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In recent years, an enormous amount of research has been carried out on support vector machines (SVMs)
and their application in several fields of science. SVMs are one of the most powerful and robust classifi-
cation and regression algorithms in multiple fields of application. The SVM has been playing a significant
role in pattern recognition which is an extensively popular and active research area among the research-
ers. Research in some fields where SVMs do not perform well has spurred development of other applica-
tions such as SVM for large data sets, SVM for multi classification and SVM for unbalanced data sets.
Further, SVM has been integrated with other advanced methods such as evolve algorithms, to enhance
the ability of classification and optimize parameters. SVM algorithms have gained recognition in research
and applications in several scientific and engineering areas. This paper provides a brief introduction of
SVMs, describes many applications and summarizes challenges and trends. Furthermore, limitations of
SVMs will be identified. The future of SVMs will be discussed in conjunction with further applications.
The applications of SVMs will be reviewed as well, especially in the some fields.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Machine Learning is a highly interdisciplinary field which builds
upon ideas from cognitive science, computer science, statistics,
optimization among many other disciplines of science and mathe-
matics. In machine learning, classification is a supervised learning
approach used to analyze a given data set and to build a model that
separates data into a desired and distinct number of classes [1].

There are many good classification techniques in the literature
including k-nearest-neighbor classifier [2,3], Bayesian networks
[4,5], artificial neural networks [6–10], decision trees [11,12] and
SVM [13–15]. K-nearest-neighbor methods have the advantage
that they are easy to implement, however, they are usually quite
slow if the input data set is very large. On the other hand, these
are very sensitive to the presence of irrelevant parameters [2,3].

Decision trees have also been widely used in classification prob-
lems. These are usually faster than neural networks in the training
phase, however, they do not have flexibility to modeling the
parameters [11,12]. Neuronal networks are one of the most used
techniques [16–20]. Neural networks have been widely used in a
large number of applications as a universal approach. However,
many factors must be taken into account to building a neural net-
work to solve a given problem: the learning algorithm, the archi-
tecture, the number of neurons per layer, the number of layers,
the representation of the data and much more. In addition, these
are very sensitive to the presence of noise in the training data
[21,22].

From these techniques, SVM is one of the best known tech-
niques to optimize the expected solution [13,15]. SVM was intro-
duced by Vapnik as a kernel based machine learning model for
classification and regression task. The extraordinary generalization
capability of SVM, along with its optimal solution and its discrim-
inative power, has attracted the attention of data mining, pattern
recognition and machine learning communities in the last years.
SVM has been used as a powerful tool for solving practical binary
classification problems. It has been shown that SVMs are superior
to other supervised learning methods [23–29]. Due to its good the-
oretical foundations and good generalization capacity, in recent
years, SVMs have become one of the most used classification
methods.

Decision functions are determined directly from the training
data by using SVM in such a way that the existing separation
(margin) between the decision borders is maximized in a highly
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dimensional space called the feature space. This classification
strategy minimizes the classification errors of the training data
and obtains a better generalization ability, i.e., classification skills
of SVMs and other techniques differ significantly, especially when
the number of input data is small. SVMs are a powerful technique
used in data classification and regression analysis. A notable
advantage of SVMs lies in the fact that they obtain a subset of sup-
port vectors during the learning phase, which is often only a small
part of the original data set. This set of support vectors represents a
given classification task and is formed by a small data set.

The rest of this paper is divided as follows: in Section 2 the the-
oretical basis of SVM are presented; in addition, their characteris-
tics, advantages and disadvantages are described. In Section 3
weaknesses of SVM are introduced and reviewed. In Section 4 a
set of SVM implementations are presented. Section 5 shows some
applications of SVM in real world problems. Finally, Section 6
closes the paper with trends and challenges.
Fig. 1. Separation hyperplanes.
2. Theoretical basis of SVMs

The principal objective in pattern classification is to get a model
which maximizes the performance for the training data. Conven-
tional training methods determine the models in such a way that
each input–output pair is correctly classified within the class to
which it belongs. However, if the classifier is too fit for the training
data, the model begins to memorize training data rather than
learning to generalize, degrading the generalization ability of the
classifier.

The main motivation of SVM is to separate several classes in the
training set with a surface that maximizes the margin between
them. In other words, SVM allows to maximizing the generaliza-
tion ability of a model. This is the objective of the Structural Risk
Minimization principle (SRM) that allows the minimization of a
bound on the generalization error of a model, instead of minimiz-
ing the mean squared error on the set of training data, which is the
philosophy often used by the methods of empirical risk
minimization.

In this Section, we discuss Support Vector Machines, in which
training data are linearly separable in the input space and the case
where training data are not linearly separable.
2.1. Linearly separable case

Training a SVM requires a set of n examples. Each example con-
sists of a pair, an input vector xi and the associated label yi. Assume
that a training set X is given as:

ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞ ð1Þ
i:e., X ¼ fxi; yigni¼1 where xi 2 Rd and yi 2 þ1;�1ð Þ. For reasons of
visualization, we will consider the case of a two-dimensional input,
i.e., x 2 R2. The data are linearly separable and there are many
hyperplanes that can perform the separation. Fig. 1 shows several
decision hyperplanes that perfectly separate the input data set. It
is clear that there are infinite hyperplanes that could perform this
work. However, the generalization ability depends on the location
of the separation hyperplane and the hyperplane with maximum
margin. This hyperplane is called optimal separation hyperplane
[14]. The decision level, i.e., the hyperplane that separates the input
space is defined by the equation wTxi þ b ¼ 0.

The simplest case of SVM is the linearly separable case in the
feature space. We optimize the geometric margin by setting the
functional margin kappai ¼ 1(also called Canonical Hyperplane
[30]), therefore, the linear classifier yi ¼ 1,
w � xþh i þ b ¼ 1
w � x�h i þ b ¼ �1

ð2Þ

These can be combined into a set of inequalities:

yið w � xih i þ bÞ P 18i ð3Þ
The geometric margin of xþ y x� is

ci ¼ 1
2

w
wk k � xþ

D E
� w

wk k � x�
D E� �

¼ 1
2 wk k w � xþh i � w � x�h i½ �

¼ 1
wk k

ð4Þ

where w defines the optimal separation hyperplane and b is the
bias. The distance between the hyperplane and the training data
closest to the hyperplane is called margin. The generalization ability
is maximized if the optimal separation hyperplane is selected as the
separation hyperplane. Optimizing the geometric margin means
minimizing the norm of the vector of weights. When solving the
problem of quadratic programming we try to find the optimal
hyperplane and two parallel hyperplanes (H1 and H2).

The distance between H1 and H2 is maximized and there is no
data between the two hyperplanes. When the distance between
H1and H2 is maximized, some data points can be over H1and some
data points can be over H2.These points of data are called support
vectors [14,30], since they participate directly in defining the sepa-
ration hyperplane, the other points can be removed or changed
without crossing the planes H1 and H2 and will not modify in
any way the generalization skill of the classifier, i.e., the solution
of an SVM is given only by this small set of support vectors. Any
hyperplane can be represented by w; x and b, where w is a vector
perpendicular to the hyperplane. Fig. 2 shows the geometric repre-
sentation of the quadratic programming problem showing H (opti-
mal separator) and hyperplanes H1 and H2. In this way, the original
problem of optimization is as follows.

Proposition 1. For the linearly separable case
S ¼ x1; y1ð Þ � � � xl; ylð Þ½ �, if w; bð Þ is the solution

min
w;b

w �wh i ¼ wk k2

subject to : yi w � xih i þ bð Þ P 1
ð5Þ

then the maximal margin is given by c ¼ 1
wk k.

We change this to the dual problem using the Lagrange formu-
lation. There are two reasons to do this. The first lies in the fact that
the conditions given in the Eq. (5) will be replaced by Lagrange



Fig. 2. Optimal classifier.
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multipliers, which are much easier to handle. The second is the
reformulation of the problem, the training data will only appear
in the form of dot product between vectors. This is a fundamental
property that will allow to generalize the procedure in the non-
linear case. In this way, the Lagrangian is given by:

Lðw; b;aÞ � 1
2

w �wh i �
Xl

i¼1

ai½yið w � xih i þ b� 1� ð6Þ

where ai are the Lagrange’s multipliers.
The dual is found in two steps: first, taking the derivative with

respect to w and b

@Lðw; b;aÞ
@w

¼ w�
Xl

i¼1

aiyixi ¼ 0 ! w ¼
Xl

i¼1

aiyixi ð7Þ

@Lðw; b;aÞ
@b

¼ �
Xl

i¼1

aiyi ¼ 0 !
Xl

i¼1

aiyi ¼ 0 ð8Þ

and second, substituting Eqs. (7) and (8) in the original Lagrangian
(6)

Lðw; b;aÞ ¼ 1
2 w �wh i �

Xl

i¼1

ai½yið w � xih i þ bÞ � 1�

¼ 1
2

Xl

i¼1

aiyixi �
Xl

i¼1

aiyixi

* +
�
Xl

i;j¼1

aiajyiyjð xj � xi
� �þ bÞ �

Xl

i¼1

ai

¼ 1
2

Xl

i;j¼1

aiyiajyj xi � xj
� ��Xl

i;j¼1

aiyiajyj xj � xi
� ��Xl

i¼1

aiyibþ
Xl

i¼1

ai

¼ � 1
2

Xl

i;j¼1

aiyiajyj xi � xj
� �þXl

i¼1

ai

ð9Þ
The data points with ai > 0 are called ‘‘support vectors” and

these vectors define the hyperplanes H1;H2. At all other training
data ai ¼ 0. Support vectors are the critical elements of the training
data and these are the closest to the decision hyperplane.

Remark 1. SVMs obtain a hyperplane by training the initial data
set, which perfectly separates these data and is defined by a small
set of support vectors. If all other points (non-support vectors)
were eliminated (or moved around without crossing H1or H2) and
the training was repeated, the same hyperplane defined by the
same set of support vectors would be found. Therefore, the original
problem of optimization is as follows.
Proposition 2. To the linearly separable case
S ¼ ½ðx1; y1Þ � � � ðxl; ylÞ�, if a�

i is the solution to the quadratic opti-
mization problem

max
ai

� 1
2

Xl

i;j¼1

aiyiajyj xi � xj
� �þXl

i¼1

ai

s:t: :
Xl

i¼1

aiyi ¼ 0

ð10Þ

Then wk k2 defines the minimum w� ¼Pl
i¼1a�

i yixi and the geometric
margin c� ¼ 1

w�k k is maximized.
2.2. Karush-Kuhn-Tucker conditions

Karush-Kuhn-Tucker conditions (KKT) [31,32] play a very
important role in the theory of optimization, because they give
the conditions to obtain an optimal solution to a general optimiza-
tion problem.

Theorem 1. Given an optimization problem with convex domain
X#Rn,

minimize f ðwÞ; w 2 X

s:t: giðwÞ 6 0; i ¼ 1; . . . ; k;
hiðwÞ ¼ 0; i ¼ 1; . . . ;m;

ð11Þ

with f 2 C1 convex, the necessary and sufficient conditions for a
normal point w� to be optimal are the existence of a�;b� such that

@Lðw� ;a� ;b�Þ
@w ¼ 0

@Lðw� ;a� ;b�Þ
@b ¼ 0

a�
i giðw�Þ ¼ 0; i ¼ 1; . . . ; k;

giðw�Þ 6 0; i ¼ 1; . . . ; k;
a�
i P 0; i ¼ 1; . . . ; k:

ð12Þ

From KKT conditions if the training set is linearly separable, it is
verified that

w�k k2 ¼ w� �w�h i ¼ ð
X
i2sv

a�
i Þ

�1
2 ð13Þ

Therefore, the maximum distance of a hyperplane is:

1
w�k k ¼

X
i2sv

a�
i

 !�1
2

ð14Þ
2.3. Soft margin hyperplanes

The learning problem presented before is valid for the case
where the data is linearly separable, which means that the training
data set has no intersections. However, these problems are rare in
the real life. At the same time, there are problems in which the lin-
ear separation hyperplane can give good results even when the
data set has intersections. However, quadratic programming solu-
tions as given above can not be used in the case of intersection
because the condition yið w � xih i þ bÞ P 1;8i can not be satisfied
in the case of intersection (see Fig. 3). The points that are in the
intersection can not be correctly classified and for any misclassified
data xi, its corresponding ai will tend to infinite.

To find a classifier with maximum margin, the algorithm
presented above should be changed allowing a soft margin (Fig.
4), therefore, it is necessary to introduce non-negative slack
variables niðP 0Þ in the Eq. (3)



Fig. 3. Soft margin hyperplanes.

