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REVIEW

Oxidative stress implications for therapeutic vaccine development against Chagas 
disease
Subhadip Choudhuria, Lizette Riosa, Juan Carlos Vázquez-Chagoyánb and Nisha Jain Garga,c

aDepartment of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; bCentro de Investigación y Estudios 
Avanzados En Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, México; cInstitute 
for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Tx, USA

ABSTRACT
Introduction: Pathogenesis of Chagas disease (CD) caused by the protozoan parasite Trypanosoma cruzi 
(T. cruzi) involves chronic oxidative and inflammatory stress. In this review, we discuss the research 
efforts in therapeutic vaccine development to date and the potential challenges imposed by oxidative 
stress in achieving an efficient therapeutic vaccine against CD.
Areas covered: This review covers the immune and nonimmune mechanisms of reactive oxygen 
species production and immune response patterns during T. cruzi infection in CD. A discussion on 
immunotherapy development efforts, the efficacy of antigen-based immune therapies against T. cruzi, 
and the role of antioxidants as adjuvants is discussed to provide promising insights to developing 
future treatment strategies against CD.
Expert opinion: Administration of therapeutic vaccines can be a good option to confront persistent 
parasitemia in CD by achieving a rapid, short-lived stimulation of type 1 cell-mediated immunity. At the 
same time, adjunct therapies could play a critical role in the preservation of mitochondrial metabolism 
and cardiac muscle contractility in CD. We propose combined therapy with antigen-based vaccine and 
small molecules to control the pathological oxidative insult would be effective in the conservation of 
cardiac structure and function in CD.

ARTICLE HISTORY
Received 24 April 2021  
Accepted 13 August 2021  

KEYWORDS
Chagas disease; immunity; 
oxidative stress; reactive 
oxygen species; 
Trypanosoma cruzi; 
therapeutic vaccine

1. Introduction

Trypanosoma cruzi (T. cruzi) is an intracellular kinetoplastid 
parasite that is the causative agent of Chagas disease (CD). 
T. cruzi experiences several biochemical and morphological 
modifications throughout its life cycle in insect vector and 
mammalian host, and it has tremendous adaptability to infect 
virtually all vertebrates. The parasite is primarily transmitted 
by triatomines, though other routes, e.g., transfusion of con-
taminated blood, consumption of contaminated food or 
infected triatomines, and congenital transmission to infants 
born to infected mothers, are also reported (reviewed in [1– 
2]). Autochthonous T. cruzi infection via vectorial transmission 
is noted in the southern parts of the US [3,4]. Because of large- 
scale migration of Latin Americans who may be exposed to 
the parasite in their native countries, CD is recognized as an 
important health problem in the US, Canada, Japan, Europe, 
and other countries [5,6].

Clinically, upon exposure to the parasite, flu-like symptoms 
associated with acute blood parasitemia are commonly noted. 
Parasites become practically undetectable in the blood in 2– 
4 months after infection, though infected individuals remain 
seropositive for T. cruzi-specific antibodies. Decades after 
initial parasite exposure, ~30% of the infected individuals 
eventually advance to the clinical phase of chronic CD that is 

presented with cardiac hypertrophy progressing to dilated 
cardiomyopathy and heart failure. Clinical evidence of diges-
tive or neurological disorders may also be presented in Chagas 
patients (reviewed in [7]). Currently, CD is estimated to affect 
6–8 million people that result in 10–12,000 deaths per year [8]. 
Approximately, 71 million people are exposed to risk of infec-
tion and ~28,000 new cases of T. cruzi infection occur 
every year [9,10].

Pathology of Chagas disease is multifaceted, heteroge-
neous, and relies on many host and parasite factors. In gen-
eral, the research community believes that processes that 
depend, at least in part, on the few parasites that remain in 
the body during chronic phase, sustain the cardiac oxidative 
and inflammatory damage. Many intertwined processes con-
tribute to degenerative, destructive, and reparative responses, 
that in-sum culminate in the varied outcomes of infection: 
from no disease to cardiac injury and remodeling that can 
ultimately lead to heart failure and/or stroke. Detailed review 
of multiple processes and mechanisms involved in pathology 
of acute and chronic Chagas heart disease can be found in 
recent review articles [7,11–13].

