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• Guanylurea induces an anxiety-like state
in fish after four months of exposure.

• Chronic exposure to guanylurea promotes
the production of ROS in the brain.

• Fish exposed to guanylurea showed a sig-
nificant decrease in acetylcholinesterase
activity.

• This metabolite upregulated the expres-
sion of p53, BAX, CASP3 in the brain.

• Guanylurea is likely to produce B-amyloid
aggregates in the brain asmetformin does.
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Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and
disrupts the levels and expression of several genes, metabolites, and proteins related to the overallfitness offish. None-
theless, up to date, no study has assessed the potential neurotoxic effects that GUAmay induce in non-target organisms.
Tofill the current knowledge gaps about the effects of thismetabolite in the central nervous systemoffish, we aimed to
determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox
status, AChE activity inDanio rerio adults. In addition, we also meant to assess if 25, 50, and 200 μg/L of GUA can alter
the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related
genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA al-
tered the swimming behavior of D. rerio, as fish remainedmore time frozen and traveled less distance in the tank com-
pared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage
biomarkers and inhibited the activity of acetylcholinesterase offish in a concentration-dependentmanner. Concerning
gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17,
and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months
of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers,
generating anxiety-like behavior in fish.
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Table 1
Measured water parameters in aquaria of maintenance and exposure.

Parameters Measured value

Dissolved oxygen 9.1 ± 0.3 mg/L
Nitrite 0.027 ± 0.009 mg/L
Nitrate 2.9 ± 0.3 mg/L
pH 7.21 ± 0.10
Un-ionized ammonia 0.011 ± 0.003 mg/L

Values are expressed as mean ± standard deviation.
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1. Introduction

The first-line oral treatment and the most prescribed oral agent for
type II diabetes is metformin (MET) (Elizalde-Velázquez and Gómez-
Oliván, 2020). Moreover, in the last decade, different studies have
pointed out this drug is efficient against other diseases like the Stein-
Leventhal syndrome, cancer, epilepsy, and COVID-19 (Sharma et al.,
2020; Vazifehkhah et al., 2020; Zhao et al., 2020; Meng and Zhu,
2021). Thus, MET is among the most consumed drugs all over the
world (Ussery et al., 2019), and data point out this consumption is likely
to increase as more evidence concerning MET benefits against other dis-
eases emerges.

Once administered, MET is not metabolized and is excreted unchanged
from the human body via urine (90%) and feces (Triggle and Ding, 2017),
which end up collected in wastewater treatment plants (WWTPs). Even
though some studies have indicated WWTPs can eliminate MET from
wastewater, the truthfulness is, this drug is only bio-transformed into
guanylurea (GUA) by bacteria used in some treatments of these plants
(Trautwein et al., 2014; Tisler and Zwiener, 2019). In point of fact, up to
date, studies have shown that the only viable method for removal of MET
from WWTPs is phytoremediation with Typha latifolia (Elizalde-Velázquez
and Gómez-Oliván, 2020). Hence,WWTPs often spill out higher concentra-
tions of GUA than those of MET into the aquatic environment (Scheurer
et al., 2012; Elliott et al., 2017; Posselt et al., 2018). Recently, GUA has
been reported in WWTPs effluents at concentrations of <0.028 μg/L to
810 μg/L and in surface waters at concentrations of 0.001 μg/L to
222 μg/L (Trautwein et al., 2014; Kosma et al., 2015; Tisler and Zwiener,
2018; Posselt et al., 2018; Yao et al., 2018). Nonetheless, as MET consump-
tion is expected to increase due to its usage for non-diabetic indications
(Wang et al., 2017), MET and GUA levels in WWTPs effluents and surface
waters are also likely to increase.

As a result of its release into the aquatic environment, GUA may exert
different toxic effects on water organisms. For instance, Ussery et al.
(2019) showed that guanylurea (1–100 ng/L) altered the growth ofOryzias
latipes after 28 days of exposure. In agreement with these results, Elizalde-
Velázquez et al., 2021b demonstrated that GUA (25 μg/L–25 mg/L) de-
layed the hatching process and induced several malformations through an
oxidative stress mechanism on Danio rerio embryos after 96 h of exposure.
In addition, Ussery et al., 2021 indicated that 28 days of exposure to
1.0 ng/L of GUA altered several metabolites, proteins, and genes related
to the overallfitness ofO. latipes.Among all the genes,metabolites, and pro-
teins that this biotransformation product altered in O. latipes larvae, Ussery
et al. (2021) indicated that GUA impaired the gene expression of glutamate
receptor ionotropic delta-2 interacting protein (Grid2ip) and the abun-
dance of protocadherin beta-16, which may lead to modifications in neuro-
nal communication. Hence, just like its parent compound, to which studies
have associated it with B-amyloid formation in the brain of mice (7 days–
3 months of exposure) and different neuroblastoma cell cultures (24 h–
10 days of exposure) (Chen et al., 2009; Picone et al., 2015; Picone et al.,
2016), induction of impaired cognitive function in non-diabetic fish
(2 and 4 months of exposure) and mice (1–8 months of exposure)
(DiTacchio et al., 2015; MacLaren et al., 2018; Li et al., 2019), and inhibi-
tion of AChE activity in healthy humans (Markowicz-Piasecka et al.,
2017), GUA is likely to may also exert neurotoxic effects in non-target
organisms.