Fig. 4. Non linearly classifier.
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yið wT � xi
� �þ bÞ P 1� ni 8i ð15Þ
Using the slack variables ni, the feasible solution always exists.
For the training data xi, if 0 < ni < 1, the data do not have the

maximum margin, but can be correctly classified. On the other
hand, the width of this soft margin can be controlled by the penalty
parameter C, which determines the relationship between the train-
ing error and the Vapnik–Chervonenkis dimension.

Definition 1. (Dimension Vapnik–Chervonenkis -VC-) The VC
dimension describes the capacity of a set of functions implemented
in a learning machine. For binary classification, h is the maximum
number of points in which two classes can be separated in all the

2h possible ways using the functions of the learning machine.

Choosing a large Cprovides a small number of classification
errors and a large wTw. It is clear that taking C ¼ 1 requires that
the number of misclassified data be zero. However, in this case it
is not possible, since the problem may be feasible only for some
value C < 1. Introducing non-negative ‘‘soft variables ”
niði ¼ 1; lÞ to the optimization problem, now instead of the condi-
tions of the Eq. (5), the separation hyperplane should satisfy

min
w;b;ni

w �wh i þ C
Xl

i¼1

n2i

s:t: : yið w � xih i þ bÞ P 1� ni
ni P 0

ð16Þ
i.e., subject to

w � xih i þ b Pþ 1� ni; yi ¼ þ1; ni P 0 ð17Þ
w � xih i þ b 6� 1þ ni; yi ¼ �1; ni P 0 ð18Þ
If ni < 0; yið w � xih i þ bÞ P 1� ni P 1, then, we do not consider

the condition ni < 0.
For the maximum soft margin with Norm-2 (with the diagonal

1
C dij) the original Lagrangian is given by:

Lðw; b; ni;aÞ ¼
1
2

w �wh i �
Xl

i¼1

ai½yið w � xih i þ bÞ � 1þ ni� þ
C
2

Xl

i¼1

n2i

ð19Þ
The dual is found in two steps: in the same way as in the lin-

early separable case, first differentiating with respect to w and b,
and then replacing it in the original Lagrangian

max
ai

� 1
2

Xl

i;j¼1

aiyiajyj½ xi � xj
� �þ 1

C dij� þ
Xl

i¼1

ai

s:t: :
Xl

i¼1

aiyi ¼ 0

ð20Þ

The Kuhn-Tucker condition is

a�
i ½yið w� � xih i þ b�Þ � 1þ ni� ¼ 0 ð21Þ
That is, the quadratic optimization problem is practically the

same as in the separable case with the only difference of the mod-
ified heights of the Lagrange multipliers ai. The parameter C is
determined by the user. The selection of an appropriate C is done
experimentally using some cross-validation technique [30,14,33].

2.4. Kernels

In an SVM, the optimal hyperplane is determined to maximize
the generalization ability of the model. But, if the training data
are not linearly separable, the classifier obtained may not have a
high generalization ability, even if the hyperplanes are optimally
determined i.e., to maximize the space between classes, the origi-
nal input space is transformed into a highly dimensional space
called ‘‘feature space”.

The basic idea in designing non-linear SVMs is to transform the
input vectors x 2 Rn into vectors UðxÞ of a highly dimensional fea-
ture space [30] F (where U represents the mapping: Rn ! Rf ) and
solve the problem of linear classification in this feature space

x 2 Rn ! UðxÞ ¼ /1ðxÞ;/2ðxÞ; . . . ;/nðxÞ½ �T 2 Rf ð22Þ
The set of hypotheses considered will be

f ðxÞ ¼
Xl

i¼1

wi/iðxÞ þ b ð23Þ

where / : X ! F is a non-linear mapping from an input space to a
feature space, i.e., the learning procedure consists of two steps: first,
a non-linear mapping transforms the data within a feature space F
and later, a SVM is used to classify the data in a feature space.

A property of linear learning machines is that they can be
expressed in a dual representation, this means that the Eq. (23)
can be expressed as a linear combination of the training data
points. Therefore, the decision rule can be evaluated using dot
products

f ðxÞ ¼
Xl

i¼1

aiyi /ðxiÞ � /ðxÞh i þ b ð24Þ

If there is a way to capture the product /ðxiÞ � /ðxÞh iin the fea-
ture space directly as a function of the original input data, this
makes it possible to join the two necessary steps to build a non-
linear learning machine. This method of direct computation is
called kernel function [13].
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Definition 2. A kernel is a function K, such that for each x; z 2 X
Kðx; zÞ ¼ /ðxÞ � /ðzÞh i ð25Þ
where / is a mapping of Xto a feature space F.

The key to the approach is to find a kernel function that can be
evaluated efficiently. Once we have such a decision function, the
rule can be evaluated

f ðxÞ ¼
Xl

i¼1

aiyiK xi � xj
� �þ b ð26Þ

A kernel function must respect the following properties: for any
x; y; z 2 X and a 2 R

1. x � x ¼ 0 only if x ¼ 0
2. x � x > 0 otherwise
3. x � y ¼ y � x
4. ðax � yÞ = aðx � yÞ
5. ðzþ xÞ � y = ðz � yÞ þ ðx � yÞ

Moreover, kernel functions must fulfill the condition given by
Mercer theorem. Some of the most used kernel functions are:

1. Linear kernel: Kðxi; xjÞ ¼ ðxi � xjÞ;
2. Polynomial kernel: Kðxi; xjÞ ¼ ðxi � xj þ 1Þp;

3. Gaussian kernel: Kðxi; xjÞ ¼ e
� xi�xjk k2

2r2 ;

4. RBF kernel: Kðxi; xjÞ ¼ e�cðxi�xjÞ2 ;
5. Sigmoid kernel: Kðxi; xjÞ ¼ tanhðgxi � xj þ mÞ;

We checked the type of kernel used in some real-world applica-
tions. Table 1 shows a summary of the four main kernels found. In
some papers, more than one kernel was applied, in these cases we
consider the kernel that produces the better results. Without a
doubt, Gaussian RBF function is the most commonly used in many
different type of applications.

There is no unanimous conclusion about which kernel is better
or worse for specific applications, some authors such as [34] have
performed tests to identify the performance of SVM with different
kernels, reaching the general conclusion that the polynomial and
the Gaussian RBF function are the best option for acoustic signals.
On the other hand, Kasnavi et al. [35] found that Gaussian RBF and
hyperbolic tangent are the best for genome wide prediction. For
other applications, less common kernels produce better results
than the most popular, for example, in [36], Hasan concludes that
Laplace kernel is the ideal one for intrusion detection. Furthermore,
personalized kernels can be designed for certain applications, such
is the case of the introduced in [37,38].

The observation in which all the authors agree, is that the selec-
tion of the kernel should be based on the characteristics of data,
and that to obtain good results it is necessary to determine the
optimal parameters of the kernel used.

2.5. Mercer’s condition

Mercer’s theorem [60,13] determines the conditions of func-
tions to be kernels. Given a finite input space X ¼ x1; . . . ;xnf g and
assuming that Kðx; zÞ is a symmetric function of X then

K ¼ ðKðxi � xjÞÞni;j¼1 ð27Þ
Since K is symmetric there exists an orthogonal matrix V such

that K ¼ VKV0, where K is the diagonal matrix that contains the
eigenvalues kt of K; with its corresponding eigenvectors
vt ¼ ðv tiÞi¼1. Assuming that all eigenvalues are non-negative and
considering the mapping

/ : xi # ð
ffiffiffiffi
kt

p
v tiÞ

n

t¼1 2 Rn; i ¼ 1; . . . ;n: ð28Þ

/ðxiÞ � /ðxjÞ
� � ¼Xn

t¼1

ktv tiv tj ¼ ðVKV0Þij ¼ Kij ¼ Kðxi � xjÞ ð29Þ

this implies that Kðx; zÞ is a kernel function corresponding to the /
mapping. The requirement that the eigenvalues of K be non-
negative is necessary, since if we have a negative eigenvalue ks in
the eigenvector vs, the point

z ¼
Xn
i¼1

v si/ðxiÞ ¼
ffiffiffiffi
K

p
V0vs ð30Þ

in the feature space could have square norm

zk k2 ¼ z � zh i ¼ v0
sV

ffiffiffiffi
K

p ffiffiffiffi
K

p
V0vs ¼ v0

sVKV
0vs ¼ v0

sKvs ¼ ks

< 0; ð31Þ
contradicting the geometry of this space. This brings us to the next
proposition.

Proposition 3. Let X be a finite input space with a symmetric
function on X Kðx; zÞ.We say that Kðx; zÞ is a kernel function if and
only if the matrix

K ¼ ðKðxi � xjÞÞni;j¼1 ð32Þ
is positive semi-definite (has non-negative eigenvalues).

Allowing a slight generalization of a dot product in a Hilbert
space [14] by entering a weight kifor each dimension

/ðxÞ � /ðzÞh i ¼
X1
i¼1

ki/iðxÞ � /iðzÞ ¼ Kðx; zÞ; ð33Þ

therefore, the feature vector would be

/ðxÞ ¼ ð/iðxÞ;/iðxÞ; . . . ;/iðxÞ; . . .Þ: ð34Þ
Mercer’s theorem gives the necessary and sufficient conditions

so that a symmetric continuous function Kðx; zÞ is represented

Kðx; zÞ ¼
X1
i¼1

ki/iðxÞ � /iðzÞ ð35Þ

with non-negative ki, which is equivalent to Kðx; zÞ being a dot pro-
duct in the feature space F � /ðXÞ; where F is the space l2 of all the
sequences

w ¼ ðw1;w2; . . .wi; . . .Þ: ð36Þ

for which

X1
i¼1

kiw
2
i < 1: ð37Þ

This implicitly induces a space defined by the feature vector and
as a consequence a linear function in F can be represented by

f ðxÞ ¼
X1
i¼1

kiwi/iðxÞ þ b ¼
Xl

j¼1

ajyjKðx;xjÞ þ b ð38Þ

where the first expression is the original representation and the
second is the dual [30]. The relationship is given by

w ¼
Xl

j¼1

ajyj/ðxjÞ: ð39Þ



Table 1
Popular kernels for SVM.

Kernel name Expression Parameters Characteristics Some applications

Polynomial Kðxi; xjÞ ¼ ð< xi; xj > þ1Þr r 2 Zþ This kernel allows to map the input space
into a higher dimensional space that is a
combination of products of polynomials.
Despite its high computational load, this
kernel is frequently applied to data that has
been normalized (norm L2) [39].

Fault diagnosis of
centrifugal pumps [40],
natural language pro-
cessing [41,42

Gaussian radial basis
function (RBF) Kðxi; xjÞ ¼ exp�kxi�xj k2

2r2
r This kernel is one of the most widely used

in applications, it can be considered a
general-purpose translation-invariant
kernel. Other related functions are the
exponential kernel and Laplacian kernel.
Parameter r must be carefully chosen.

Electric power load
forecasting [43], hyper-
spectral/image classifi-
cation [44][45][46][47]
[48], clustering (One-
class SVM) [49], bank-
ruptcy prediction [50],
classification of elec-
troencephalography sig-
nals [51], bioemetric
identification [52],
health applications [53],
intrusion detection [54],
stream flow predictions
[55]

Linear Kðxi; xjÞ ¼< xi; xj > þ1 ¼ xTi xj þ 1 None This is the simplest kernel function. It
represents the non-kernelized version of
SVM. Datasets with many features usually
become linearly separable problems.
Therefore, the choice of this kernel can be a
good option in these cases.

Stock prediction [56],
malware detection [57]

Hiperbolic tangent Kðxi; xjÞ ¼ tanhð< xi; xj > bþ bÞ b; b This kernel is also known as sigmoid
kernel, it is also used as activation function
in neural networks. b can be seen as a
scaling parameter of the product xTi xj , and b
a shift. These parameters affect
considerably the performance of SVM. [58]
showed that using b > 0 and b < 0 guar-
antees this kernel be conditional positive
definite.

Audio classification [59]
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In the original representation, the number of terms in the sum
is equal to the dimensionality in the feature space, while in the
dual there are l terms. The analogy with the finite case is similar.
The contribution from the functional analysis leads us to the prob-
lem for integral equations of the formZ
X
Kðx; zÞ/ðzÞdz ¼ k/ðxÞ ð40Þ

where Kðx; zÞ is the symmetric and positive kernel function, and X is
an compact space.