The currently available benznidazole and nifurtimox drug 
therapies are effective against acute T. cruzi infection [14– 
16], and are recommended for the treatment of all infected 

CONTACT Nisha Jain Garg nigarg@utmb.edu Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Tx 77555-1070, 
USA
$

Equal contribution

EXPERT REVIEW OF VACCINES                                                                                                                                   
https://doi.org/10.1080/14760584.2021.1969230

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14760584.2021.1969230&domain=pdf&date_stamp=2021-08-26


children under 15 years of age and adults with recent 
infection [17]. While effective in parasite clearance in chil-
dren, these drugs exhibit therapeutic failure and/or adverse 
events in adults and are not always recommended for 
patients with chronic infection [18–20]. Thus, new therapies 
to cure, eliminate, and eradicate T. cruzi are needed. 
However, clinical trials testing new chemotherapeutics 
against T. cruzi have not been very successful in identifying 
replacements for benznidazole and nifurtimox. Several 
drugs, such as ravuconazole and posaconazole exhibited 
promising, parasite-specific effects in pre-clinical studies 
but failed to surpass the efficacy of benznidazole in clinical 
studies. Fexinidazole, a drug in the same class as benznida-
zole and nifurtimox, has completed phase II clinical trial 
(clinical trial identifier NCT03587766). This drug has shown 
promise for treating the indeterminate phase of CD in 
experimental studies but currently outcomes of the clinical 
trial are publicly documented [21–25].

Studies examining infection dynamics and parasite tropism 
failed to identify the organs, tissues, or cells that play a crucial 
role in the recrudescence of T. cruzi during chronic stage and 
may play an important role in clinical manifestations of CD. 
Yet, some studies showed that T. cruzi trypomastigotes can 
transition from an amastigote-like stage to an epimastigote- 
like morphological form that have the capability to initiate the 
recurrence of infection by invading the phagocytes and car-
diac cells [26]. Others identified non-proliferative dormant 
amastigotes, which were resistant to anti-parasitic drugs and 
able to reestablish infection by converting to trypomastigotes 
even after 30 days of drug exposure [27]. These findings 
suggest that the dormancy state of T. cruzi accounts for the 
failure of potential therapeutic drugs and complete cure of 
infection.

Recent efforts are attentive to the development of thera-
peutic vaccines against T. cruzi. Besides modulating the host 
response to clear the low-grade parasite persistence, thera-
peutic vaccines also need to take into consideration to not 
trigger pathologic inflammation and fibrosis in the heart [13]. 
Studies demonstrating a mechanistic function of reactive oxy-
gen species (ROS) in regulating the immune system vs. caus-
ing tissue damage during T. cruzi infection [28–32] suggest 
that balancing of oxidative stress may also be taken into 
consideration when designing immune therapies against CD. 
In this review, we will discuss the current efforts in the devel-
opment of immune therapies against T. cruzi infection and the 

potential role of oxidative stress on efficacy of experimental 
therapeutic vaccines against CD.

2. Innate and nonimmune mechanisms of ROS 
production and role of ROS in T. cruzi infection and 
CD

The initial exposure to T. cruzi activates proinflammatory 
response of epithelial, macrophage, and dendritic cells. 
However, T. cruzi can infect a wide variety of cells, including 
cardiac myocytes, fibroblasts, and others. There are several 
reviews of the innate immune mechanisms in T. cruzi infection, 
including those relating to Toll-like receptors (TLRs), Nod-like 
receptors (NLRs), and DNA sensing receptors [33–35]. Herein, 
we focus on the mechanisms of ROS production and its role in 
shaping the disease outcome in CD.