Since GUA is present in the aquatic environment in higher concentra-
tions than its parent compound, no study has assessed the potential neuro-
toxic effects this metabolite may induce in non-target organisms, and
authors have pointed out low concentrations of GUA induces toxic effects
in larvae of fish, we aimed to determine whether or not environmentally
relevant concentrations of this metabolite may disrupt the behavior,
redox status, AChE activity in D. rerio adults. Moreover, we also assessed
the expression of several antioxidant defenses-, apoptosis-, AMPK
pathway-, and neuronal communication-related genes in the brain of fish
exposed for four months to GUA. We hypothesize GUA will enter the
brain of fish, producing neurotoxic effects on them.
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2. Method

2.1. Ethics statement

All procedures performed in this study fulfilled the ethical standards of
The Ethics and Research Committee of the Autonomous University of the
State of Mexico (approval ID: RP.UAEM.ERC.132.2020).

2.2. Chemicals

N-Guanylurea sulfate salt hydrate (CAS number: 207300-86-5) and all
other reagents used in this work were purchased from Sigma-Aldrich (St.
Louis, MO).

2.3. Zebrafish maintenance

We housed female and male five-month-old D. rerio adults (AB strain,
3.5 ± 0.2 cm, 475 ± 20 mg), in a ratio of 1 organism/L, in aquaria of
100 L (61.2 cm × 32 cm × 51.1 cm). Each aquarium was provided with
dechlorinated, charcoal-filtered, and UV-sterilized tap water. To ensure
all aquaria fulfilled the water quality parameters throughout the zebrafish
maintenance and exposure, wemeasured the levels of oxygen dissolved, ni-
trate, nitrite, and un-ionized ammonia in water every other day (Table 1).
Moreover, we ensure temperature (27 ± 1 °C) and dark/light cycles
(14:10 h) were kept constant along the housing process. Fish were fed
two times a day with Spirulina flakes (Ocean Nutrition, US) and supple-
mented once a day with fresh Artemia nauplii.

2.4. Zebrafish exposure

For this experiment, we allocated four systems in aquaria of 30 L of ca-
pacity (50 cm× 20 cm× 30 cm), ensuring each system had 15 male and
15 female fish each. We exposed all systems to one of the four GUA treat-
ment concentrations (0 μg/L, 25 μg/L, 50 μg/L, and 200 μg/L). The concen-
trations used in this experiment were chosen as these range of
concentrations have been previously reported in the aquatic environment
(Scheurer et al., 2012; Elliott et al., 2017; Posselt et al., 2018; Elizalde-
Velázquez andGómez-Oliván, 2020) and have been shown to induce oxida-
tive damage in D. rerio (Elizalde-Velázquez et al., 2021b). Through the four
months of exposure, we kept constant the temperature (27 ± 1 °C) and
light/dark cycles (14 h:10 h) in all systems. Water from all systems was
renewed every other day during all exposure.

2.5. Assessment of swimming behavior

To assess the swimming behavior of D. rerio adults, we used the
Novel Tank Test described by Cachat et al. (2010) with some modifica-
tions. Accordingly, we transferred the fish, together and in their respec-
tive aquaria, from the husbandry room to the behavioral room and kept
them there for no <50 min. The behavioral room maintained the same
temperature conditions as the maintenance room (27± 1 °C); however,
the behavioral room differs from the latter, as it is soundproof and does
not allow light passes. Upon their acclimatization in the behavioral
room, we chose one fish at a time and placed it into a 15 L rectangular
novel tank (21.2 cm × 21.2 cm × 25.2 cm) for 12 min (2 min of accli-
matization, 10 min of trial). Before individual acclimatization and
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evaluation of fish, we made sure tanks were free of GUA and water had
the same temperature and fulfilled the quality conditions described in
Section 2.2. Along the trial time, a videotape of each fish was filmed,
which then we examined with Tox Track Ink software. Behavioral end-
points measured were the time fish remained frozen in the top and bot-
tom (s), total distance traveled (cm), distance traveled in the top and
bottom (cm), latency to enter the top (s), and time spent in the top
and bottom (s). To ensure fish did not suffer from any disturbance dur-
ing the behavioral test, we carried out this test only in the morning
(8 am–10 am) and on different days. We performed this experiment
three times to calculate the mean of three independent results and
then depict them in bar charts (n = 3). Following behavioral assess-
ment, we euthanized fish employing the hypothermic shock method
(2–4 °C) and following the AVMA Guidelines on Euthanasia 2020 Edi-
tion (Underwood and Anthony, 2020). This method is adequate for
this proof, as fish become immobilized instantly upon contact with the
cold water, and behavioral markers of pain or distress hardly occur
(Wallace et al., 2018). Once fish did not show vital signs, we proceeded
to extract the brains of all fish, which we then collected in Eppendorf
tubes that we previously had refilled with 1 mL of phosphate buffer so-
lution (PBS, pH 7.4). For brain extraction and dissection, we followed
the protocol established by Gupta and Mullins (2010). Briefly, we care-
fully dried the fish with a paper towel and placed it on a dissecting mat.
Next, we removed the head from the rest of the body fish with the help
of a scalpel and took off as much soft tissue as possible from the ventral
side of the skull with forceps. Following this, we extracted the eyes,
placed the head in a dish of PBS, and removed the skin and skull
bones from the dorsal and ventral sides of the brain. Finally, we
weighted the brains collected for each concentration (76–78 mg).