Theorem 2. (Mercer) Let X be a compact subset of Rn. Assuming
that K is a symmetric continuous function such that the integral
operator TK : L2ðXÞ ! L2ðxÞ, [14]

ðTKf Þð�Þ ¼
Z
X
Kð�;xÞf ðxÞdx; ð41Þ

is positive, that isZ
X�X

Kðx; zÞf ðxÞf ðzÞdxdz P 0; ð42Þ

for all f 2 L2ðXÞ. then Kðx; zÞ can be expanded in a uniformly conver-
gent series (on X � X) in terms of functions /j 2 L2ðXÞ, normalized in
such a way that /j

�� ��
L2

¼ 1 and positive eigenvalues associated

kj P 0,

Kðx; zÞ ¼
X1
j¼1

kj/jðxÞ/jðzÞ: ð43Þ
2.6. Non-linearly separable case

The linear classifiers presented in the two previous sections are
very limited. In most real life data sets, the data points not only
overlap or intersect when generating a separation hyperplane,
but the genuine separation of these data is given by non-linear
hyper-surfaces.

The approach presented above can be easily extended to create
non-linear decision functions. The reason for this extension is that
an SVM can create a non-linear hyper surface of decision, capable
of classifying non-linearly separable data. Generally, for n -
dimensional input patterns, instead of a non-linear curve, an
SVM will create a non-linear separation hyper-surface.

The problem of optimization using kernels is as follows [30,13]:

Proposition 4. Given a data set S ¼ x1; y1ð Þ � � � xl; ylð Þ½ �, a feature
space / xð Þdefined by the kernel Kðx; zÞ ¼ / xð Þ � / zð Þh i, the solution
of

max
ai

� 1
2

Xl

i;j¼1

aiyiajyj K xi; xj
� 	þ 1

C dij

 �þXl

i¼1

ai

subject to a :
Xl

i¼1

aiyi ¼ 0

ð44Þ

is a�
i ; f xð Þ ¼Pl

i¼1a�
i yiK xi; xð Þ þ b� ,where b� is choosing such that

yif ðxi ¼ 1� n� ¼ 1� a�
C

w� ¼
Xl

i¼1

a�
i yiKðx; xÞ;

ð45Þ
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The decision function sgn½f ðxÞ� is equivalent to the hyperplane
in the feature space defined by the kernel Kðx; zÞ which solves
the optimization problem. Then, the geometric margin is given by

c� ¼
X
i2sv

a�
i �

1
C
a� � a�h i

 !�1
2

ð46Þ

Using the kernel

K 0 x; zð Þ ¼ K x; zð Þ þ 1
C
dx zð Þ ð47Þ

The soft margin in L1

min
w;b;ni

w �wh i þ C
Xl

i¼1

ni

s:t: : yi w � xih i þ bð Þ P 1� ni
ni P 0

ð48Þ

where the original Lagrangian is

Lðw; b; ni;aÞ ¼ 1
2

w �wh i �
Xl

i¼1

ai½yið w � xih i þ bÞ � 1þ ni� þ C
Xl

i¼1

ni �
Xl

i¼1

cini

ð49Þ
the dual is given by

wðaÞ ¼ �1
2

Xl

i;j¼1

aiyiajyj xi � xj
� �þ uml

i¼1ai ð50Þ

This is the same maximum margin, but

C � ai � ci ¼ 0; ci P 0 ) C P ai ð51Þ
with Kuhn-Tucker conditions

cini ¼ 0 oðai � CÞni ¼ 0
ai½yið w � xih i þ bÞ � 1þ ni� ¼ 0

ð52Þ

where ni – 0; ci ¼ 0;) C ¼ ai, with ni ¼ 0 the maximum margin, ai

is positive and can increased to C, therefore C P ai P 0.

Proposition 5. Given a data set S ¼ ½ðx1; y1Þ . . . ðxl; ylÞ�, a feature
space /ðxÞdefined by the kernel Kðx; zÞ ¼ /ðxÞ � /ðzÞh i, the solution

max
ai

� 1
2

Xl

i;j¼1

aiyiajyjKðxi; xjÞ þ
Xl

i¼1

ai

s:t: :
Xl

i¼1

aiyi ¼ 0;C P ai P 0

ð53Þ

is given by a�
i ; f ðxÞ ¼

Pl
i¼1a�

i yiKðxi; xÞ þ b�, the decision function
sgn½f ðxÞ� is equivalent to the hyperplane in the feature space defined
by the Kernel Kðx; zÞ, which solves the optimization problem. The
geometric margin is given by

c� ¼
X
i2sv

a�
i

 !�1
2

ð54Þ

When the bound of ai is C, the problem of maximum margin
arises.

Choosing C is the same as getting v in

max
ai

� 1
2

Xl

i;j¼1

aiyiajyjKðxi; xjÞ

s:t: :
Xl

i¼1

aiyi ¼ 0;

Xl

i¼1

ai P v;

1
l P ai P 0

ð55Þ
For a non-optimal solution, â is the current value of the dual
variables. The vector of weights is calculated by @L

@w ¼ 0. The solu-
tion ŵ � ŵ satisfies the original conditions with
1
2 ŵk k2 þ c

Pl
i¼1ni; infw;bLðw; b; âÞas a feasible dual solution

L ¼1
2

w �wh i � m
l

i¼1
ai½yið w � xih i þ bÞ � 1�; ð56Þ

w ¼
Xl

i¼1

âiyixi; ð57Þ

@L
@b

¼0 !
Xl

i¼1

aiyi ¼ 0 ð58Þ

Computing the difference between the original and dual feasi-
ble solutions C � ai ¼ ci

1
2 wk k2 þ c

Xl

i¼1

ni � inf
w;b

Lðw; b; âÞ

¼
Xl

i¼1

âi½yið
Xl

j¼1

yjajK xj � xi
� �þ b� 1þ ni� þ

Xl

i¼1

cini

¼ C
Xl

i¼1

ni þ
Xl

i¼1

âi½yið
Xl

j¼1

yjajK xj � xi
� �þ bÞ � 1�

¼
Xl

i;j¼1

âiyiyjajK xj � xi
� ��Xl

i¼1

âi þ C
Xl

i¼1

ni

¼
Xl

i¼1

âi � 2wðaÞ þ C
Xl

i¼1

ni

ð59Þ
3. Weaknesses of SVM

Despite the generalization capacity and many advantages of the
SVM, they have some very marked weaknesses, among which are:
the selection of parameters, algorithmic complexity that affects the
training time of the classifier in large data sets, development of
optimal classifiers for multi-class problems and the performance
of SVMs in unbalanced data sets.

3.1. Algorithmic complexity

Maybe the principal disadvantage of SVM is due to its excessive
computational cost in large data sets, because the training kernel
matrix grows in quadratic form with the size of the data set, which
provokes that training of SVM on large data sets is a very slow pro-
cess. Support Vector Machines (SVM) have demonstrated highly
competitive performance in many real-world applications. How-
ever, despite its good theoretical foundations and generalization
performance, SVM is not suitable for large data set classification.
Training an SVM is usually posed as a quadratic programming
(QP) problem to find a separation hyperplane which implicates a
matrix of density n� n , where the n is the number of points in
the data set. This needs huge quantities of computational time
and memory for large data sets, so the training complexity of
SVM is highly dependent on the size of a data set [61,62].

According to the strategy used, the training methods for SVM
can be categorized into data selection, decomposition, geometric,
parallel implementations and heuristics. Their core ideas and the
most representative algorithms are presented in this section.

Data selection methods for SVM intent to decrease the size of
data sets by removing the instances that do not contribute to the
definition of the optimal separating hyperplane. The latter depends
completely on instances which are located closest to the separation
boundary [63], and correspond to those whose Lagrange multipli-
ers are greater than zero in the Karush–Kuhn–Tucker conditions
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(60). These instances are called support vectors (SVs). Generally,
the number of SVs is a small portion compared with the size of
training sets.

ai ¼ 0 ) yið x; xih i þ bÞ P 1; ni ¼ 0
0 < ai < C ) yið x; xih i þ bÞ ¼ 1; ni ¼ 0
alphai ¼ C ) yið x; xih i þ bÞ 6 1; ni P 0

ð60Þ

Simple random sampling (SRS) is probably the most basic strat-
egy to reduce the size of training sets. It consists in choosing a
number of instances and then training a SVM with them. The
works presented in [64–66] show that uniform random sampling
is the optimal robust selection scheme in terms of several statisti-
cal criteria. However, although SRS is computationally cheap, the
standard deviation of classification accuracy is large in most cases
[66].

A more sophisticated form of this type of sampling consists in
assigning to each instance a probability to be chosen. Once a num-
ber of instances is randomly selected, a SVM is trained with them.
After this, the probabilities are updated, increasing those whose
instances have been miss-classified [67–69]. This process is
repeated several times.

Some data selection methods have been developed by comput-
ing the distance between the instances and the optimal hyper-
plane. Several metrics for measuring distance have been used in
previous works: These measures include the Euclidean [70], Maha-
lanobis [71] and Hausdorff [72,73] distances. Most of the current
distance-based methods are inspired on two observations: (1)
the instances closest to those ones with opposite label have high
chances to be SVs [72] and (2) instances far from hyperplane do
not contribute to the definition of the decision boundary [74]. A
problem with naive implementations that require to compute all
distances between objects is that this task has a temporal and a
spatial complexity of Oðn2Þ.

The Condensed Nearest Neighbor (CNN) [75] chooses instances
near to class frontiers, reducing the size of training sets. However,
CNN is not noise tolerant. Reduced Nearest Neighbor (RNN) [76],
Selective Nearest Neighbor (SNN) [77] and Minimal Consistent
Set (MCS) are methods based on CNN, and therefore, they have also
problems with noisy data sets. RNN, SNN and MCS are more costly
than CNN.

Neighborhood properties of SVs have also been exploited to
reduce size of training sets. Wang and Kwong [78] used neighbor-
hood entropy, while in [79] only the patterns in the overlap region
around the decision boundary are selected. The method presented
in [80] follows this trend but use fuzzy C-mean clustering to select
samples on the boundaries of class distribution, whereas [72] uses
hyper spheres. Clustering has been proved to be an effective
method to collaborate with SVM on classifying large data sets.
For example, hierarchical clustering [81,82], k-means [83] and par-
allel clustering [84]. Clustering-based methods can reduce the
computations burden of SVM, however, the clustering algorithms
themselves are still complicated for large data set. Rocchio bund-
ling is a statistics-based data reduction method [85]. The Bayesian
committee machine is also reported to be used to train SVM on
large data sets, where the large data set is divided into m subsets
of the same size, andmmodels are derived from the individual sets
[86]. But, it has higher error rate than normal SVM and the sparse
property does not hold.

The basis for decomposition methods lies in the fact that the
training time can be reduced if only the active constraints of the
QP problem are taken into account [87]. A similar idea to active
set methods for optimization is applied in decomposition methods.
In the active set approach, two sets are used: the working set and
the set of fixed variables. The optimization is made only on the
working set. For the case of SVM, the working set is usually com-
posed of instances that violate the Karush–Kuhn–Tucker condi-
tions. Apart of the proved convergence [88], a clear advantage of
decomposition is that memory requirement is linear in the number
of training examples; but on the other hand, because only a frac-
tion of variables is being considered in each iteration, it is time
consuming [89,90] if elements in the active set are not carefully
selected. One of the first decomposition methods was Chunking
[74]. It consists in repetitively obtaining the maximum margin
hyperplane from an amount of instances (called the chunk) and
then forming a new chunk with the SVs from the previous solution
and some new instances. Probably the most famous decomposing
algorithm is the SMO [15]. Sequential minimal optimization
(SMO) is a fast method to train SVM [91,84]. Training SVM requires
the solution of the QP optimization problem. SMO breaks this large
QP problem into a series of smallest possible QP problems. It con-
siders the smallest size working set: only two training samples,
and it is faster than the projected conjugate gradient (PCG) chunk-
ing algorithm. Dong et al. [61] introduced a parallel optimization
step where block diagonal matrices are used to approximate the
original kernel matrix so that SVM classification can be split into
hundreds of sub-problems. A recursive and computational superior
mechanism referred as adaptive recursive partitioning was pro-
posed in [92], where the data are recursively subdivided into smal-
ler subsets. Genetic programming is able to deal with large data
sets that do not fit in main memory [93]. Neural networks tech-
nique can also be applied for SVM to simplify the training process
[94]. LibSVM [95] is an algorithm based on SMO with the improve-
ment of a more advanced mechanism of selection of the working
set by using the second order information method previously

shown in [96]. The SVMlight [97] is another important state-of-
the-art decomposition method.

Variants of SVM speed up the training time of SVM at expense
of loosing accuracy [89]. These methods work by changing the
original QP problem formulation. Most of the variants methods
conclude with a system of linear equations solved efficiently if
the number of features is moderate, i.e., around 100. A representa-
tive method in this category is the least square SVM (LS-SVM) [98]
which changes the original QP problem by using a linear system of
equations that can be solved explicitly or by using a conjugate gra-
dient method. Other important methods are the PSVM (Proximal
SVM) [99] and reduced SVM (RSVM) [100].