In addition to producing cytokines and chemokines, macro-
phages and other innate immune cells exert cytotoxic effects 
against microbes by manufacturing ROS and reactive nitrogen 
species (RNS). NADPH oxidase (NOX2), a multimeric complex, 
uses NADPH as a substrate and reduces O2 to manufacture 
superoxide (O2

•−) that is dismutated to stable pro-oxidant H2 

O2 [36]. Inducible nitric oxide synthase (iNOS) yields nitric 
oxide (NO) in a complex oxidoreductase reaction that utilizes 
L-arginine and O2 as substrates [37]. Studies in human and 
mouse macrophages show that T. cruzi elicits very low levels 
of ROS/NO production and delayed inflammatory cytokines/ 
chemokines response [38,39]. Yet, chemical or genetic inhibi-
tion of NOX2 or depletion of ROS by use of antioxidants 
arrested the phagocytes’ production of inflammatory cyto-
kines in mice and cultured cells, thus, indicating that low 
levels of ROS serve as signaling molecule in proinflammatory 
activation of macrophages infected by T. cruzi [40,41]. Further, 
reaction of NO with O2•− produces a strong cytotoxic oxidant 
peroxynitrite. Some studies indicate that peroxynitrite and 
other cytotoxic effectors produced by innate immune cells 
are essential for parasite killing [42,43], while others suggest 
that macrophage oxidative environment acts as an enhancer 
of infection [44]. Readers interested in further details of the 
role of ROS in providing fuel for parasite growth or parasite 
killing are directed to recent reviews [45,46].

Nonimmune cells such as cardiac myocytes also respond 
to T. cruzi infection with ROS production, though mitochon-
dria are the major source of O2•− in cardiac myocytes 
[28,29]. Specifically, complex-I and complex-III of the elec-
tron transport chain were found to be the site of increased 
electron leakage to oxygen and O2•− production in infected 
cardiomyocytes and Chagas murine hearts [28,47]. 
Mitochondrial dysfunction, while initiated in multiple tissues 
in response to acute infection [48–50], persists in the heart 
and contributes to high myocardial ROS levels [51,52]. 
Mitochondrial dysfunction as a source of ROS is well docu-
mented in chronically infected animals [48,53] and clinically 
symptomatic CD patients [54–57]. Regardless of the source, 
T. cruzi can control oxidative insult and survive in the host 
cells. For example, T. cruzi-specific Fe2+ superoxide dismu-
tase (FeSOD) is shown to protect the parasite from ROS and 
other oxygen sensing metabolic responses in the 

Article highlights

● Trypanosoma cruzi infection and Chagas disease remain major health 
concerns in the Americas.

● There is a critical lack of methods for prevention of infection or 
treatment of chronic Chagas disease.

● Immune therapies or therapeutic vaccines that can control T. cruzi 
persistence and associated disease pathology must be a public health 
priority.

● Multi-faceted nature of Chagas disease requires that immune thera-
pies targeting the parasite persistence should be conjugated with 
adjuvants to address chronic inflammation and oxidative stress.
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macrophages [43,58]. The parasite-specific antioxidant net-
work is discussed in detail in recent reviews [59,60].

Besides influencing parasite, ROS also affect apurinic/apyr-
imidinic (AP) sites and cause DNA base modifications, which 
makes DNA susceptible to oxidative lesions. Indeed, 
8-hydroxy-2-deoxyguanosine (8-OHdG) DNA lesions are routi-
nely detected in cardiac biopsies of chronically infected 
experimental rodents as well as in CD patients [57,61,62]. 
Further, an increase in the expression of 8-oxoguanine glyco-
sylase (OGG1) and poly(ADP-ribose) polymerase 1 (PARP1) was 
detected in infected cells and tissues, which indicates the 
activation of DNA repair process [29,31,32,61,63]. It is docu-
mented that PARP1, though a DNA repair enzyme, contributed 
to proinflammatory activation of cardiac myocytes and macro-
phages infected by T. cruzi. In cardiac myocytes and macro-
phages, T. cruzi elicited PARP1-mediated post-translational 
modifications of RelA (p65)-interacting nuclear proteins and 
facilitated the assembly and transcriptional activation of NF- 
κB-dependent cytokines’ gene expression [29,31,32]. Further, 
macrophages exposed to T. cruzi or extracellular vesicles 
released in circulation of chronically infected mice and 
humans, also exhibited PARP1-dependent activation of cyclic 
GMP-AMP synthase/2′3′-cyclic GMP-AMP and downstream sig-
naling of Stimulator of Interferon Genes (STING) that in 
synergy with c-Fos and Jun B (Activator Protein 1 family 
members) promoted profibrotic response [31,32].

