keywords:

Diffraction, Scattering, Double slit.

Introduction.

Currently there are several rigorous theories of diffraction by plane electromagnetic waves (Enriquez *et al.*, 2011) and Gaussian beams (Mata *et al*, 1993); (Mata *et al*, 1994) by two slits in metallic screens of zero thickness. However these theories do not treat with Hermite-Gauss or oblique incidence, nor thick screens of nonzero thickness (Mata *et al*, 2008).

In this paper, we present a novel rigorous theory of diffraction that allows to consider the illumination by Hermite-Gaussian beams at oblique incidence on two slits of width ℓ and separation d in screens with infinite conductivity and thickness h.

We analyze the coupling between slits through the numerical study of the diffracted energy along the direction of the incident (E_i) beam energy as a function of the parameter of separation d between the slits. It is revealed the existence of oscillations in the energy E_i . We also show that in the case of TM(S) polarization, the energy E_i is special because when compared to other diffraction patterns. Finally, we show that the scalar property valid at the scalar region ($\lambda/\ell < 0.2$) $E_i = N\tau/\lambda$ (Alvarez-Cabanillas, 1995) is no longer valid.

A Vector Theory of Diffraction.

In Fig.1 we have two slits on a screen of infinite conductivity, and non-zero thickness denoted by *h*. In this screen, you have two parallel to the Oz axis, ℓ wide and spaced slits *d*. The display is in the gap and impinges perpendicularly on it a Hermite-Gaussian beam with wavelength $\lambda = 2\pi/k$ and order *m*. We will use the complex representation for the fields and omit the time factor going forward $e^{-i\omega t}$. *H* is the magnetic field when you have the TM (magnetic field parallel to the axis Oz) polarization. The *H* field satisfies the Helmholtz equation (Mata *et al*, 1994).

$$\partial^2 H / \partial x^2 + \partial^2 H / \partial y^2 + k^2 H = 0.$$
(1)

Denote by H_I the solution of Eq (1) in the region I (y > h/2), expressed by a plane wave expansion:

$$H_{I}(x,y) = \frac{1}{\sqrt{2\pi}} \int_{-k}^{k} A(\alpha) e^{i(\alpha x - \beta y)} d\alpha + \frac{1}{\sqrt{2\pi}} \int_{-k}^{k} B(\alpha) e^{i(\alpha x + \beta y)} d\alpha$$
(2)

The first integral is identified with the incident beam due to the sign of the α and β k-components.

In region II, within the screen, -h/2 < y < h/2 the electromagnetic field will be represented by the following modal series:

Figure 1. Our system. Two slits of width ℓ and spacing *d* in an infinitely thick conducting screen *h*. The energy diffracted along the incident direction (*E_i*) is diffracted in the direction of θ (relative to the axis Oy) = θ_i (From the axis Ox).

$$H_{II}(x,y) = \sum_{n=0}^{\infty} a_n^1 \phi_n^1(x,y) + \sum_{n=0}^{\infty} a_n^2 \phi_n^2(x,y)$$
(3)

Where in i = 1,2 the set $\varphi_n^i(x)$, are functions whose normal derivative is zero at the walls for the TM polarization.

The diffracted field below the screen, for y < -h/2 (region III), could be expressed as a plane wave expansion too:

$$H_{III}(x,y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} C(\alpha) e^{i(\alpha x + \beta y)} d\alpha$$
(4)

Our goal is to determine the transmitted field (Eq. (4)), for which one needs to determine $C(\alpha)$. Note that $C(\alpha)$ depends on the coefficients a_n^1 and a_n^2 and the incident amplitude $A(\alpha)$. For this, we use the appropriate conditions of continuity, which could be obtained from Maxwell's equations (Alvarez-Cabanillas, 1995). These conditions lead us to the following matrix system, in which the matrix columns a_1 and a_2 are formed respectively by the coefficient a_n^1 and a_n^2 .

$$M_{11}a_1 + M_{12}a_2 = S_1, (5)$$

where M_{ik} (*i*, *k* = 1,2) are square matrices dependent on the opto-geometrical parameters and S_i (*i* = 1,2) are matrices depending only on *A* (α). The determination of the modal coefficients a_n^1 and a_n^2 , allow us to calculate the diffracted field in any region for TM polarization.

 $M_{21}a_1 + M_{22}a_2 = S_2,$

Results and Discussion.

Using the complex Poynting vector is possible to obtain the diffracted intensity at the angle θ . For a Hermite-Gaussian beam, the spectral amplitude is (Mata *et al*, 2008):

$$A(\alpha) = \frac{L}{2} i^{m} H_{m} \left[-\frac{L}{2} (\alpha \sin \theta_{i} - \beta \cos \theta_{i}) \right] \times \left[\sin \theta_{i} + \left(\frac{\alpha}{\beta} \right) \cos \theta_{i} \right] e^{(-i\alpha b)} \times e^{[-(\alpha \sin \theta_{i} - \beta \cos \theta_{i})^{2} L^{2}/8]}$$
(6)

where H_m is the Hermite polynomial of order m. The position of the beam waist is given by the parameter b (see Fig. 1).

In the figures relating to energy diffracted along the direction of the incident beam is $E_i(\theta = \theta_i)$ the diffracted angle in the direction of the incident beam, measured from the axis Ox and θ_i is the angle of incident beams to the axis Oy measured. The energy, the diffracted intensity $I(\theta)$ and the transmission coefficient τ are normalized to the total incident energy I_0 . All parameters normalized opto-geometrical width lof the slots ℓ , that is, $\ell = 1$.