Parallel implementation of the QP problem is difficult because
there is a strong dependence between data [101]. Most parallel
methods for training SVM divide the training set into independent
subsets to train SVM in different processors, as in [101–103]. In
[61], the kernel matrix of SVM is approximated by block diagonal
matrices so that the original optimization problem can be decom-
posed into hundreds of sub problems, which are easy to solve in a
parallel fashion. Other parallel implementations can be found in
[104–108].

Geometric methods for SVM are based on that computing the
optimal separating hyperplane is equivalent to find the closest pair
of points belonging to convex hulls [63,109,110]. Recent advances
on geometric methods can be found in [111–115].

Among all heuristic methods, the alpha seeding [116] consists
of providing initial estimates of the ai values for the starting of
the QP problem. Alpha seeding seems to be a practical method to
improve training time of SVM. Recently, an improvement of this
method has been proposed in [117].

According to the reviewed literature, there are currently just
few methods that combine decision tree (DT) for instance selection
in a similar way to the presented in this research. In [118], the pat-
terns by ordered projections (POP) algorithm was presented. It
uses projections of instances on the axis of attributes to find the
minimal number of elements to represent hyper-rectangles which
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contain instances of the same class (entropy zero). A disadvantage
of POP is that the reduction of the size of data sets is very low
[119].

In [120], a method that approximates the decision boundary of
SVM using a DT to speed up SVM in its testing phase was proposed.
In [120], an SVM is used in some leaves of a DT. The idea is to
reduce the number of test data points that require SVM’s decision.

Recently, in [121,26], the combination of a DT and SVM was
proposed. The underlying idea is to train an SVM first, and then
use the predictions of the model obtained to modify the class of
examples in the training set. A DT is afterward trained using the
modified set. The SVM is used as a pre-processor for improving
the performance of DT, when dealing with the problem of
imbalance.
3.2. Development of optimal classifiers for multi-class problems

Support Vector Machines were originally designed to solve bin-
ary classification problems [122]. The problem of multi-
classification for SVM, does not present an easy solution. In order
to apply SVM to multi-classification problems, it is necessary to
change the problem to multiple binary classification problem.
There are two basic types of algorithms to solve the multiclass
classification based in SVM.

1. ‘‘one versus one” method (OVO). This method constructs kðk�1Þ
2

hyperplanes for k-class problem, where each one is trained with
just two-class data sets. Thus given n training data

ðx1; y1Þ; . . . ; ðxn; ynÞ, where xi 2 Rd; i ¼ 1; . . . ; n and

yi 2 1; . . . ; kf gis the class of xi, the ith SVM solves the problem:
min
wij ;bij ;nij

1
2 ðwijÞTwij þ C

Xl

j¼1

nijt

ðwijÞT/ðxtÞ þ bij P 1� nijt ; if
o
yt ¼ i

ðwiÞT/ðxjÞ þ bi 6 �1þ nijt ; if
o
yt ¼ j

nijt P 0; j ¼ 1; . . . ;n

ð61Þ
At the prediction phase, a voting scheme is applied to get the class
of x. The KðK1Þ=2 classifiers are applied to an unseen sample x. If the

kth classifier says that x belongs to the i class, then one vote for the i
class is added by one and the label of x is predicted in the class that
got the highest number of votes. The principal disadvantage of OVO
is that some times the ambiguities in some regions of its input
space can provoke that two regions receive the same number of
votes.

2. ‘‘one versus all” method (OVA). This algorithm constructs k
hyperplanes for k-class problem. The i-th hyperplane is trained
with the samples between the i-th class and the rest data. Thus
given n training data ðx1; y1Þ; . . . ; ðxn; ynÞ, where

xi 2 Rd; i ¼ 1; . . . ;n and yi 2 1; . . . ; kf gis the class of xi, the ith

SVM solves the problem:
min
wp ;bp ;np

1
2 ðwpÞTwp þ C

Xl

j¼1

npi

ðwpÞT/ðxiÞ þ bp P 1� npi ; if
o
yi ¼ p

ðwpÞT/ðxiÞ þ bp 6 �1þ npi ; if
o
yi – p

npi P 0; i ¼ 1; . . . ;n

ð62Þ
where xi are mapped to high dimensional space by means of /,
where /is a Kernel that satisfies the Mercer’s condition [14], and C
is a penalty parameter. The k decision functions are given by
ðw1ÞT/ðxÞ þ b1

ðw2ÞT/ðxÞ þ b2

..

.

ðwkÞT/ðxÞ þ bk

ð63Þ
Given a sample x to classify, the label of the class that has the lar-
gest value of the decision function is chosen as:
class of x ¼ arg max
i¼1;2;...;k

ððwpÞT/ðxÞ þ bpÞ ð64Þ
where wi and bi depict the hyperplane of the ith SVM.

Currently, most of methods use one-against-all or one-against-
rest approaches to facing multi-class problems with SVM. How-
ever, there are numerous researchers who have faced the problem
and have developed algorithms to try to solve the problem [123–
131].

3.3. Performance of SVMs in imbalanced datasets

In imbalanced data sets, the correct classification of minority
class objects is a challenging problem. Normal classification meth-
ods, such as support vector machines, do not work well for these
skewed data sets because is difficult to get the optimal separation
hyperplane for an SVM trained with imbalanced data.

The imbalance in data sets affects considerably the performance
of most classifiers. In general, the model extracted from this type of
data sets is biased towards the minority class. As a result, the accu-
racy on the minority classes is hampered. The imbalance in data
sets is a recurrent problem in many domains, some examples
are: fraud detection problems [132], classification of protein
sequences [133–135], medical diagnosis of rare and dangerous dis-
eases [136], intrusion detection and text classification [137,138],
discrimination between earthquakes and nuclear explosions
[139]. Support Vector Machines were introduced by Vapnik [13]
as a kernel based machine learning model for classification and
regression tasks. The generalization capabilities and discriminative
power of SVM have attracted the attention of practitioners and
theorists in last years. SVM has strong theoretical foundations,
and, in general, it presents high classification accuracy in real-
world applications. However, recent experiments [140–142] show
that the performance of SVM is severely affected when it is applied
on imbalanced data sets. This is more evident when the ratio
between the majority and the minority class is large. The first dis-
advantage of SVM on imbalanced data sets is due to the margin
obtained is biased towards the minority class.

There are several solutions of SVM classification for imbalanced
data [143]. The techniques used to minimize the negative effect of
imbalanced data sets on classifiers can be categorized as external
and internal. The first techniques balance the data sets before
training a classifier [144,145,142]. The second techniques modify
the model or architecture of classification methods [146–148].
Principal external techniques are under sampling and over sam-
pling. In general, under sampling consists in selecting, randomly,
a small number of objects frommajority class [146]. Over sampling
techniques generate artificial examples of the minority class. Other
methods use evolutionary algorithms to balance the data sets
[143,149,150]. However, to add artificial data points to the minor-
ity class is a promising technique to tackle the problem of imbal-
ance. Chawla et al. [140] proposed Synthetic Minority Over
sampling Technique (SMOTE), which generates artificial objects
to be included as members of the minority class. The minority class
is over-sampled by taking each minority class sample and intro-
ducing synthetic examples along the line segments joining any or
all of the k minority class nearest neighbors. It does not cause
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any information loss and could potentially find hidden minority
regions. The disadvantage of this method is that it creates noise
for the classifiers which could result in a loss of performance
because SMOTE makes the assumption that the instance between
a positive class instance and its nearest neighbors is also positive
[151].

Classification for imbalanced data sets has been studied by
machine learning community since the last decade [142]. There
are many methods that are applied to imbalanced data sets in
order to improve the performance of classifiers [135]. Generally,
these methods are divided into two categories: external methods
and internal methods. External methods involve a pre processing
of training data sets in order to make them balanced. Internal
methods deal with modifications of the learning algorithms in
order to reduce their sensitiveness to class imbalance. In other
words, external methods attempt to balance the data sets by con-
sidering the number of examples for each class, whereas internal
methods consider the costs associated with misclassification and
include these costs in the model. The most popular external meth-
ods are under-sampling, over-sampling and SMOTE. The under
sampling and over sampling method [146] balances the data sets
by randomly selecting small number of objects frommajority class,
and doubling the objects in the minority class. The main drawback
is that some important points, such as support vectors, may be
neglected by the random algorithm. [141] pointed out that the
under sampling strategy is not a good choice for SVM, and that
the over sampling cannot improve the final accuracy. The synthetic
minority over sampling technique [140] generates artificial data in
the minority class by multiplying a random number in each origi-
nal object. [152] showed that SMOTE is better than under sampling
and over sampling. Several proposals inspired in SMOTE have been
proposed, see, for example, [153–155]. In [146] an SVMwith differ-
ent costs and SMOTE is used. That method introduces a scheme to
penalize classification errors. The majority class is assigned a high
cost and the minority class is assigned a low cost. This combination
makes denser the distribution of the minority class, and pushes the
separating hyperplane to the minority class. In [135], a penaliza-
tion criterion is used to produce a similar effect on the separating
hyper plane. In [142], a kernelized version of SMOTE is proposed.
Other kernel-modification methods have been proposed in
[142,156,157]. Other proposals can be found in [158,159].

Although sampling methods and cost-sensitive learning meth-
ods seem to dominate the current research efforts in imbalanced
learning, Genetic Algorithm (GA)-based approaches have also been
pursued by the community. These algorithms use GAs in order to
balanced data sets. [149] used a GA for under-sampling the major-
ity class, the algorithm tackles the difficulties of SVM learning on
large data sets, because the method significantly reduce the size
of the training set without loss of performance. Batuwita and
Palade [160] applied Fuzzy SVM (FSVM) to improve the perfor-
mance on imbalanced data sets to handle the problem of outliers
and noise by assigning different fuzzy-membership values based
on their importance. In [161], the authors proposed a efficient
resampling method selecting the most informative data examples
located closer to the class boundary region by using the separating
hyperplane found by training an SVM model on the original imbal-
anced data set, and then use only those examples in resampling. An
excellent survey about classification on imbalanced data sets can
be found in [162]. In [143], a GA is used to balance skewed data
sets. That method produces better results than simple random
sampling. Bazi and Melgani [163] used PSO algorithm in order to
improve the performance of SVM. That method was applied for
the classification of electrocardiogram signals and parameters esti-
mation. In [159], the authors propose a classification system in
order to detect the most important rules, and the rules which per-
turb the performance of classifier. That system uses hierarchical
fuzzy rules and a GA. Garcia et al. [150] implemented an algorithm
which performs an optimized selection of examples from data sets.
The learning algorithm is based on the nested generalized exem-
plar method and GA to generate and select the best suitable data
to enhance the classification performance over imbalanced
domains. GA is used to guide the search process. Although gener-
ating new instances in the minority class can improve the perfor-
mance in SVM classification [144], this process could introduce
noise to the data set, and to select randomly instances that helps
to improve the performance in this area is almost impossible with-
out using a genetic algorithm because the search space is huge.
4. SVM implementations

Currently there are several implementations of SVM in the liter-
ature. Table 2 shows a list of the most used SVM implementations.
SVMs must solve a quadratic programming problem to find a
hyperplane that separates the classes. The main reason for multiple
implementations is because computational time depends mainly
on the heuristics used to divide the problem into small fragments.
In small data sets, the computational time of the SVMs is not
important, however the computational complexity of the SVMs is
almost cubic, so that in large data sets the training time is enor-
mous and it is very important to use some algorithm that face this
challenge. This section briefly shows some approaches used to
improve the training time of SVM.

Data reduction: In most cases the SVM solution is given by a
small subset of data called support vectors and not by the entire
data set. The basic idea is to eliminate data less likely to be support
vectors and preserve the data more likely to be support vectors and
train an SVM with them.

Chunking: It is based on the sparsity of the SVM. In most cases
the solution of the SVM is given by a small subset of data and not
by the entire data set [164–167]. Moreover, an ai point can only be
optimal if it fully satisfies the conditions of KKT. The algorithm
starts selecting an arbitrary subset of the data called chunk. The
quadratic optimization problem is solved on this small ‘‘chunk”
and the next chunk is obtained with the resulting support vectors
and the points violating the KKT conditions. The process is stopped
until all the training data are considered and the chunk get all the
SV. This algorithm reduces the complexity of SVM by reducing the
large problem to a sequence of smaller optimization problems,
iteratively determining the support vectors.