A network of enzymatic and non-enzymatic antioxidants 
that control oxidative stress in the host is reviewed recently 
[64]. In the context of CD, an increase in mitochondrial ROS 
was correlated with a decline in mitochondrial Mn+2 super-
oxide dismutase (MnSOD) and cytosolic glutathione peroxi-
dase (GPx) activities and reduced glutathione content in 
chronically infected rodents and human patients [55– 
57,65,66]. Nuclear Factor Erythroid 2 Like 2 (NFE2L2) is 
a transcription factor that regulates the expression of antiox-
idant proteins. The expression, nuclear translocation, and 
binding of NFE2L2 to cis-acting DNA regulatory antioxidant 
response elements (ARE) was significantly reduced and linked 
to deteriorating concentration of antioxidants, e.g., γ- 
glutamylcysteine synthetase, hemoxygenase 1, glutamate- 
cysteine ligase modifier subunit in T. cruzi infected murine 
cardiac myocytes and myocardium. Preservation of NFE2L2 
transcriptional activity and antioxidant/oxidant balance 
occurred with the overexpression of MnSOD in murine cardiac 
myocytes that in turn improved the cardiac function in CD 
mice [67]. These findings indicated that the inhibition of 
NFE2L2/ARE pathway by mitochondrial ROS constitutes a key 
mechanism in signaling the inflammatory/fibrotic gene 
expression and evolution of chronic Chagas cardiomyopathy.

In summary, a balance between the levels of ROS that can 
induce parasite killing and the antioxidant machinery that the 
host requires to detoxify and keep a safe environment for cells 
exposed to infection is fundamental. The literature discussed 
above points to the possibility that in the initial phase of 
infection, T. cruzi suppresses the macrophages’ ability to 
mount strong oxidative/nitrosative burst and instead utilizes 
macrophages to disseminate to different tissues. As parasite 
infects more cells, nonimmune cells also produce ROS, and 
mitochondrial dysfunction contributes to ROS production in 

the host. Further, the host antioxidant response is exhausted 
during chronic CD and increased ROS sustain inflammatory 
and profibrotic response contributing to evolution of chronic 
cardiomyopathy.

3. Immune responses in T. cruzi infection

Studies in susceptible and resistant experimental models and 
humans with and without clinical CD have contributed to our 
current understanding of the protective immune responses to 
T. cruzi. Besides the need for early and potent proinflammatory 
innate immune response against invading parasite, adaptive 
T cell immunity is paramount for intracellular control of 
T. cruzi. Adaptive immunity is provided by parasite-specific 
CD4+ T cells that support macrophage phagocytosis function, 
B cell proliferation and antibody production, and differentia-
tion and activation of CD8+ T cells and secretion of T helper 
type 1 cytokines (e.g., interferon (IFN)-γ, interleukin (IL)-2) [68– 
70]. T. cruzi antigen specific CD8+ T cells are frequently noted 
in infected host [71,72], and contribute to T. cruzi control. 
Antigen-specific CD8+ T cells regulate T. cruzi infected cells 
by cytolysis or the release of cytokines (e.g., IFN-γ) that induce 
trypanocidal activity [73–75]. A robust lytic antibody reaction 
boosts the phagocytosis, opsonization and complement- 
dependent killing of parasites [76]. As in mice, type 1 B and 
T cell immunity is suggested to maintain the low levels of 
parasites in chronic human Chagas disease [77–79].

Immune responses are also documented to be harmful to 
the host, especially in chronic phase of infection when few 
parasites persist. For example, several studies indicate that 
excessive production of IFN-γ and tumor necrosis factor 
(TNF)-α cytokines correlate with tissue damage and clinical 
disease, while IL-27 controls proinflammatory IFN-γ and inhi-
bits cardiac inflammation in CD [80–87]. Particularly, IL-17 
plays a dual role in T. cruzi infection and CD. Earlier studies 
indicated that IL-17 elicits proinflammatory immune signature 
for the control of acute parasitemic infection [88,89]. IL-17A−/- 

mice, as compared to wild type mice, exhibited elevated 
mortality to acute T. cruzi infection, and treatment of infected, 
wild type mice with anti-IL-17A antibody resulted in increased 
myocarditis and mortality [88,89]. Others noted that T. cruzi- 
induced Th17 response caused severe multi-organ pathology 
despite reduced parasite burden [90]. Studies in humans docu-
mented high levels of IL-17A correlated with better left ven-
tricular function in Chagas disease patients and suggested 
that IL-17A has an immune-modulatory role in controlling 
myocardial damage in CD [91]. Lower expression of IL-17 by 
total lymphocytes and lower frequency of Th17 cells was 
noted in Chagas patients with cardiac involvement, and treat-
ment of these patients with benznidazole enhanced the 
plasma levels of IL-17, taken as an indicator of treatment 
success [85,92].