2.6. Assessment of oxidative stress biomarkers

By using a rotor-stator homogenizer (Ultra-turrax T25, IKA, Germany),
we homogenized the brains from each treatment group during 20 s at
10000 rpm and used the homogenate to evaluate all biomarkers. In the
case of oxidative stress biomarkers, we opted to use different spectropho-
tometry methods, see Table 2. For this effect, we treated the samples as
Elizalde-Velázquez et al. (2021a,b) described. Briefly, we split up the ho-
mogenate into two Eppendorf tubes. Thus, one of the tubes contained
300 μL of trichloroacetic acid (20%) and the same amount of the homoge-
nate, and the other one only enclosed 700 μL of the latter. Finally, we cen-
trifuged tubes 1 and 2 at 11,495 and 12,500 rpm, respectively, and used
supernatant and precipitate to evaluate the whole oxidative stress biomark-
ers battery. Results from all biomarkers were normalized against total pro-
teins by the Bradford (1976). For evaluation of oxidative stress and
subsequent biochemical and molecular tests, we analyzed the brains from
Table 2
Methods used for oxidative stress biomarkers determination in the brain of Danio rerio.

Tube Biomarker Reagents

1 Lipid peroxidation 450 μL Tris-HCl 150 nM
1 mL TCA-TBA

Hydroperoxides content 900 μL mixture (FeSO4, H2SO4, dehydroxytoluene
Protein carbonyl content 150 μL DNPH/HCl 10 nM

500 μL TCA
1 mL guanidine 6 M

2 Superoxide dismutase 260 μL CO3 buffer (50 mM Na2CO3 and 0.1 mM E
200 μL adrenaline 30 mM

Glutathione peroxidase 290 μL reaction buffer (3.5 mM GSH, 1 mM NaN3

100 μL H2O2 20 mM
12 μL GR

Catalase 420 μL isolation buffer (0.3 M sucrose, 1 mM EDT
300 μL H2O2 20 mM

Total protein 300 μL distilled water
1.25 mL Bradford reagent (Coomassie blue, Et-OH

TCA-HCl stands for Tris hydrochloride. TCA-TBA stands for thiobarbituric-trichloroacet
acid. EDTA stands for Ethylenediaminetetraacetic acid. NADPH stands for Nicotinamid
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the three independent experiments we mentioned above, and also for
each biomarker, we evaluated the samples three different times. Accord-
ingly, we got nine different results per biomarker and per concentration
(n= 9), to which we calculated the mean and standard deviation and rep-
resented them in bar charts.

2.7. Assessment of acetylcholinesterase (AChE) activity

For the evaluation of AChE activity, we used the method described by
Ellman et al. (1961); so, once we got the homogenate from brains, we cen-
trifuged them at 10000 rpm for 15min at 4 °C. Next, 400 μL of the superna-
tant were mixedwith 2.6 mL of phosphate buffer (pH 8.0, 0.1M), 0.1 mL of
DTNB (5,5-dithiobis-2-nitrobenzoate, 0.1 M), and 25 μL of substrate
(acetylthiocholine iodide 0.075 M). Changes in absorbance were measured
at 412 nm and recorded every minute for 5 min. We express our results in
enzymatic activity units (mol of substrate per minute).

2.8. RT-qPCR

RNAwas isolated from pools of 10 brains from each treatment group by
using a RNeasy® kit of Qiagen. To assess the quality of isolation, we deter-
mined RNA concentrations through the 260/280 ratio using a spectropho-
tometer (THERMO Scientific NanoDrop 2000/2000c) and evaluated the
purity of samples with agarose (1%) gel electrophoresis. For reverse tran-
scription, we used 1 μg of the total RNA and the QuantiTect®Reverse Tran-
scription Kit under the following conditions: 42 °C for 15 min and 95 °C for
3 min. Our template for RT-qPCR was the cDNA. The genes we assessed
during this experiment are related to the parent compound of GUA,metfor-
min (Table 3). To perform each RT-qPCR, we used a Rotor-Gene Q (Qiagen)
and 50 μL of a solution containing 0.3 μmol primers, 25 μL 2× SYBER
Green QuantiTect® (QIAGEN, Hilden, Germany), and 500 ng of cDNA. Re-
action conditions were as follows: 94 °C for 15 s, followed by 35 cycles of
94 °C for 15 s, 60 °C for 30s, and 72 °C for 30s. B-actin was used as a house-
keeping gene to normalize all the samples.