Decomposition: These methods are similar to chunking meth-
ods. However, in decomposition methods the size of the sub prob-
lems is fixed. Decomposition methods were designed to reduce the
complexity to computing the full kernel matrix by solving a
sequence of smaller quadratic programming sub problems.
Decomposition methods tackle the problem of training an SVM
by optimizing iteratively only on the variables belonging to a sub-
set of tractable size. This is the so-called working or active set. The
variables that do not belong to the working set are fixed and form
the so-called fixed set. Decomposition methods can be classified
into primal and dual methods. They aim for dual(primal) feasibil-
ity, while maintaining primal (dual) feasibility and complementary
slackness.

A clear advantage in this scheme, in addition to its proved con-
vergence [168,169], is that its memory requirements grow linearly
with the number of training examples. On the other hand, because
only a fraction of the variables is being considered in each iteration,
it is time consuming [89] if elements in the working set are not
carefully selected. It has been observed that the active set method
can oscillate nearby the solution [170].

The most important element in decomposition methods for
them to converge quickly is the selection of the subset of variables



Table 2
SVM Implementations

Implementation Developer Source code University Web page

SVMTorch Ronan Collobert and Samy Bengio C++ Universite de Montreal [176]
Pegasos Shai Shalev-Shwartz C++ The Hebrew University of Jerusalem [177]
LibSVM Chih-Chung Chang and Chih-Jen Lin C and Java National Taiwan University [178]
SVMLight Thorsten Joachims C Cornell University [179]
Incremental SVM Chris Diehl M Carnegie Mellon [180]
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in the working set [171]. One method, commonly used,consists in
selecting those samples that violated the most KTT conditions
[172–174].

Sequential Minimal Optimization: The Sequential Minimal
Optimization algorithm (SMO) [15] is obtained from the idea of
the decomposition method to the extreme, by optimizing a mini-
mum subset of only two points in each iteration. The power of this
technique lies in the fact that the two-point optimization problem
admits an analytical solution, eliminating the need to use an iter-
ative quadratic programming optimizer as part of the algorithm
[97].

The condition
Pl

i¼1aiyi ¼ 0 always requires that the number of
multipliers which can be optimized at each step is 2. Each time
that a multiplier is updated, at least one other multiplier needs
to be adjusted in order to maintaining the condition true. In each
step, SMO chooses two elements ai and aj to optimize them, finds
the optimal value of those two parameters, and updates the vector
a. The choice of the two points is determined by a heuristic, while
the Optimization of the two multipliers is performed analytically.

Experimentally, SMO performance is very well. This is because
the time of kernel computing can be reduced, which directly
improves its performance. Although it needs more iterations to
converge, each iteration uses only a few operations, so it converges
very fast. In addition to the convergence time, another feature of
the algorithm is that it does not need to store the kernel matrix
in memory since matrix operations are not involved.

The SMO algorithm performs well for large data sets because it
scales well with the size of the training set. The authors argue that
SMO is a strong candidate to become the standard algorithm of
SVM training [15].

Shrinking: The shrinking heuristics are designed to speed up
the optimization reducing the number of kernel values needed to
update the gradient vector. The algorithm is based on the fact that
An optimal solution a of the SVM dual problem may contain some
bounded elements(i.e.,ai ¼ 0 or C). The principal propose of shrink-
ing technique is to reduce the size of the problem by temporarily
eliminating the bounded elements ai (Joachims, 1999).

Working selection: The selection of an initial set of variables as
a working set is important when optimizing SMO so that the cur-
rent iteration moves towards the minimum. There are many ways
to select the pair of indices (i, j) representing the working set for
each iteration of the SMO algorithm. Although maximal gain work-
ing set selection may reduce the number of iterations, it makes
each iteration very slow. Practical working set selection schemes
can to achieve a good compromise between the number of itera-
tions and the speed of each iteration [175,165–167].

Most of the implementations are designed to solve classification
and regression problems. In addition, the implementations have
many benefits, among which we could highlight some as:

1. These can work on large data sets, the implementations can
handle several hundred-thousands of training examples and
many thousands of support vectors.
2. They can supports standard kernel functions and in some
cases it is possible to define your own kernel function.
3. They can perform efficient multi-class classification.
4. They efficiently compute cross validation for model selection.
5. In some cases they can use weighted SVM for unbalanced
data.
6. They provide probability estimates.

In Table 2 is shown some of the most popular SVM implemen-
tations to large data sets. All current implementations use one or
more of the approaches described above to reduce SVM training
time.

SVMLigth uses Working selection and Shrinking techniques.
SVMLigth is one of the most popular SVM implementations. The
algorithm is very fast and has been applied to solve classification
and regression problems in large data sets.

SVMTorch uses Working selection and Shrinking to improve
the training time of SVM the authors argue that the implementa-
tion can efficiently solve large scale regression problems.

Pegasos use decomposition methods to reduce the training
time of SVM. Pegasos is essentially an Stochastic Subgradient Des-
cent optimization algorithm that solves the primal formulation,
which means it needs the actual feature vectors. Pegasos can be
used to train a non-linear SVM only if can be represent the kernel
as a dot product of finite-dimensional feature vectors.

LIBSVM algorithm is based on the SMO algorithm, however,
LIBSVM has a more advanced work set selection algorithm. Most
decomposition methods obtain an initial data set from the entire
data set, this data set is optimized in each iteration, then the value
of the objective function is improved in each iteration. The iterative
process ends when a stop criterion derived from Karush–Kuhn–T
ucker conditions is satisfied or a required accuracy is reached.
LIBSVM uses a search direction algorithm which maximizes the
increase in the objective function in each iteration. The algorithm
starts by making a first approximation of the objective function
by obtaining a vector a. From this first approximation compute
a0 ¼ aþ ku, where the direction u has only two non zero coeffi-
cients. The algorithm uses two search directions, a search direction
uij for positive k and a search direction �uij ¼ uji for negative k. The
most effective search direction for each iteration will be the direc-
tion that maximizes the increase in the objective function.

Incremental SVM: is a framework for incremental learning and
adaptation of support vector machine classifiers that aims to sim-
plify the model selection task by perturbing the SVM solution as
the regularization and kernel parameters are adjusted.
5. Applications in real-world problems

SVM applications have been used to solve many real-world
problems, in this section we describe some of them.

5.1. Text (and hypertext) categorization

The authors in [181] presented the implementation of a text
document classification framework that uses the SVM approach
in the training phase and the Euclidean distance in the classifica-
tion phase. In the proposed approach, the support vectors for each
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category are identified from the training data points during train-
ing phase using SVM. During classification, when a new data point
is mapped into the original vector space, the average distances
between the new data point and the support vectors from different
categories are measured using the Euclidean distance. The classifi-
cation decision is made based on the category of support vectors
which has the lowest average distance with the new data point,
making the classification decision irrespective of the efficacy of
hyper-plane formed by applying the particular kernel function
and soft margin parameter.

In [182], is evaluated three machines learning methods, k-
nearest neighbor, SVM and adaptive resonance associative map
are evaluated for Chinese document categorization. Based on two
Chinese corpora, a series of controlled experiments evaluated their
learning capabilities and efficiency in mining text classification
knowledge. SVM is highly efficient in learning from well-
organized samples of moderate size, although on relatively large
and noisy data the efficiency of SVM and adaptive resonance asso-
ciative map are comparable.

In reference [183], the authors showed that in the case of text
classification, term-frequency transformations have a larger
impact on the performance of SVM than a kernel itself. It is dis-
cussed the role of importance-weights, which is not totally under-
stood given the model complexity and calculation cost. It is also
shown that the time consuming lemmatization or stemming can
be avoided even when classifying highly inflection language.

SVM is one of the techniques used in active learning to reduce
data labeling effort in different fields of pattern recognition. In
[184], it was presented a batch mode active learning using SVM
for text classification, since most of the related works applying
active learning methods to automatic text classification are
focused on requesting the label of an unlabeled document in each
iteration.

The authors in [185] bring forward linear SVM together with
distributional clustering of words to realize its potential in text cat-
egorization realm. Distributional clustering has been presented as
an efficient alternative to the feature selection conventionally used
in text categorization. Distributed clustering together with linear
SVM brings down the dimensionality of text documents without
any compromise in classification performance. In this study, linear
SVM and its extension fuzzy SVM were employed together with
distributed clustering for text categorization.

The authors in [186] proposed an approach for term weighting
in very short documents that is used with an SVM classifier. The
paper focuses on market research and social media documents.
In both data sources, the average length of a document is below
twenty words. As the documents are short, each word occurs usu-
ally only once within a document. Thus, it was proposed an
approach for term weighting that does not use term frequency
within a document but substitutes it with other word statistics.

In high dimensions and large-scale multi-class textual data, it is
common to ignore the semantic between words with the tradi-
tional feature selection method. The authors in reference [187]
introduced the categories information into the existing LDA (Latent
Dirichlet Allocation) model feature selection algorithm and con-
struct SVM multi-class classifier on the implicit topic-text matrix.

In [188], it was presented a text classifier using positive and
unlabeled examples. The challenge of this problem as compared
with the classical text classification problem is that no labeled neg-
ative documents are available in the training example set. Many
more reliable negative documents are identifier by an improved
1-DNF algorithm. Then, a set of classifiers are built by iteratively
applying the SVM algorithm on a training data set, which is aug-
mented during iteration. Later, different from previous PU-
oriented text classification works, the weighted vote of all classi-
fiers generated in the iteration steps is adopted to construct the
final classifier instead of choosing one of the classifiers as the final
classifier. The authors propose an approach to evaluate the
weighted vote for all classifiers generated in the iteration steps
to construct the final classifier based on particle swarm
optimization.

In reference [189], the authors proposed the combined dichot-
omy transformations, a text categorization system that combines
binary classifiers that are trained with different dichotomy sets
using dichotomy transformation, where the number of training
examples increases exponentially when they are compared with
the original set. This property is desirable because each classifier
can be trained with different data without reducing the number
of examples or features. Thus, it is possible to compose an ensem-
ble with diverse and strong classifiers. Experiments are preformed
using SVM, random subspace, boostexter and random forest.

The authors in [190] promoted a new benchmark called RTA-
news, which is a data set of multi-label Arabic news articles for
text categorization. They conducted an extensive comparison of
most of the well-known multi-label learning algorithms for Arabic
text categorization in order to have baseline results and show the
effectiveness of these algorithms for Arabic text categorization on
RTAnew. The evaluation involves several algorithms, such as bin-
ary relevance, classifier chains, calibrated ranking, SVM, k-nearest
neighbors (KNN), random forest and four adaptation-based algo-
rithms. The results demonstrate that adaptation-based algorithms
are faster than transformation-based algorithms.
5.2. Image classification

In [191], the image is enhanced with the help of median filter,
Gaussian filter and un-sharp masking. After that, morphological
operations and the entropy based segmentation are used to find
the region of interest and finally the KNN and SVM classification
techniques are employed for the analysis of kidney stone images.
Kidney stone detection is a sensitive topic. There are various prob-
lems associated with this topic like low resolution images, similar-
ity of kidney stone and prediction of stone in the new image
kidney. Ultrasound images have low contrast and are difficult to
detect and extract the region of interest. Therefore, the image
has to go through the preprocessing which normally contains
image enhacement.

Qiao et al. [192] presented a method which combines low and
high frequency Curvelet coefficients with feature vectors based
on the traditional features to make up for contour and texture fea-
ture in details. Commonly used parameters optimization algo-
rithms in SVM are cross validation grid search, genetic algorithm
and PSO algorithm. In reference [192], the smart algorithm is used
for parameter optimization, making it simple and rapid.

The authors in [193] developed a handle device featured with
low cost and high performance to enhance early detection of mel-
anoma at the primary healthcare. SVM is a common classifier that
shows high accuracy for classifying melanoma within the diagnosis
system and is considered as the most compute-intensive task in
the system. Therefore, the authors propose a dynamic hardware
system for implementing a cascade SVM classifier on FPGA for
early melanoma detection. A multi-core architecture is proposed
to implement a two-stage cascade classifier using two classifiers
obtaining high accuracies.

Orthogonal moments are the projections of image function onto
particular kernel function. They play vital role in digital image fea-
ture extraction being rotation, scaling, translation invariant, robust
to image noise and contain minimal information redundancy.
Fractional-order moments are superclass of integer order and more
efficient underrated. Kaur et al. [194] proposed fractional-order
Zernike moments along with SVM to recognize grape leaf diseases.
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Comparative analysis with integer-order Zernike moments along
with other feature selection methods has been explored.

In [195], the authors presented a framework for person-
independent expression recognition by combining multiple types
of facial features via multiple kernel learning in multiclass SVM.
Approaches based on multiple kernel learning jointly learn the
same kernel weights with l1-norm constraint for all binary classi-
fiers, whereas the proposed framework learns one kernel weight
vector per binary classifier in the multiclass-SVM with lp-norm
constraints, which considers both sparse and non-sparse kernel
combinations within multiple kernel learning. The authors studied
the effect of lp-norm of multiple kernel learning in multiclass algo-
rithm for learning the kernel weights and evaluated the recogni-
tion results.