IL-17 RA is the common receptor for many IL-17 members 
and IL-17RA−/- mice lack responsiveness to several IL-17 cyto-
kines. IL-17RA−/- mice infected with T. cruzi exhibited exacer-
bated IFN-γ and TNF- α production that promoted hepatic 
damage, tissue wasting, and mortality [93]. Authors noted 
that IL-17RA signaling was required for the recruitment of IL- 
10-producing neutrophils to regulate the damaging 
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proinflammatory responses [93], thus, providing a link 
between IL-17 and IL-10 induced protection from tissue 
damage in CD. Indeed, despite its immune-regulatory role 
that can potentially result in increase in parasitemia, IL-10 
was required to prevent immune hyper-reactivity during 
T. cruzi infection and IL-10−/− mice exhibited increased mor-
tality due to the development of pathologic immune response 
associated with CD4+ T cells and overproduction of IL-12 
[94,95]. Increase in serum levels of IL-10 was also noted in 
CD patients in indeterminate phase of infection while patients 
with cardiac involvement primarily exhibited uncontrolled 
inflammatory response [96].

Summarizing, these studies indicate that effective immune 
response against T. cruzi would require elicitation of phago-
cytes, lytic antibodies, and the collaborative activities of Th1 
cytokines, T helper cells, and cytotoxic T lymphocytes. 
However, a balance between proinflammatory and immune- 
regulatory cytokines is essential after the acute infection if the 
damage to host tissues is to be controlled to prevent the 
manifestation of clinically symptomatic cardiac Chagas 
disease.

4. Therapeutic vaccines against Chagas disease

History of attenuated T. cruzi and recombinant antigen-based 
subunit vaccines development and their efficacy as prophylac-
tic experimental vaccines is discussed in excellent recent 
reviews. Initial efforts to vaccine development utilized live, 
killed, or attenuated parasite, cell fraction, purified protein, 
recombinant protein etc. (reviewed in [97]). Many investiga-
tors, including us, have demonstrated outstanding prophylac-
tic efficacy of subunit vaccines in regulating infection and 
concomitant pathologies in murine models of T. cruzi infection 
(reviewed in [98,99]). For the delivery of subunit vaccines, 
most investigators have utilized DNA-based platform as DNA 
vaccines are cost effective, stable at room temperature, and 
have demonstrated clinical safety in animal models and early- 
phase clinical trials [100]. DNA vaccines were shown to provide 
antigenic peptides for MHC I and MHC II (major histocompat-
ibility complex) presentation, and elicit antigen-specific anti-
bodies, type I cytokines, and cytotoxic CD8+ T lymphocyte 
response to provide protection from T. cruzi infection 
[100,101]. Yet, there is a concern regarding the antibiotic 
resistance genes in the plasmid DNA backbone. Antibiotic 
resistance genes can potentially be taken up by bacteria and 
may also be expressed in mammalian host after insertion into 
the genome [102,103]. To alleviate this concern, the nanoplas-
mid DNA vaccine was developed. The prototype nanoplasmid 
utilizes an antibiotic-free selection method based on sucrose 
selection vector using a small antisense RNA known as RNA- 
OUT. Another advantage of the nanoplasmid DNA vaccine is 
the reduced plasmid size that improves in vivo level and 
duration of expression [104].