In Figs. 2 and 3 show the diffraction patterns of Hermite-Gaussian beams for the fundamental mode m = 0 at normal incidence and oblique incidence of 30 °; the wavelength of the incident beams is $\lambda/\ell=0.9$, with extremely wide Gaussian beams $L/\ell=500/\sqrt{2}$ and fixed at the position $b/\ell=0.5$, the thickness of the screen is $h/\ell=1$ and the gaps between slits are $d/\ell=0, 1, 3.5$ and 5.

Figure 2. Diffraction patterns normalized $(I(\theta)/I_0)$ of Hermite-Gaussian beams of m = 0 normally incident on two slits so. With $\lambda/\ell = 0.9$, $L/\ell = 500/\sqrt{2}$, $h/\ell = 1$ and position $b/\ell = 0.5$ and for separations $d/\ell = 0, 1, 3.5$ and 5.

The shape of the diffraction patterns for the m = 2 mode, not shown, is identical to the spectra of FIGS. 2 and 3 (with the same opto-geometrical parameters) except for a scaling factor which provides a lower intensity for this mode, from the respective Hermite polynomial.

From these diffraction patterns, we have taken the diffracted energy E_i along the direction of the incident beams. Figs. 4 and 5 show the behavior of the E_i separation according to d for m = 0 and 2 modes; opto-geometrical parameters of these figures are the same in Fig. 2 and 3.

The curves of FIGS. 4 and 5 show the oscillatory behaviors as E_i a function of the spacing d, for the period is normal incidence to oblique incidence λ and the period is 2λ .

Figure 3. Standard diffraction patterns $(I(\theta)/I_0)$ Hermite-Gaussian beam for m = 0 to 30 ° obliquely incident on two slits so. Same parameters of Fig.2.

In Fig. 5 has also been drawn in broken lines the $2\tau/\lambda$ function. As you can see, this function does not overlap with the energy with E_i which we can say that the property of diffraction $E_i = 2\tau/\lambda$ is not valid in the vector region at least for the separation parameter *d* and doing extremely wide.

Finally, in Fig. 6 different diffracted energy around the energy is E_i . The upper curves of Figure 6 correspond to normal incidence for the m = 2 mode, with the same parameters of Fig. 3; diffracted energies correspond to the angles diffracted $\theta = 90^{\circ}, 91^{\circ}, 92^{\circ}$ and 94°. The curves in the lower window of Fig. 6 correspond to oblique incidence of 30°, also for mode m = 2, with the same parameters of Fig. 4. The diffracted energies shown, corresponding to angles diffracted around of $\theta = 60^{\circ}$ (corresponding to the diffracted energy along the oblique incidence angle $\theta_i = 30^{\circ}$) and for the angles 58°, 57° and 64°.

Figure 4. Energy diffracted in the direction normal to the standard E_i to Hermite-Gauss beam, depending on the spacing d/ℓ screen. For the fundamental mode m = 0, at normal incidence and oblique incidence of 30°, with $\lambda/\ell=0.9$, $L/\ell=500/\sqrt{2}$, $h/\ell=1$, y b/ $\ell=0.5$.

Figure 5. Energy diffracted in the direction normal to the E_i (solid line) Hermite-Gauss beam, thus m = 2 and $2\tau/\lambda$ property (dashed line), in function of the spacing d/ℓ . Same parameters of Fig. 3.

Energy analyzing energy diffracted E_i around for m = 0 at normal incidence and oblique incidence of 30 ° as also carried out (data not shown) found similar patterns for mode m = 2 (see Fig. 6), the energy diffracted around the energy as E_i a function of the spacing d, decay to zero.

Figure 6. Energy diffracted around energy $E_i(\theta = \theta i)$ Hermite-Gauss beam, for the m = 2 mode according to the distance between slits d/ℓ . Same parameters of Fig. 4.

Conclusion.

Present a more rigorous theory of diffraction for the oblique incidence beam Hermite-Gaussian (HG) on a screen of thickness *h* with wide slits separating slits ℓ and *d*. In the case of TM(S) polarization and wavelengths in the vector region $\frac{\lambda}{\ell} > 0.2$, we have found that the diffracted along the direction of the incident beam energy has oscillations period λ as a function of the spacing d for modes m = 0 and 2, for the period 2λ at 30 ° oblique incidence. Finally, we note that the energy E_i has special characteristics compared diffracted energies in other directions and found numerically that ownership of scalar diffraction ($\lambda/\ell < 0.2$) given by $E_i = 2\tau/\lambda$ is no longer valid in this region ($\lambda/\ell > 0.2$).

References.

Enriquez-Leon, G., <u>Martinez-Flores</u>, M. G., <u>Torres-Morales</u>, G., <u>Sumaya-Martinez</u>, J. (2011). Rigorous diffraction of Hermite-Gaussian beams by a double slit. TM polarization. Eight Symposium Optics in Industry.

Mata-Méndez, O., Chávez-Rivas, F. (1993). Estudio teórico y numérico de la difracción en óptica electromagnética. II Teoría rigurosa de la difracción de un haz gaussiano por dos rendijas. Polarización TE. Revista Mexicana de Física. 39(5), 706-721.

Mata-Méndez, O., Álvarez-Cabanillas, M. A. (1994). Estudio teórico y numérico de la difracción en óptica electromagnética. III. Teoría rigurosa de la difracción de un haz gaussiano por dos rendijas. Polarización TM. Revista Mexicana de Física. 40(6), 846-856.

Mata-Méndez, O., Chávez-Rivas, F. & Ortiz-Acebedo, A. (2008). Diffraction of hermite–gaussian beams by Ronchi and aperiodic rulings. Revista Mexicana de Física, 54(1), 35-41.

Álvarez-Cabanillas. M. A. Tesis Doctoral. "Tratamiento riguroso para la difracción de un haz Hermite-Gauss a través de N-rendijas". ESFM-IPN. Diciembre de 1995.