In reference [28], it was addressed the recognition of Indian
signs based on dynamic hand gesture recognition techniques in
real-time scenario. The captured video is converted to HSV color
space for pre-processing and then the skin pixels are segmented.
Hu moments and motion trajectory are extracted from the image
frames and the classification of gestures is performed by using
SVM.

The authors of reference [196] proposed a system consisting of
three modules: digital zoom, adaptive skin detection and hand ges-
ture recognition. The last module recognizes both static and
dynamic hand gesture. The region of interest next to the detected
user face is for fist/waving hand gesture recognition. An efficient
algorithm using SVM is developed to classify the dynamic hand
gestures under complex background, motion history image and
four groups of novel Haar-like features are investigated to classify
the dynamic and right hand gestures.

In reference [197], three robust approaches for feature extrac-
tion for gender classification were presented. The first approach
is based on using discrete cosine transform and consists of two dif-
ferent methods for calculating features values. The second
approach is based on the extraction of texture features using the
gray-level co-occurrence matrix. The third approach is based on
2D-wavelet transform. The extracted features vectors are classified
using SVM. K-fold cross validation is used in training the SVM.

The authors in [198] introduced a method for spectral-spatial
classification of hyperspectral images. The proposed technique
consists of two steps: 1) a probabilistic SVM pixelwise classifica-
tion of the hyperspectral image is applied; 2) spatial contextual
information is used for refining the classification results obtained
in the first step, by means of a Markov random field regularization.

In reference [199], the feature selection methods for mass clas-
sification of mammograms are addressed. A procedure based on
SVM recursive feature elimination is integrated with a normalized
mutual information feature selection to avoid their disadvantages.
Different initialization methods are investigated with spatial con-
straints as the initialization step. Different feature selection meth-
ods with a minimum redundancy-maximum relevance filter are
used to select features and to compare mass classification results
using the selected features.

The contribution of reference [200] concerns histogram inter-
section kernel SVM for image classification. The intersection coor-
dinate descent and a deterministic and scalable histogram
intersection kernel solver are proposed. The intersection coordi-
nate descent is faster than general purpose SVM solvers and other
fast histogram intersection kernel SVM training methods.

The use of color in QR codes brings extra data capacity, but also
inflicts tremendous challenges on the decoding process due to
chromatic distortion-cross-channel color interference and illumi-
nation variation. The authors of reference [201] proposed two
approaches to solve these problems: LSVM-CMI and QDA-CMI
which jointly model these different types of chromatic distortion.
Extended from SVM and QDA (Quadratic Discriminant Analysis),
respectively, LSVM-CMI and QDA-CMI optimize over a particular
objective function and learn a color classifier.

5.3. Bioinformatics (protein classification and cancer classification

The authors in reference [202] proposed a semi-supervised
SVM-based feature selection, which simultaneously exploits the
knowledge from unlabeled and labeled data. Experimental results
on the gene expression data of lung cancer show that semi-
supervised SVM-based feature selection achieves the higher accu-
racy and requires shorter processing time compared with the well-
known supervised method.

In [203], it was presented a clinical decision support system
aimed to save lives, time and resources in the early diagnostic pro-
cess. Segmentation, feature extraction and lesion classification are
the important steps in the proposed system. The system analyzes
the images to extract the affected area using a segmentation
method. The underlying features which indicate the difference
between melanoma and benign images are obtained through spe-
cialized texture analysis methods. Self-SVM is employed for classi-
fication which shows improved classification rate.

Zhang et al. [204] applied an 1-norm SVM with the squared loss
to implement fast gene selection for cancer classification. The 1-
norm SVM square loss performs gene selection and classification
at the same. The approach is used as a gene selector and adopts
a subsequent classifier to classify the selected genes.

The authors of reference [205] proposed to identify significant
attributes in a well-established prostate cancer gene expression
data set. Different statistical and artificial intelligence-based fea-
ture selection methods are paired with neural networks, Naive
Bayes, AdaBoost and J48. Naive Bayes and AdaBoost achieve the
best accuracy with SVM attribute selection. By investigating
National Center Biotechnology Information database, 21 out of 24
attributes that belong to SVM attribute selection have a reference
to cancer/tumor, establishing a link between feature selection
and biological plausibility.

In reference [206], the performance of SVM classification to
stratify the Gleason score of prostate cancer in the central gland
was assessed, based on image features across multi parametric
magnetic resonance imaging. Fifty-five variables are computed in
the SVM classification. The classification model is developed with
10-fold cross-validation and is further validated mutually across
two separated data sets.

The authors of reference [207] proposed an algorithm based on
deep neural network and emotional learning process. Firstly, prin-
cipal component analysis is applied for feature reduction; then, the
features are extracted using a deep neural; different classifiers are
implemented: multi-layer perceptron, SVM, decision tree and
Gaussian mixture model. Experimental results show that, gener-
ally, using emotional learning increased the accuracy, where the
highest accuracy is obtained using SVM.

The use of convolutional neural networks in the classification
and diagnosis of medical image problems is becoming common
and popular. Nevertheless, the training of convolutional neural
networks requires a large data set of images. In [208], it was pro-
posed to overcome this problem by using transfer learning to
extract images features for further classification. Three architec-
tures of convolutional neural networks are tested where the fea-
tures are selected according to their gain ratios and used as input
to the SVM classifier.

Mazo, Alegre and Trujillo [209] classified automatically cardio-
vascular tissues using texture information and SVM. Also, several
cardiovascular organs are recognized following the same process.
The texture of histological images is described using local binary
patterns, local binary patterns invariant to rotation and Haralick
features and different concatenations between them. SVM is
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selected as the classifier with a higher area under the curve that
represents both higher recall and precision. A linear SVM allows
the separation of four classes of tissue: cardiac muscle of the heart,
smooth muscle of the muscular artery, loose connective tissue and
smooth muscle of the large vein and the elastic artery.

In reference [210], the authors presented a method based on
ultrasound RF time series analysis and an extended version of
SVM classification for generating probabilistic cancer maps that
can augment ultrasound images of prostate and enhance the
biopsy process. The RF time tries are formed by recording sequen-
tial ultrasound RF echoes backscattered from tissue while the
imaging probe and the tissue are stationary in position.

5.4. Hand-written character recognition

Bhowmik et al. [29] proposed recognition of hand-written Ban-
gla characters based on SVM hierarchical classification schemes. It
is observed that there are groups of characters having similar
shapes. These groups are determined in two different ways on
the basis of confusion matrix obtained from SVM classifier. Three
different two-stage hierarchical learning architectures are pro-
posed using the grouping schemes.

In reference [211], binary area matrix calculation was pre-
sented. The performance of the binary zone area matrix is mea-
sured individually and with combinations of other existing
features. The proposed method for character recognition is applied
to the eighteen different scripts authorized by the Government of
India Sridhar. The recognition of the characters is performed using
SVM classifiers.

Jebri et al. [212] proposed an optical character recognition sys-
tem for Arabic characters. In the first phase the characters are
extracted, in the second phase histograms of oriented gradient
are used for feature extraction. The final phase employs SVM for
character classification.

In [213], an approach for handwritten digit recognition is devel-
oped that uses a small number of patterns for training phase. The
recognition performance is improved by using the bag of visual
words technique to construct images feature vectors. Each visual
word is described by scale invariant feature transform method.
For learning feature vectors, SVM classifiers are employed.

The authors of reference [27] presented a system to recognize
handwritten character for the Gujarati language. SVM with linear,
polynomial & RBF kernel, k-NN with different values of k and
multi-layer perceptron are employed to classify strokes using
hybrid feature set.

In reference [214], it was proposed a framework of providing
handwritten character recognition as a service via internet, based
on cloud computing technology. SVM classifier is used, along with
other classifiers, for large scale character recognition, writing adap-
tation technology and handwriting Chinese word/text recognition.

Bertolini et al. [215] investigated the efficacy of a writer-
independent classifier based on dissimilarity for multi-script wri-
ter identification. Multi-script writer identification consists in
identifying a person of a given text written in one script from the
samples of the same person written in another script. The authors
performed experiments on Arabic and English samples, features
are extracted using the texture descriptors local binary patterns
and local phase quantization; with these features SMVs with Gaus-
sian kernel are used as classifiers. The free parameters of the sys-
tem for the SVM are chosen using 5-fold cross validation; the
parameters are determined through a grid search.

The authors of reference [216] performed experiments for
handwritten character recognition using and comparing the per-
formance of multi-layer feed forward back propagation neural net-
work and SVM classifier. The neural network is trained with the
pixels of character images resized into 7050 pixels, which is
directly subjected to training. In other words, each resized image
has 3500 pixels and these pixels are fed for the neural network
training. For the SVM, 25 features are extracted from each charac-
ter and these features are employed to train the SVM, where the
polynomial kernel is used.

In reference [217], it was described a method for offline writer
identification, using RootSIFT descriptors computed densely at the
script contours. GMM (Gaussian Mixture Model) supervectors are
used to describe the characteristic handwriting of an individual
scribe. Exemplar-SVMs are proposed to train a document-specific
similarity measure.

In [218], the authors proposed the block wise local binary count
as descriptor for offline text independent writer identification of
handwritten documents. The proposed operator characterizes the
writing style of each writer by a set of histograms calculated from
all the connected components in the writing. Each histogram is
constructed by calculating the occurrence distribution of pixels
corresponding to the writing within small blocks in each connected
component extracted and cropped from the input handwriting
sample. The samples are classified according to their normalized
histogram feature vectors through the nearest-neighbor rule using
the Hamming distance and SVM.
5.5. Face detection

Je, Kim and Yang Bang [219] proposed the automatic detection
of human face in digital video using an SVM ensemble to improve
the detection performance. The SVM ensemble consists of several
SVMs trained using training samples via a bootstrap technique.
They are aggregated in order to make a collective decision via a
majority voting scheme.

One of the problems of face detection is the large variations
because of some factors, like viewpoint, extreme illuminations
and expression changes, leading to large intra-class variations
and making the detection algorithms not robust enough. The
authors of reference [220] proposed a locality-sensitive SVM using
kernel combination algorithm to solve the problems mentioned
before. The locality-sensitive SVM is employed to construct a local
model on each local region, which handles the classification task.
Then, multiple local convolutional neural networks are employed
to jointly learn local facial features because of the strength of con-
volutional neural networks learning characteristic.

Face recognition plays an important role in video surveillance;
these systems are exposed to challenging operational environ-
ments. The appearance of faces changes when captured under
unconstrained conditions due to variations in pose, scale, illumina-
tion, occlusion, blur, etc. In [221], the authors developed a multi-
classifier system based on multiple face representation and
domain adaptation. An individual-specific ensemble of exemplar-
SVM classifiers is thereby designed to improve robustness to
intra-class variations. During enrollment of a target, an ensemble
is used to model the single reference, where multiple face descrip-
tors and random feature subspaces allow generating a diverse pool
of patch-wise classifiers. These ensembles are adapted to the oper-
ational domains; the exemplar-SVMs are trained using labeled face
patches extracted from the reference still versus patches extracted
from cohort and other non-target stills mixed with unlabeled
patches extracted from the corresponding face trajectories cap-
tured with surveillance cameras.

In reference [222], the authors proposed a methodology to solve
the problem of full illumination variation by the combination of
histogram equalization and Gaussian low-pass filter. So as to pro-
cess illumination normalization, feature extraction is applied with
consideration of both Gabor wavelet and principal component
analysis. An SVM classifier is used for face classification.
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The authors of reference [223] presented an automatic gender
recognition algorithm based on machine learning methods. It con-
sists of two stages: adaptive feature extraction and SVM classifica-
tion. The algorithm consists of the following steps: color space
transform, image scaling, adaptive feature set calculation and
SVM classification with preliminary kernel transformation.

In [224], the authors proposed a method for face detection
based on principal component analysis and SVM. Firstly, the poten-
tial face area of the image is filtered using statistical feature, which
is generated by analyzing local histogram distribution; and then,
SVM classifier is used to detect face feature in the test image.
PCA is employed to reduce dimension of sample data; after PCA
transform, the feature vectors, which are used for training SVM
classifier, are generated.

Kumar, Kar and Chandra [225] employed mean and median fil-
ters which are normally used to reduce noise present in an image
and for preserving useful detail in the image. Adaptive filtering is
more selective which helps for preserving edges and other high fre-
quency parts of an image. Once the noise from an image has been
removed the image is sent to the SVM trained for identification of
faces.