When developing a therapeutic vaccine, the purpose is 
to employ the biological response modifiers to control or 
improve the multiple effector mechanisms against T. cruzi 
while not having cytotoxic effects against self-cells and - 
tissues. Further, an immunotherapy is expected to target all 
circulating genotypes of the parasite to be potentially 

useful. Still, limited studies have tested the concept of 
immunotherapy for arresting the CD pathology. Some inves-
tigators have examined in acutely and chronically infected 
animals the therapeutic efficacy of select antigens, including 
trypomastigote surface antigen (TSA)-1, trans-sialidase (TS), 
amastigote surface protein (ASP)-2, glutathione S-transferase 
encoded by Tc52, a Ca2+ binding protein encoded by Tc24, 
a cathepsin I cysteine protease named cruzipain, and 
a cysteine protease inhibitor named Chagasin. Most of the 
antigens used in therapeutic vaccines were conserved 
within the TcI-TcVI lineages of T. cruzi (Table 1). 
Parasitemia and mortality in mice decreased when Tc52, 
TSA-1, and Tc24 based DNA therapies were delivered imme-
diately after infection or two weeks post-infection [105,106], 
Delivery of Tc24 as a recombinant protein immune therapy 
also provided control of cardiac fibrosis in infected mice 
[107]. The protection provided by the Tc24 therapeutic 
vaccine was correlated with elevated CD4+ or CD8+ T cell 
proliferation and IFN-γ production [107–109]. Interestingly, 
Tc24, delivered with poly(lactic-co-glycolic acid) nanoparti-
cle, provided a 3-fold increase in IL-4 production (Th2 
immune response), while Tc24 delivered with adjuvant 
E6020 showed no significant change compared to that 
noted with Tc24 alone [107,109]. However, Tc52, TSA-1, 
and Tc24 DNA therapy did not regulate cardiomyopathy in 
the chronic murine or acute canine infection model 
[106,110]. Despite the known efficacy as a prophylactic vac-
cine, ASP2 and TS DNA-based immune therapy (individually 
or in combination) provided no defense against parasite 
load, mortality, and cardiomyopathy in infected mice 
[106,111]. Others identified that treatment of T. cruzi 
infected mice with TSA1 DNA resulted in an increase in 
myocarditis [108]. These studies did not extend to deter-
mine why the therapeutic treatment failed to arrest myo-
carditis and fibrosis, and how the immune system was (or 
was not) modulated.

Ribeiro et al [125] have tested therapeutic effects in mice 
concurrently infected with T. cruzi and immunized with type 5 
adenovirus encoding ASP-2 (AdASP-2); and noted a significant 
decline in cardiac amastigote nests was associated with rapid 
increase in TNF-α, TLR-4, iNOS and IL-10 expression. Pereira 
et al [126] investigated recombinant adenovirus encoding 
ASP2 and TS as a therapeutic treatment in acutely and chroni-
cally infected mice. ASP2- and TS-based immune therapy in 
chronically infected mice improved survival rate, decreased 
electrocardiogram abnormalities, preserved IFN-γ levels, and 
reduced polyclonal stimuli, such as CD107a+CD8+T cells and 
peripheral nitric oxide concentrations. Results show ASP2- 
expressing recombinant adenovirus is a promising therapeutic 
against acute and chronic infection.

T. cruzi expresses cruzipain in all of its developmental 
stages, and cruzipain is shown to be essential for amastigote 
replication and parasite virulence [127,128]. T. cruzi also 
expresses a papain-like cysteine protease inhibitor, Chagasin, 
to fine-tune the proteolytic functions of cruzipain during para-
site differentiation and invasion [129]. Cerny et al [130] 
showed the therapeutic potential of cruzipain encoding 
DNA, delivered with granulocyte macrophage colony stimulat-
ing factor (GM-CSF) intramuscularly or with Salmonella 
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delivery system orally in mice infected with T. cruzi. Authors 
noted that cruzipain DNA vaccine adjuvanted with GM-CSF 
encoding plasmid or Salmonella reduced the acute parasite 
burden, mortality, and cardiac injury markers and enhanced 
the antigen-specific IgG response [130]. In another study, 
therapeutic potential of DNA combining cruzipain and 
Chagasin was tested. The DNAs of both antigens and GM- 
CSF adjuvant were orally administrated using an attenuated 
Salmonella strain in acutely infected mice. The bi-component 
therapy was found to be better than either of the mono- 
component therapy in eliciting antigen- and parasite-specific 
antibodies and IFN-γ secretion by lymphocytes and provided 
rapid control of acute parasitemia and decreased the tissue 
damage in chronic stage of the infection [129,131,132] 
(Table 1).