2.9. GUA quantification

For water sampling, we weekly gathered a total of 10 mL of water from
each system following the protocols established by Elizalde-Velázquez et al.
(2021a,b). Brain samples were treated according to themethod reported by
Łabuzek et al., 2010. Briefly, after D. rerio brains were homogenized, these
were deproteinized with 400 μL of acetonitrile and 500 μL of methanol
added with 57 μmol/L of internal standard. Next, the homogenate was fil-
tered (10 μm strainer) and evaporated to dryness at 45 °C under a nitrogen
stream.We then dissolved the samples with 100 μL of the mobile phase and
Wavelength Method used

535 nm Buege and Aust, 1978

butylate, and xylenol orange). 560 nm Jiang et al., 1992
366 nm Levine et al., 1994

DTA) 480 nm Misra and Fridovich, 1972

, and 0.12 mM NADPH) 340 nm Gunzler and Flohe, 1985

A, 5 mM HEPES, and 5 mM KH2PO4) 240 nm Radi et al., 1991

96%, H3PO4).
595 nm Bradford, 1976

ic acid. DNPH stands for 2,4-Dinitrophenylhydrazine. TCA stands for trichloroacetic
e adenine dinucleotide phosphate.



Table 3
Genes used for qRT-PCR.

Gene Forward primer Reverse primer Reference

Nrf1 TTT GGT TCC CGA TGA AGA CG TGA TTA GCG TGA GAC TGA GC Sant et al., 2017
Nrf2 ACC CAA TAG ATC TAC AGA GC GGT GTT TGG ACA TCA TCT CG Sant et al., 2017
BAX GGC TAT TTC AAC CAG GGT TCC TGC GAA TCA CCA ATG CTG T Soares et al., 2017
CASP3 CCG CTG CCC ATC ACT A ATC CTT TCA CGA CCA TCT Félix et al., 2018
p53 GCA GCG ATG AGG AGA TCT TT GGG CTC AGA TGA TTC ACG AT Lei et al., 2017
PRKAA1 TGT GAG GAC GCA GCA AAA GG GAG GTA AGA GAA GAG GCC AG Zang et al., 2019
PRKAA2 CGT CAA GAA GGC AAA GTG GC TTC TTC CGG CGC ACT CTT AG Zang et al., 2019
APP GGT GGA GGT GCC GTC AGA GGT GGA GGT GCC GTC AGA Moussavi Nik et al., 2012
GRID2IP AGC CTT GGT CAG TTC TAT CGG ACA GCA CCG TGT CGT ATA TG Mikami et al., 2004
PCDH17 CTG TGT TTG AAC AGC CCT CA TTG CAC CAT CAG TGG GTT TA Liu et al., 2015
PCDH19 CAA TGG CGA GGT GGT CTA CT CAA CTC CAG CGT TTT TAG GG Liu et al., 2015

Nrf1 stands for Nuclear Respiratory Factor 1.Nrf2Nuclear Respiratory Factor 2. BAX stands for BCL2 Associated X Protein. CASP3 stands for Caspase 3. PRKAA2 stands for
Protein Kinase AMP-Activated Catalytic Subunit α 2. PRKAA1 stands for Protein Kinase AMP-Activated Catalytic Subunit α 1. APP stands for Amyloid β Precursor Protein.
GRID2IP stands for Glutamate Receptor, Ionotropic, δ 2-Interacting Protein 1. PCDH17 stands for Protocadherin 17. PCDH19 stands for Protocadherin 19.
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centrifuged at 16,000g for 15 min. Finally, we injected the obtained super-
natant onto the autosampler (50 μL).

Brain and water samples were analyzed on an Agilent 1260 HPLC sys-
tem coupled to an API 5500 Qtrap MS equipped with a Turbo V Ion spray
source. The source parameters were maintained as follows: voltage
5.5 kV; collision gas: medium; temperature 400 °C; desolvation gas flow
500 l/h. We achieved separation by using an Xbridge Phenyl column
(150 mm × 2.1 mm, particle size 3.5 μm) and a mobile phase of 5.0 mM
of MeOH (eluent A) and 5.0 mM ammonium formate (eluent B). The flow
rate was 100 μL/min, and the injection volume was 50 μL. For data acqui-
sition and data processing, we used the Analyst 1.6 software.We performed
a five-point calibration curve by spiking ultrapurewaterwith GUA at a con-
centration ranging from 0 μg/L to 250 μg/L. To confirm the accuracy of the
proposed method, we spiked ultrapure water with GUA at three different
levels 80%, 100%, and 120%.

2.10. Statistical analysis

The results were expressed as the mean± standard deviation (SD). Sig-
nificant differences between the means were measured using a Student
Newman Keuls test (p < 0.05). A one-way ANOVA test with 95% confi-
dence intervals (α = 0.05) was applied to determine the significance of
differences between concentrations of oxidative stress biomarkers, acetyl-
cholinesterase activity, and gene expression (Sigma Plot 12.3). The data
were tested for homoscedasticity Bartlett test, and normality was verified
by Shapiro-Wilk test. To evaluate the degree of a relationship between be-
havioral, biochemical, and molecular variables, we performed a Pearson
correlation considering p < 0.05 (R software).