While a number of face spoof detection techniques have been
proposed, their generalization ability has not been adequately
addressed. In reference [226], it was proposed a robust face spoof
detection algorithm based on image distortion analysis. Four dif-
ferent features: spectacular reelection, blurriness, chromatic
moment and color diversity, are extracted to form the feature vec-
tor. An ensemble classifier, consisting of multiple SVM classifiers
trained for different face spoof attacks is used to distinguish
between genuine and spoof faces.

Waring and Liu [227] presented a face detection method using
spectral histograms and SMV. Each image window is represented
by its spectral histogram, which is a feature vector consisting of
histograms of filtered images. Using statistical sampling, the
authors showed systematically the representation groups face
images together; in comparison, commonly used representations
often do not exhibit this necessary and desirable property. The
high performance of the approach is attributed to the desirable
properties of the spectral histogram representation and good gen-
eralization of the SVMs.

Face direction detection plays an important role in human–
computer interaction and has a wide application. Current detection
methods are mainly focused on extracting specific patterns from
user’s optical images, which raises concerns on privacy invasion
and these detection techniques do not usually work in dark envi-
ronments. In reference [228], the authors developed an activity
recognition system guided by an unobtrusive sensor. By using a
low pixel infrared thermopile array sensor, the proposed system
is capable of identifying five facing directions through the SVM
classifier.
5.6. Protein fold and remote homology detection

Rahman et al. [229] presented a computational model that
introduces ways to extract features from protein sequences, but
also optimizes classification of trans-Golgi and cis-Golgi proteins.
After feature extraction, random forest model is employed to rank
the features based on the importance score obtained from it. After
selection of the top ranked features, the Golgi proteins are classi-
fied using SVM.

In [230], a computational approach was tried to find the evolu-
tionarily related fold of the receptor-associated proteins. Through
the structural and sequence-based analysis, various protein folds
were found that are very close to the receptor-associated protein
folds. Remote homolog data sets were used potentially to develop
different SVM methods to recognize the homologous receptor-
associated protein fold.

Mei [231] presented SVM ensemble based transfer learning
model for membrane proteins discrimination, to reduce the data
constraints on computational modeling. This method investigates
the effectiveness of transferring the homolog knowledge to the tar-
get membrane proteins under the framework of probability
weights ensemble learning. As compared to multiple kernel learn-
ing based transfer learning model, the method takes the advan-
tages of sparseness based SVM optimization on large data; hence,
is more computationally efficient for large protein data analysis.

In reference [232] it was developed an intelligent prediction
system for protein sub cellular localization using fluorescence
microscopy images. The proposed prediction system uses a feature
extraction strategy and ensemble classifications. The feature
extraction mechanism exploits statistical and text based image
descriptors, whereas ensemble classification is performed using
the majority voting based ensemble of SVMs. The contribution of
this work lies in the individual exploitation of the feature spaces
generated from both individual gray level co-occurrence matrices
and sexton images as well as in the manner the extracted features
are exploited using the learning capabilities of SVM, which is uti-
lized as base classifier in majority voting based ensemble.

In [233], the performances of SVM and neural networks for lipid
binding proteins identifications were compared. Fivefold cross-
validation and independent evaluation tests are used to assess
the validity of the two methods. The results indicated that SVM
outperforms neural network.

Remote homology detection at amino acid level is a complex
problem in bio-informatics. Customary detection methods may
be replaced by SVM based approaches where a sequence is repre-
sented by significant feature vectors. Two approaches are pre-
sented in [234]: 1) 2-mers are generated from individual amino
acid for protein sequences and various physicochemical parame-
ters are used to generate the feature vector; 2) the properties of
amino acid are used to create the feature vectors using 3-mers in
the similar manner. Principal component analysis is employed
for dimensionality reduction and SVM is applied for classification.

The authors in reference [235] proposed a profile-based repre-
sentation for sequences called Ngram. This representation extends
the traditional Ngram scheme and permits considering all of the
evolutionary information in the profile. Ngrams are extracted from
the whole profile, equipping them with a weight directly com-
puted from the corresponding evolutionary frequencies. Two dif-
ferent approaches are proposed to model the representation and
to derive a feature vector which can be effectively used for classi-
fication using an SVM.

Bedoya and Tischer [236] presented a method for remote pro-
tein homology detection. Usually, the discriminative methods con-
catenate the values extracted from physicochemical properties to
build a model that separates homolog and non–homolog examples.
Each discriminative method uses a specific strategy to represent
the information extracted from the protein sequence and a differ-
ent number of indices. After the vector representation is obtained,
SVMs are often employed. The contribution of this work lies on
reducing the high dimensionality of the feature vector using mod-
els that are defined at the 3D level.

Homology-based methods have been developed to detect pro-
tein structural classes from protein primary sequence information,
these methods are divided into three types: 1) discriminative clas-
sifiers, generative models for protein families and pairwise
sequence comparisons. SVMs have shown being fast speed during
training, more accurate and efficient compared to neural networks.
In reference [237] it was presented a comprehensive method based
on two-layer classifiers. The first layer detects up to superfamily
and family in SCOP (Structural Classification of Proteins) hierarchy
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using optimized binary SVM classification rules. It employs the
Bio-kernel, which incorporates the biological information in the
classification process. The second layer uses discriminative SVM
algorithm with string kernel that detects up to protein fold level
in SCOP hierarchy.

5.7. Generalized predictive control

Wang and Kwong [78] presented a surge control strategy for
centrifugal compressor using nonlinear model predictive control
based on lease-squared SVM in order to increase efficiency of cen-
trifugal compressor. The nonlinear predictive models of compres-
sor’s discharge pressure and mass flow are developed by the
lease-square SVM.

In [238], an SVM-based multi-model predictive control is pro-
posed, in which SVM classification combines well with SVM
regression. Each working environment is modeled by SVM regres-
sion and the SVM network-based model predictive control algo-
rithm corresponding to each environment is developed, and then
a multi-class SVM model is established to recognize multiple oper-
ating conditions. For control, the current environment is identified
by the multi-class SVM model and then the corresponding con-
troller is activated at each sampling instant.

The lease-squared SVM has been successfully used to predictive
control on small samples, nonlinear data. It was presented the pre-
dictive model methodology in reference [239]. The control results
are influenced by the parameters on the lease-squared SVM. They
are optimized by genetic algorithm, according to root mean square
relative error. To successfully control the depth and attitude of an
autonomous underwater vehicle, it is important to study the algo-
rithm of the control. The autonomous underwater vehicle control
on lease-square SVM is including the direction, depth, trims and
roll movement.

In reference [240], the authors proposed a systematic data-
driven method for the design of quantized explicit model predic-
tive control for time-varying output tracking in nonlinear systems.
The design involves: sampling the admissible state space; at each
sampled point, solving for optimal quantized model predictive
control actions and determining feasibility of the intrinsic mixed-
integer nonlinear programming problem, and constructing the
quantized explicit model predictive control surface using multi-
class SVMs.

Chu et al. [241] developed a rapid modeling method for cen-
trifugal compressor based on model migration and SVM. The base
model of an existing old compressor is revised to fit for the new
compressor by SVM. This method is evaluated by a simulation case
and the results show that, compared with the pure SVM, the
migrated model can fit the new compressor faster with better
accuracy.

The authors of reference [242] analyzed whether trust can be
used as a predictor of cross-functional team performance by
proposing a prediction model. The inputs of the model are both
team structural and contextual factors and project process factors,
which are two major sources that form team trust. The output of
the model is different of team performance, which consists of
internal performance and external performance. The SVM tech-
niques are used to establish the model. The authors give reference
for managers to dynamically control and predict team performance
during project period.

5.8. Complex classifications problems

SVM have been successfully used in multiple fields of applica-
tion. However, there are very complex applications where further
research is still needed to obtain satisfactory results. This section
lists some of those applications:
5.8.1. Plant species classification
The classification of plant species from digital images has been a

subject studied in recent years and today, very important results
have been obtained in data sets of images with fully controlled
environments and with very specific characteristics. However,
important results are still not obtained in images of plants in
uncontrolled and partially controlled environments or in data sets
with very few images [243–245].

Moreover, current studies are carried out on very small data
sets. However, the vast majority of the species in the world is
around (369K species) and the performance of state-of-the-art
machine learning algorithms on these data sets is unknown and
presumably much lower [246].
5.8.2. Classification of credit card fraud
Currently, the credit-card fraud is turning into a substantial

challenge for financial institutions and service providers. Reported
studies on the use of modern data-driven and learning-based
methods to detect credit-card fraud are relatively few [247–250].
To solve these kind of problems is not common due to the imbal-
ance in the data set (many examples of one class and very few of
another class). The ratio of non-fraudulent transactions to fraudu-
lent transactions is around 99:83% to 0:17% respectively.

The principal challenge is to design new algorithms to cope
with the disadvantage of working with imbalanced data sets
because performance of machine learning algorithms changes a
lot when they are trained with unbalanced data sets. These algo-
rithms tend to show a bias for the majority class, treating the
minority class as a noise in the data set.
5.8.3. Classification and staging of melanoma
Melanoma is the most aggressive type of skin cancer, its diagno-

sis is unstable in 25%. Therefore, research has been done for the
analysis of melanoma through computer vision images and great
progress has been observed. Support vector machines is a robust
machine learning model that shows high accuracy with different
classification problems, although there is a disadvantage of the
SVM classifier in many cases as integrated detection systems and
some image processing since the SVM model is computationally
expensive and time consuming. Although the implementation of
SVM in software produces high accuracy rates and with real-time
limitations, the accuracy in the detection of melanoma and early
diagnosis can help to reduce mortality rates and treatment costs.
Dermatoscopic images acquired are used in computational analysis
for the detection of skin cancer, however there are limitations of
image quality such as noise, shadows, artifacts that compromise
the robustness of skin image analysis [251–253].
6. Trends and challenges

Large amounts of data are generated and collected at each
moment. The supervised and unsupervised learning methods of
machine learning are the responsible for transforming these data
into useful information. SVMs have proven to be one of the best
supervised learning methods in various applications; however,
since SVM development several challenging problems have been
identified to be able to use this classifier with very large data sets,
also in dynamic environments such as data streams with concept
drift, in multi-class problems, in data sets with few tagged data,
and the selection of the right kernel and adjusting its parameters
efficiently. These challenges are more difficult to solve when two
or more of them are presented simultaneously. In the following,
we explain in brief some of the challenge problems of SVM
classifier.
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	 Multi-class SVM. The mathematical formulation of the SVM
classifier is designed for two classes, these are the positive
and the negative. Such a formulation restricts the direct applica-
tion of SVM to binary problems. However, many real-world data
sets have multi-class output.
For more than two decades several methods have been pro-
posed to extend the capabilities of SVM to face multi-class
problems. The earliest and commonest methods use one-
against-all or one-against-one approach.
The basic idea of one-against-all or one-against-rest approach is
to train an amount of SVMs equal to the number of classes. Each
binary classifier is constructed considering the samples of one
class as the positive, and the rest of instances as belonging to
the negative class. The prediction is assigned to the model that
produces the largest value after evaluating its decision function.
One-against-one approach [124,125] builds binary SVMs using
only the samples that belong to two different classes, therefore,
the number of models obtained is KðK�1Þ

2 , with K equals to the
number of classes. To decide the class of a previously unseen
instance, a voting scheme between all models is used. Voting
strategy to achieve high classification accuracy is a key compo-
nent for facing multi-class problems with SVM. To compensate
the errors in the predictions of individual SVM binary classifiers,
differential evolution was applied in [126].
Other methods are similar to the work presented by Breden-
steiner in [127]. The proposal of this approach is to construct
a piecewise-nonlinear classification function. Each piece of this
classifier can be a polynomial, a radial basis function, or a clas-
sifier such as a neural network. Recently, Tang [128] proposed a
method that maps the K classes to K vertices of a (K � 1)-
dimensional regular simplex so that the K-class classification
becomes a (K � 1)-output learning task.
Shao et al. [129] proposed a method that use a binary tree clas-
sifier which is build with a method that maximizes the distance
between the classes in each partition, for this purpose twin sup-
port vector machines are trained. Although the reported results
show the effectiveness of this method for facing multi-class
problems, a drawback is that it needs to train 2K�1 � 1 SVM at
each stage. In [130], a decision tree like algorithm capable of
tackling multi-class data sets was presented. Similar to other
approaches, a binary SVM is used to split the data at each level
of the decision tree. Different from other proposals, a kernelized
clustering algorithm is used to create the sets of positive and
negative samples.
Santosa [131] proposed a method based on the one-against-
rest and one-against-one approaches for multi-class problems
with SVM. To train the SVMs the Cross entropy method is uti-
lized. Cross entropy is a stochastic optimization method that
consists in improving solutions iteratively by means of an
specific random mechanism. Usually, initial solutions are gen-
erated randomly following a normal distribution with mean
an standard deviation established arbitrarily. A subset of the
best solutions is used to update the mean and standard devi-
ation, these new parameters are used to generate the next set
of solutions. This process is repeated until a stopping criteria
is satisfied. Four experiments were done in [131]. The results
of experiments showed that Cross entropy has less computa-
tional complexity than the standard quadratic programming
SVM, besides, it produces comparable results in terms of gen-
eralization error.
Most of methods use one-against-all or one-against-rest
approaches for facing multi-class problems with SVM. For a
large number of classes, new heuristic, stochastic or hybrid
methods need to be designed to improve classification
accuracy.
	 Multi-task SVM
Multi-task learning (MTL) is a recently area of machine learning
based on the assumption that if different tasks are related
among them, then jointly learning these multiple tasks can lead
to better performance than learning them independently, i.e.,
the idea is to leveraging useful information among the tasks.
The determination of the relatedness between tasks is usually
the key to the formulation of MTL [254].
For supervised MTL with SVM, most of current approaches use
multiple multitask binary problems, this can be seen as the
opposite to the philosophy of MTL because the relationships
between classes are ignored. Ji and Sun [255] proposed to cast
multitask multiclass problems into a constrained optimization
problem with a quadratic objective function, this approach pro-
duces accurate prediction, as shown in the results of experi-
ments.
Deeper studies on supervised MTL with SVM to determine its
usefulness in specific real-world applications is a current trend.