We have tested the protective efficacy of two antigens, 
named TcG2 and TcG4, as immune therapy (Table 2). TcG2 
and TcG4 are expressed in all mammalian stages of T. cruzi 
[133,134] and consist of epitopes recognized by antibodies 
and T cells in mice, dogs, and humans (reviewed in [99]). 
Further, TcG2 and TcG4 were conserved in five of the six 
T. cruzi lineages with 80–96% homology, thus indicating that 
TcG2/TcG4-based therapeutics can extend protection against 
various T. cruzi genotypes circulating in the USA and Latin 
America. In all studies, where we tested therapeutic efficacy 
of TcG2 and TcG4, mice were given the immune therapy in 
indeterminate phase when natural immune response had con-
trolled the acute parasitemia. In the first study, C57BL/6 mice 
with or without overexpression of glutathione peroxidase 1 
(GPx1, detoxifies ROS) were infected with T. cruzi and 45 days 
later given TcG2/TcG4 as a DNA-prime/protein-boost therapy 
[135]. All mice receiving immune therapy exhibited >15-fold 
reduction in blood and tissue parasites, significant reduction 
of chronic inflammatory infiltrate in skeletal and cardiac tis-
sues, and of hypertrophy (BNP and ANP) and fibrosis (col-
lagens) markers in the heart. GPx1 transgenic mice were 
better equipped than the wild type mice in controlling the 
tissue pathological responses, including markers of inflamma-
tion and fibrosis [135].

We also tested the adjuvant properties of 7HP349, a small 
molecule agonist of αLβ2 and α4β1 integrins, in enhancing 
therapeutic efficacy of the subunit vaccine. 7HP349 is shown 
to enhance the αLβ2 and α4β1 dependent adhesion of 
immune cells and activation of adaptive immunity in an oval-
bumin antigen model. When delivered systemically in a mouse 
model of Chagas disease, 7HP349 significantly enhanced the 
TcG2/TcG4-based DNA prime/DNA boost vaccine efficacy in 
therapeutic settings. Mice given 7HP349 adjuvanted (vs. non- 
adjuvanted) vaccine therapy exhibited better control of para-
site persistence, as well as the tissue inflammatory infiltrate 
and fibrotic responses in skeletal muscle and heart tissue that 
otherwise were pronounced in non-treated, chronically 
infected mice (unpublished data).

Recently, we used a nanovector as a delivery vehicle. The 
composition of the nanovector for immunotherapy was 
designed with US Food and Drug Administration regulatory 
guidance, and it provides improved expression of target genes 
for enhanced immunogenicity [136]. TcG2/TcG4 were cloned 
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in nanovector (referred as nano2/4). Mice were infected with 
T. cruzi, given nano2/4 DNA vaccine at 21- and 42-days post- 
infection, and monitored at ~100 days pi [137]. The frequency 
of splenic, poly-functional CD4+ and CD8+ T cells expressing 
IFN-γ cytokine and cytotoxic molecules (perforin and gran-
zyme B) that are required for intracellular parasite control 
were increased by nanoimmunotherapy. The nanotherapy- 
mediated increase in splenic T cells and immune components 
was associated with up to a 99.7% decline of the parasite 
burden in cardiac and skeletal tissue. Additionally, we identi-
fied a significant reduction of peripheral and tissue levels of 
oxidative stress markers (e.g. 4-HNE, protein carbonyls) and 
inflammatory infiltrate, that otherwise were prominent in 
T. cruzi-infected mice. Further, nano2/4 therapy efficiently 
regulated tissue infiltration of pro-fibrotic macrophages and 
provided a homeostatic environment managing the expres-
sion of collagens, metalloproteinases, and several markers of 
cardiomyopathy (e.g., ANP, BNP, β-MHC, SM22α, αsk-Actin). 
Moreover, nano2/4 improved the expression of Myh7 and 
GSK-3β necessary for preserving cardiac contractility in 
T. cruzi-infected murine hearts. The TcG2/TcG4 encoding nano-
vaccine ultimately provided improved immune protection 
compared to the experimental vehicle (pCDNA3) in Chagasic 
mice [137].