3. Results

3.1. Swimming behavior

Chronic exposure to GUA significantly altered the swimming behavior
of D. rerio (Fig. 1). As can be seen from Fig. 1, the total distance traveled
(F(3,356) = 189.890; p < 0.001), the distance traveled in the top (F
(3,356) = 551.411; p < 0.001), and time spent in bottom (F(3,356) =
23.162; p < 0.001) were significantly reduced compared to the control
group. Moreover, these behavioral endpoints were decreased in a concen-
tration dependent-manner, showing significant differences between con-
centrations. In contrast to above endpoints, distance traveled in bottom (F
(3,356) = 121.154; p < 0.001), time spent in top (F(3,356) = 19.743;
p < 0.001), latency to enter the top (F(3,356) = 212.132; p < 0.001), and
the time fish remained frozen in the top (F(3,356) = 24.351; p < 0.001)
and bottom (F(3,356) = 62.162; p < 0.001) significantly increased com-
pared to the control group. In addition, as concentration increased, the
value of these endpoints also increased, showing significant differences be-
tween concentrations, except for the time fish remained frozen in the
bottom.
4

3.2. Oxidative stress response

Levels of antioxidant enzymes and oxidative damage biomarkers in-
creased in a concentration-dependent manner. Thus, we were able to
see significant differences between concentrations in all oxidative stress
biomarkers. Furthermore, from Fig. 2 D–F, it can be seen that enzymatic
activity of SOD (F(3,32) = 35.278; p < 0.001), CAT (F(3,32) = 30.352;
p < 0.001), and GPx (F(3,32) = 28.525; p < 0.001) displayed a signifi-
cant increase compared to the control group. Analogously, levels of
LPX (F(3,32) = 31.612; p < 0.001), HPx (F(3,32) = 33.944;
p < 0.001), POx (F(3,32) = 94.810; p < 0.001 exhibited a significant in-
crease compared to the control group (Fig. 2 A–C). The difference be-
tween the levels of the biomarkers at the concentration of 200 μg/L
and the other concentrations, including the control group, was so huge
that we observed levels of HPX and POX were double or almost double
the value of the control group.

3.3. AChE activity

Our results demonstrated that chronic exposure to environmentally rel-
evant concentrations of GUA inhibited the AChE activity in the brain of
D. rerio (Fig. 3). The inhibition of AChE by GUA showed to be in a
concentration-dependent manner; so, we were able to find significant dif-
ferences between treatment groups. In addition, significant differences be-
tween treatment groups and the control group were also observed (F
(3,32)= 106.732; p < 0.001). Compared to the control group, we observed
that at the concentration of 50 μg/L and 200 μg/L, the AChE activity was
two and three times minor, respectively.

3.4. RT-qPCR

The three environmentally relevant concentrations of GUA altered the ex-
pression of antioxidant defense-, apoptosis-, AMPK pathway-, and neuronal
communication-related genes (Fig. 4). For example, herein, we demonstrated
GUA upregulated the gene expression of Nrf1 (F(3,32) = 1478.323;
p < 0.001) and Nrf2 (F(3,32) = 1338.290; p < 0.001) in a concentration-
dependent manner. Moreover, our results indicated that as concentration in-
creased, the gene expression of p53 (F(3,32)=1126.002; p< 0.001), BAX (F
(3,32) = 1667.809; p < 0.001; n = 3), and CASP3 (F(3,32) = 1093.566;
p < 0.001) also increased. Similar to antioxidant defense- and apoptosis-
related genes, the expression of PRKAA1 (F(3,32) = 1005.078; p < 0.001)
and PRKAA2 (F(3,32) = 2316.043; p < 0.001) increased as concentration
also did. Concerning neuronal genes, we found GUA downregulated the ex-
pression of GRID2IP (F(3,32) = 1160.149; p < 0.001), PCDH17 (F
(3,32) = 1108.866; p < 0.001), and PCDH19 (F(3,32) = 1219.588;
p < 0.001) and upregulated APP (F(3,32) = 2292.587; p < 0.001). For all
genes, we found significant differences between treatment groups, as well
as among treatment groups and the control group.



Fig. 1.Alterations to the swimming behavior (total distance traveledA, distance traveled in the top and bottom B, latency to enter the top C, time spent in the top and bottom
D, and time fish remained frozen in the top and bottom E) of Danio rerio after chronic exposure to GUA. * denote a significant difference compared to the control group. a
denote a significant difference compared to 25 μg/L. b denote a significant difference compared to 50 μg/L. c denote a significant difference compared to 200 μg/L. Data
represent mean ± standard deviation of three independent experiments (n = 3).
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3.5. GUA concentrations

During all weeks, but 2,8, 12, and 15, we saw the concentration of GUA
decrease compared to nominal concentration. The above is because, in those
weeks, the day we renewed the water coincided with the day we sampled
the water from the medium. For the control group, we found GUA concentra-
tions remained below the limit of quantification during the whole exposure.
Since the measured concentrations of GUA did not decrease >20% compared
to the nominal concentration, we analyzed all results based on the latter.