	 Large-scale problems. The training of an SVM basically consists
in solving a QP problem, this task is a high computational bur-
den when the number of instances is large. In the last past few
years scholars have proposed some methods to enable SVM on
large data sets. Most common approaches are based on the fol-
lowing strategies:
- Under sampling.
The underlying idea with under sampling is to select a small
yet significant number of samples from a large data set to
train SVM. In order for the generated model to perform well
in classifying new data, it is necessary to design an adequate
data selection strategy. Among these strategies random
sampling and support vectors candidate selection are the
most studied, these consists in the identification of data that
have a high probability of being support vectors.
In [256–258] the SVs candidates set is formed by picking the
points from all CHs. This type of strategy is based on the
observation that SVs are the closest points and they corre-
spond to convex hull [113]. Other approaches [259,260]
use the fact that SVs are usually the closest to opposite class
or far from the class center. On the other hand, some authors
propose to train a classifier diferent from SVM
[26,244,261,262] or a linear SVM [263,264] to select SV can-
didates, and then train with them. Clustering methods [265–
267,73] or heuristic methods [263,268,269[ also have been
studied.
- Alternative optimization methods.
The QP problem associated to SVM has one global optimal
solution. In order to search this solution, interior point
methods, gradients methods, decomposition methods, are
used in many works. These methods can converge slow in
many cases. To improve performance the stochastic gradient
descent method called PEGASOS was proposed in [270], the
run-time of PEGASOS does not depend directly on the size of
the training set. Recently, Wang et al. [271] have adapted
PEGASOS to twin support vector machines. Experiments
showed that the method can handle large scale problems
easily.
- Transform QP problem into a simpler problem
Instead of solving a QPP that is costly in terms of memory
and computing time, an approach is to transform such prob-
lem into a one easier to solve. The Sequential Minimal Opti-
mization (SMO) algorithm proposed by Platt [15]
decomposes the QP problem into a series of smallest possi-
ble sub-problems that are solved analytically. This is one
of the most successfully methods implemented in some
libraries. The Cholesky decomposition to solve SVM itera-
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tively was proposed in [272]. De Lima et al. [273] proposed a
Sherman–Morrison–Woodbury formulation which is
employed to reduce the complexity of nonlinear Improve-
ments on least squares twin multi-class support vector
machine. The solution requires solving two systems of linear
equations, instead of solving two QPPs.
New methods to put the QPP of SVM in a simpler form, and
then solve it in more efficient ways have not been discov-
ered yet. .
- Geometric approach. The convex-hull (CH) of a set of points
X is the smallest convex set that contains all the elements in
X. Usually, CH is very small compared with the data set X.
Mavrofarakis in [274] took advantage of the geometry of
SVM to propose a framework for training SVM using projec-
tions of points that belong to CH. For the linearly inseparable
case, Mavrofarakis proposed to use reduced or shrinked CHs,
transforming the problem into a linearly separable one. Dif-
ferent from this approach, Liu et al. [275] use measures in
the projected high dimensional feature space for SVM since
this is where the separating hyperplanes are determined to
select a subsets of instances.
- Parallel algorithms. With the availability of tools to perform
parallel computing using low-cost computer clusters, pro-
gress has been made in parallelizing algorithms to train
SVM. In [276], the MapReduce framework is employed to
train SVM in a distributed way to predict protein–protein
interactions. Efficient implementations of SVM in dedicated
hardware architectures, distributed systems or GPUs can
help to apply SVM classifiers on large-scale problems or in
dynamic environments.

	 On-line SVM
Data streams such as sensor networks, financial markets, social
networks, and healthcare monitoring systems are very common
in these days [277]. In these environments, the distribution of
classes is changing dynamically (this phenomena is known as
concept drift), therefore, the predictor must be updated accord-
ing to the changes. A classifier needs to be trained very fast and
easily upgradeable, these two requirements make difficult to
apply SVM classifier on data streams.
Zheng et al. [278] proposed to use a type of sampling from a

data stream, the method learns the prototypes and continu-
ously adjusts prototypes to the data concept, an SVM is then
trained with these elements. Recently, Wang and Xing [279]
noticed that training SVM with old and new prototypes can
have a bad influence on its performance due to losing much
information about the data. They proposed to use a Representa-
tive Prototype Area (RPA), that retains the representative data of
all historical data. In the RPA, each class is maintained by an
Online Incremental Feature Map (OIM) which learns a suitable
representative set from the stream data automatically. Experi-
ments showed that the algorithms can deal with data sets with
millions of samples.
Liu et al. [280] pointed that On-line learning is more difficult on
data over distributed environments, also when data privacy is
required.

	 Kernel choice and parameter optimization
In order to apply SVM successfully on a data set, it is necessary
to select appropriate kernel and also tune its parameters. The
basic approach to tune the parameters of kernels is the so-
called grid search algorithm. It is a process that searches
exhaustively through a manually specified subset of the hyper-
parameter space of the targeted algorithm [281]. Other
approach is based on analyzing the class separability [282].
Candelieri et al. [283] proposed a parallel global optimization
model to optimize the hyper-parameters of Support Vector
Machine. Wang [284] created a method for parameter selection
of SVM with Gaussian kernel (one of the most commonly used).
Other approaches use evolutionary algorithms [285].
Automatic kernel choice and calibration of this parameters in a
low computational cost fashion is a problem that has not been
completely solved. For some applications, such as speech recog-
nition [286], recognition based on image set [287], the design of
new kernel functions can improve the performance of SVM. This
is another important issue.

	 Semi-supervised and transductive SVM
Supervised learning methods, such as SVM and others, need the
data be labeled. Collecting unlabeled data is usually easy, cheap,
and it can be done automatically; however, the manual labeling
of data is a slow and error-prone process, or even unfeasible in
some circumstances, such as on-line applications. New strate-
gies to enable SVM on partially labeled data sets are necessary.
Recently, extensions to apply SVM on partially labeled data
have been attracted the attention of researchers and practition-
ers. One of the most representative algorithms is Transductive
SVM (TSVM), the idea is to find an hyperplane that separates
the labeled samples with a large margin, but at the same time
that ensures that the unlabeled instances will be as far as pos-
sible from the margin. In some tasks, semi-supervised SVM
can be applied successfully by exploiting the information con-
tained in data [288]. Davy et al. [289] used a sequential opti-
mization algorithm to detect abnormal events. However, not
in all cases is feasible to take advantage of the characteristics
of the problem.
Chevikalp and Franc [290] replaced the Hinge loss that is used
for labeled data with a Ramp loss (a loss function is a measure
of the distance between predictions and the real class, Hinge
and Ramp are examples of loss functions). Also, they solved
the optimization problem in the primal space (most of
approaches do this on dual space) by using a stochastic gradient
algorithm. To give an idea of the speed of this state-of-the-art
method, it takes 38 s to train a TSVM with 2,000 labeled sam-
ples and 8,000 unlabeled ones. Each instance with 100 attri-
butes. It is reported that this algorithm is able to train a TSVM
with about 400,000 instances each one with 2,000 features,
however, the training time is not reported.
Li et al. [291] pointed that in TSVM the unlabeled examples
harm the performance of the classifier. To address this problem,
they proposed two algorithms to optimize the margin distribu-
tion of TSVM via maximizing the margin mean and minimizing
the margin variance simultaneously. Results showed that this
solution is robust to the outliers and noise.

Among the plethora of classification methods, SVM has been
one of the most popular methods in a wide variety of applications,
this due to its good classification accuracy. In spite of this out-
standing performance, some important problems of this classifier
have been identified since it was published. Although most of these
problems have been studied for more than ten years, and there are
many proposals to solve them, every time it becomes more neces-
sary to develop better solutions.

Deep learning Vs SVM

Deep learning is a set of machine learning algorithms that
attempts to model high-level abstractions in data using computa-
tional architectures that support multiple non-linear and iterative
transformations of data expressed in matrix or tensorial form
[292]. In recent years the popularity and expansion of Deep Learn-
ing has grown due to its potential utility in different types of appli-
cations in the ‘‘real world”, mainly because it obtains high success
rates with ‘‘unsupervised” training. Many studies have been con-
ducted with deep learning especially in healthcare, finance, speech
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recognition, augmented reality, digital image processing and more
complex 3D and video applications.

In this Section is shown a comparative of performance between
deep learning and SVM from several authors. The Figs. 5 and 6
show the results obtained by different authors in different applica-
tions [293–301]. The Fig. 5 shows the comparison of the perfor-
mance obtained using some SVM algorithm and deep learning. In
the Figure.

Some authors propose the use of deep learning combined with
SVM. The reported results improve the results in most cases. In
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some cases, the combination is done by training one of the SVM
classes from the characteristics learned by the convolutional neu-
ral network, a linear kernel can be replaced by non-linear ones
without losing precision. The Fig. 5 shows the results obtained
with combinations of SVM and Deep learning [298,302,303,194].

It is important to note that SVM and deep learning have similar
performances on average. Together they can work in synergy
improving performance in different applications.

6.1. Impact of SVM

We analyzed the impact of SVM in the literature. Fig. 7 shows
the distribution of research papers of SVM by year.

Most of the SVM papers have been written mainly for solving
problems in normal-sized data sets and balanced data sets,
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where the SVM does not have problems. We used Science direct
and IEEE Xplore search engines to retrieve publications, pub-
lished only in journals, containing the term SVM, the search pro-
duced more than 13,000 results. Fig. 7 shows the number of
publications in book chapters and journals per year, from 1998
to 2018.

For the purpose of identifying two applications of SVM (Large
data sets and imbalanced data sets), we searched publications
related to applications of SVM using the search engine IEEE Xplore
and Science direct. We selected the publications that satisfy the
following criteria: 	 The papers analyzed are the published in jour-
nals and book chapters. 	 Papers from 1998 up to 2018 were con-
sidered in the study. 	 Publications were selected that contain at
least one of the search terms in the title, abstract and/or list of
key- words.
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We found 440 publications of SVM on Large data sets and 85
publications of SVM on imbalanced data sets. The Figs. 8 and 9
show the number of publications, in book chapters and journals.
7. Conclusions

Due to its good theoretical foundations and generalization
capacity among other advantages, the SVMs have been imple-
mented in many real-world applications. SVM algorithms have
been implemented in many research fields like: Text (and hyper-
text) categorization, Protein fold and remote homology detection,
Image classification, Bioinformatics (protein classification and can-
cer classification), Hand-written character recognition, Face detec-
tion, Generalized predictive control and many more. Many
researchers have shown that SVMs are better than other current
classification techniques. However, despite SVM has some limita-
tions related to: parameter selection, algorithmic complexity, mul-
ticlass data sets and imbalanced data sets, SVM has been
implemented in many real life classification problems due to its
good theoretical foundations and generalization performance.

It is important to mention that SVM is not so popular when the
data sets are very large because some SVM implementations
demand huge training time or in other cases when the data sets
are imbalanced, the accuracy of SVM is poor, we have presented
some techniques when the data sets are imbalanced. This paper
describes in detail the principal disadvantages of SVM and many
algorithms implemented to face these disadvantages and cites
the works of researchers who have faced these disadvantages.
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