5. Antioxidants as adjuvants to anti-parasite drug 
and immune therapies

In recent times, strong T. cruzi tropism is noted for cardiac 
myocytes [138], which induces oxidative stress-related pathol-
ogy in Chagas myocardium (reviewed in [7]). Cardiac myocytes 
with dysfunctional mitochondria and cardiac resident and 
infiltrating macrophages cleaning up T. cruzi and T. cruzi- 
induced cellular debris are recognized as primary source of 
ROS in the chronic Chagas heart (reviewed in [139]). General 
antioxidants, including vitamin C, vitamin E, curcumin, resver-
atrol, melatonin, and mitochondria-targeted antioxidant, i.e. 
4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL) are 
discussed in detail for their beneficial effects in reducing 
plasma and cardiac levels of oxidative stress [64], and pro-
posed to offer promising co-adjuvants with anti-parasite 
therapies. Briefly, co-administration of vitamin C with benzni-
dazole did not affect the anti-parasite activity of benznidazole 
in vitro or in vivo, but vitamin C reduced the cytotoxicity of 
benznidazole on host cells and decreased the mortality and 
weight loss in infected mice [140]. Others showed low dose 
vitamin C enhanced the anti-parasitic effects of benznidazole 
and decreased the cardiac oxidative damage in infected mice 
[141]. Treatment with vitamins C and E increased the inflam-
matory infiltrate in skeletal muscle yet decreased the circula-
tory or cardiac levels of thiobarbituric acid reactive substances 
in acutely and chronically infected mice [142]. Likewise, treat-
ment with curcumin enhanced the benznidazole efficacy in 
reducing the parasitemia, parasite load, and mortality [143]. 
Importantly, curcumin decreased the myocardial inflammatory 
infiltrate and oxidative stress and liver toxicity that were trig-
gered by benznidazole [143]. A strong antioxidant and anti- 
inflammatory effect of resveratrol has also been documented 
in CD. Resveratrol enhanced the antioxidant enzymes activities 

and lowered the ROS and ROS-induced oxidative damage in 
acutely and chronically infected mice and improved the elec-
trophysiological function of the heart in chronically infected 
mice [144,145]. Lastly, mitochondria-targeted antioxidant, 
TEMPOL was shown to decrease lipid peroxidation and 
improve heart function in mice infected with Colombian strain 
of T. cruzi [145].

Together, these studies suggest that antigen-based 
immune therapies can be effective for controlling parasite 
persistence and associated tissue injury in CD, and small 
molecules that enhance the protective immunity or control 
the pathological effects of oxidative stress can be used as 
adjuvant to gain better protection against chronic CD.

6. Expert opinion

Summarizing the findings discussed in this review, we believe 
that a therapeutic approach focused on only the control of the 
parasite is not sufficient to arrest the progression of chronic 
disease. Infected mice and rats treated with the anti-parasite 
drug (benznidazole) after immune control of acute parasitemia 
exhibited inhibition of parasite persistence. However, benzni-
dazole treatment failed to inhibit deterioration of ventricular 
contractility and cardiac remodeling. Instead, maximal benefits 
were obtained when infected mice and rats were treated with 
the antioxidants in conjunction with benznidazole (discussed 
above). We noted the combination of phenyl-butyl-nitrone 
and benznidazole deterred free radical-mediated oxidative 
insult and mitochondrial deficiencies, resulting in the preser-
vation of metabolic (mitochondrial) and contractile activity in 
Chagasic hearts [30]. Likewise, a better efficacy of 
a therapeutic DNA vaccine was noted in infected GPx trans-
genic mice with over-expression of antioxidant response com-
pared to the infected/wild-type mice under similar conditions 
[135]. We, therefore, propose therapeutic vaccines could be 
designed to confront persistent parasites by achieving a rapid, 
short-lived stimulation of type 1, cellular immunity. 
Simultaneously, to prevent cellular injury, adjunct therapies 
could be given to inhibit the onset of oxidative insult and 
mitochondrial deficiencies. This combination of treatment 
would prove maximally advantageous in conserving cardiac 
structure and function in Chagas disease.
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