Concerning GUA concentrations in the brain, we observed that in all
treatment groups, but the control group, GUA levels were above the limit
of quantification. Moreover, concentrations of GUA increased in a
concentration-dependent manner in all treatment groups. Considering the
above data, we calculated the BCF for all concentrations that reached a
maximum value of 0.0381 (Tables 4 and 5).
5

3.6. Pearson correlation

To better understand Fig. 5, it is needed to point out that colors de-
note the strength of the correlation between variables. Therefore, as
the intensity of color increases, the correlation between variables is
stronger. In addition, colors also denote the type of correlation; for ex-
ample, the blue color indicates a positive correlation among variables,
while the red color indicates a negative correlation. Our results demon-
strated that BCF has a positive correlation to the overproduction of
ROS, AChE inhibition, and over-expression of p53, BAX, CASP3, and
APP. Moreover, behavioral endpoints related to the distance traveled
by fish were positively associated with AChE inhibition and downreg-
ulation of GRID2IP, PCDH17, and PCDH19. Meanwhile, those related
to the time fish remained frozen were positively correlated to oxidative
damage biomarkers and overexpression of apoptosis-related genes.
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4. Discussion

Herein, we investigated the potential neurotoxic effects GUA may in-
duce in freshwater fish D. rerio. According to our data, GUA impaired the
swimming behavior of fish, producing an anxiety-like state in them that
fish exhibited by a long-lasting frozen time. Even though our results are
the first evidence that GUA impairs the behavior of non-target organisms,
previous studies have indicated that the parent compound of thismetabolite
can disrupt the cognitive function of fish and mice. For example, DiTacchio
et al. (2015) and Li et al. (2019) demonstrated that chronic administration
ofMET to non-diabeticmice at doses that improve insulin sensitivity altered
Fig. 2. Oxidative stress response (Lipid peroxidation A, Hydroperoxide content B, Pr
Peroxidase F) of Danio rerio after chronic exposure to GUA. * denote a significant differ
25 μg/L. b denote a significant difference compared to 50 μg/L. c denote a significan
three independent experiments and three replicas per experiment (n = 9). MDA stan
reactive carbonyls (C = O).
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their behavior.Moreover, in fish, MacLaren et al. (2018) pointed out that
environmentally relevant concentrations of MET reduced the aggressive
behavior of Betta splendens adults after one and five months of exposure.
We highlight these studies because previous findings have indicated
that GUA can mimic the same harmful effects and mechanisms that
MET exerts in non-target organisms (Ussery et al., 2019; Ussery et al.,
2021; Elizalde-Velázquez et al., 2021b). Therefore, for the data
discussed below, we will also consider the information concerning the
parent compound of GUA.

BothMET andGUAare related to the production of oxidative stress infish
(Lee et al., 2019; Ussery et al., 2021; Elizalde-Velázquez et al., 2021a,b).
otein Carbonyl Content C, Superoxide Dismutase D, Catalase E, and Glutathione
ence compared to the control group. a denote a significant difference compared to
t difference compared to 200 μg/L. Data represent mean ± standard deviation of
ds for Malondialdehyde. CHP stands for Cumene Hydroperoxide. CO stands for



Fig. 2 (continued).
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In our previous study, for instance, we demonstrated that GUA impaired the
redox status of fish, generating several malformations on D. rerio embryos
(Elizalde-Velázquez et al., 2021b). However, in that study, we did not estab-
lish the mechanism by which GUA can produce oxidative stress; instead, we
stated that the increased production of ROS in fish was likely due to the mi-
tochondrial impairment that this metabolite might originate. In the present
study, we demonstrated that GUA increased the levels of LPX, HPX, and
POX in the brain of D. rerio. Moreover, our findings also showed GUA upreg-
ulated the expression of PRKAA1 and PRKAA2. PRKAA1 and PRKAA2 are the
catalytic subunits alpha of the AMP-activated protein kinase (AMPK). AMPK
is an important enzyme that regulates the cellular energy status and the activ-
ities of several key metabolic enzymes in response to cellular stresses (Ross
et al., 2016). In agreement with these results, Ussery et al. (2021), pointed
out GUA dysregulated the fatty acids of Oryzias latipes larvae via the AMPK
pathway. Thus, GUA-induced oxidative stress and its other harmful effects
are likely to be induced by the AMPK pathway. Nonetheless, future studies
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should further study the mechanism by which this metabolite affects the fit-
ness and health of fish.

AMPK activation is not only related to toxic responses in organisms; as a
matter of fact, this is the pathway thatMET follows to exert its beneficial ef-
fects. For example, previous studies have demonstrated MET protects dif-
ferent cellular cultures from oxidative stress by activating Nrf1 via the
AMPK (Ashabi et al., 2015; Arbab et al., 2021). In this study, we demon-
strated that GUA increased the gene expression of Nrf1 and Nrf2 in fish in
a concentration-dependentmanner, suggesting that asMET, thismetabolite
can activate these transcription factors through AMPK. Nonetheless, exces-
sive production of H2O2 in cells can also promote the expression Nrf2, as
Gureev et al. (2019) stated before. Since in our results, GUA activated the
AMPK pathway in a concentration-dependent manner and also increased
the production of H2O2 in fish, we believe more studies are needed to elu-
cidate the mechanism by which this metabolite upregulated Nrf1 and Nrf2.
ROS excessive production is also related to the inhibition of AChE activity.



Fig. 3. AChE activity in Danio rerio brain after chronic exposure to GUA. * denote a significant difference compared to the control group. a denote a significant difference
compared to 25 μg/L. b denote a significant difference compared to 50 μg/L. c denote a significant difference compared to 200 μg/L. Data represent mean ± standard
deviation of three independent experiments and three replicas per experiment (n = 9).

Fig. 4. Expression of antioxidant defense-, apoptosis-, and neuronal communication-related genes of Danio rerio after chronic exposure to GUA. * denote a significan
difference compared to the control group. a denote a significant difference compared to 25 μg/L. b denote a significant difference compared to 50 μg/L. c denote a
significant difference compared to 200 μg/L. Data represent mean ± standard deviation of three independent experiments and three replicas per experiment (n = 9)
APP stands for Amyloid β Precursor Protein. PCDH19 stands for Protocadherin 19. PCDH17 stands for Protocadherin 17. GRID2IP stands for Glutamate Receptor
Ionotropic, δ 2-Interacting Protein 1. PRKAA2 stands for Protein Kinase AMP-Activated Catalytic Subunit α 2. PRKAA1 stands for Protein Kinase AMP-Activated Catalytic
Subunit α 1. CASP3 stands for Caspase 3. BAX stands for BCL2 Associated X Protein. Nrf1 stands for Nuclear Respiratory Factor 1. Nrf2 Nuclear Respiratory Factor 2.

Table 4
Measured concentrations of GUA in water samples.

Nominal concentration Weeks

1 2 3 4 5 6 7 8

Control ND <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ
GUA 25 22.3 ± 0.8 24.8 ± 0.2 21.8 ± 0.5 21.4 ± 0.7 20.9 ± 0.5 21.0 ± 0.8 20.4 ± 0.5 24.1 ± 0.3

50 41.7 ± 1.1 48.9 ± 0.8 40.9 ± 1.3 42.1 ± 1.0 41.6 ± 1.2 41.4 ± 1.0 40.7 ± 1.3 48.4 ± 0.6
200 173.5 ± 6.8 196.3 ± 0.8 168.5 ± 5.7 171.8 ± 6.4 173.1 ± 6.6 169.3 ± 6.2 170.5 ± 7.0 197.8 ± 1.3

Nominal concentration Weeks

9 10 11 12 13 14 15 16

Control ND <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ <LOQ
GUA 25 21.2 ± 0.6 20.5 ± 0.7 21.8 ± 0.6 25.01 ± 0.2 20.9 ± 0.8 21.2 ± 0.7 24.4 ± 0.3 20.9 ± 0.6

50 41.5 ± 1.2 41.1 ± 1.3 40.4 ± 1.1 48.2 ± 0.8 41.3 ± 1.0 40.5 ± 1.3 48.7 ± 0.5 41.2 ± 1.1
200 168.3 ± 6.4 170.7 ± 6.1 169.5 ± 5.8 198.6 ± 1.0 169.0 ± 6.2 168.2 ± 7.0 198.2 ± 1.2 169.3 ± 5.9

LOQ: limit of quantification (5 ng/L). LOD: limit of detection (10 ng/L).values are expressed as mean ± standard deviation.
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Table 5
Measured concentrations of GUA in brain samples.

Nominal concentration of
GUA

Measured concentrations of GUA
in the brain of zebrafish

Control <LOQ
25 μg/L 592 ± 8.1 ng/L
50 μg/L 1219 ± 12.3 ng/L
200 μg/L 6457 ± 10.6 ng/L

LOQ: limit of quantification (8 ng/L). LOD: limit of detection (15 ng/L).
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Herein, we demonstrated that GUA led to decreased activity of AChE in
fish, which we can explain by the augmented production of H2O2.
Schallreuter and Elwary (2007), for instance, indicated that this oxidative
damage biomarker alters the activity of AChE through the oxidation of sev-
eral amino acids related to its active center. Moreover, Garcimartín et al.
(2017) stated that H2O2-induced AChE inhibition is the result of the shifts
this biomarker induces in the isoform of the enzyme. Thus, the most likely
mechanism by which this metabolite impairs the homeostasis of AChE ac-
tivity is by excessive production of ROS. However, we did not discard
that GUA may also directly inhibit the activity of this enzyme, as previous
Fig. 5.Pearson's correlation between all variables tested.BCF stands for bioconcentration
top. TSB stands for time spent at the bottom. DTB stands for distance traveled in the bo
TFRFT stands for time fish remained frozen in the top. TFRFB stands for time fish re
hydroperoxide content. POX stands for protein carbonyl content. SOD stands for supe
AChE stands for acetylcholinesterase. Nrf1 stands for Nuclear Respiratory Factor 1. Nrf
stands for Caspase 3. PRKAA1 stands for Protein Kinase AMP-Activated Catalytic Sub
GRID2IP stands for Glutamate Receptor, Ionotropic, δ 2-Interacting Protein 1. PCDH1
for Amyloid β Precursor Protein.
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studies have suggested for its parent compound (Markowicz-Piasecka
et al., 2017; Ussery et al., 2018).

AChE activity in the brain is essential for organisms as it regulates
neuronal transmission and signaling between synapses by preventing ACh
dispersal and activation of nearby receptors (Trang and Khandhar, 2020).
Thus, inhibition of this enzyme can lead to physiologic abnormalities
extending from behavioral damage to death (Tilton et al., 2011). For exam-
ple, previous findings have indicated that AChE inhibition is related to the
production of convulsions, paralysis, loss of coordination, and other kinds
of behavioral changes in organisms (Ren et al., 2015). Moreover, specifi-
cally in fish, uncountable studies have related the inhibition of AChE with
the generation of anxiety and reduced capacity to escape predation (Qiu
et al., 2017; Sandoval-Herrera et al., 2019; Giacomini et al., 2020;
Pullaguri et al., 2020). Thus, the behavioral impairment we observed in
fish is likely to be the result of GUA-induced AChE inhibition. However,
the GUA-induced anxiety behavior in fish can also be a consequence of
likely brain damage GUA produced to these organisms. In this study, we
found GUA upregulated the gene expression of APP, BAX, p53, and
CAPS3. β–Amyloid precursor protein (APP) is a membrane protein that is
essential in Alzheimer's disease (AD) pathogenesis (Banote et al., 2020).
Cleavage of thismembrane protein by beta and gamma secretases generates
factor.TDT stands for total distance traveled.DTT stands for distance traveled in the
ttom. TST stands for time spent at the top. LET stands for latency to enter the top.
mained frozen in the bottom. LPX stands for lipid peroxidation. HPX stands for
roxide dismutase. CAT stands for catalase. GPX stands for glutathione peroxidase.
2 Nuclear Respiratory Factor 2. BAX stands for BCL2 Associated X Protein. CASP3
unit α 1. PRKAA2 stands for Protein Kinase AMP-Activated Catalytic Subunit α 2.
7 stands for Protocadherin 17. PCDH19 stands for Protocadherin 19. APP stands



Fig. 6. Potential mechanism by which GUA induces neurotoxicity in fish. GUA crosses the blood-brain barrier and disrupts the homeostasis of mitochondria, which produces
an increase in ROS production and the activation of the AMPK pathway. After ROS overproduction in the brain, these can inhibit AChE and/or activate the transcription of
APP through the NF-KB pathway and produce behavioral impairment. Moreover, after AMPK activation, it can also activate other transcription factors such as Nrf1 and Nrf2,
which counter the overproduction of ROS in the brain, p53, which at the same time activates BAX and induces neuronal apoptosis, and APP that promotes the production of
AB peptides and impairs the behavior of fish.
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Aβ peptide fragments that aggregate into extracellular plaques in the brain
(Selkoe and Hardy, 2016). The over-production and aberrant self-assembly
of the amyloid β peptide into fibrillar aggregates is related to neurotoxicity
(Karran et al., 2011). Though the mechanism by which the parent com-
pound of GUA promotes the production of β–amyloid is still unknown,
studies suggest this can be the result of either AMPK activation or NF-KB
induction by ROS (Chen et al., 2009; Picone et al., 2015; Picone et al.,
2016). Besides the potential brain damage induced by β–amyloid in GUA
exposedfish, apoptosis in the brain ofD. rerio could also be another possible
mechanism bywhich this metabolite generates neurotoxicity. In agreement
with the upregulation of apoptosis-related genes that we observed here,
previous studies have shown that MET can augment the protein levels of
p53, promote the expression of p21, BAX, and p53, and downregulate the
transcription of Bcl2 on different organs of zebrafish and cell cultures (Li
et al., 2015; Sharma and Kumar, 2018; Lin et al., 2020). Moreover, Wang
et al. (2008) and Koagouw et al. (2021) demonstratedMET induces apopto-
sis in pancreatic cells and the gonads ofMytilus edulis. So far, we have dem-
onstrated that GUA at environmentally relevant concentrations can impair
the behavior of fish; however, there is a lot of research to do to understand
the mechanisms by which this metabolite produces oxidative stress, AChE
inhibition, β–amyloid formation, and apoptosis in fish. Moreover, we also
believe that future studies need to evaluate the likely histopathological
damage GUA generates in the brain of non-target organisms.

Neurotoxic effects above-described are the result of GUA capacity of
crossing the blood-brain barrier (BBB). Herein, for instance, we demon-
strated GUA crossed this barrier in a concentration-dependent manner,
reaching a BCF of up to 0.0381. Thus, once GUA crosses the BBB, it can
activate the AMPK pathway and trigger a neurotoxic response in organisms,
characterized by a disruption of redox status, AChE activity, and gene
expression. In Fig. 6, we depicted the potential mechanism by which GUA
may induce neurotoxicity in fish. Blue arrows indicate a positive correla-
tion, and red arrows a negative one.

5. Conclusions

Danio rerio adults exposed to GUA showed a significant increase in the
time they remained frozen and a decrease in the total distance they swam
compared to the control group. Freezing of fish may be related to the
10
inhibition of AChE that GUA induced in fish, which is likely to be the result
of the oxidative stress response that this metabolite also produced in the
brain of this freshwater organism. Impaired behavior of fish could also be
related to the capacity of GUA to induce apoptosis, B-amyloid formation,
or decrease the abundance of neurotransmitter GRID 2IP and protocadherin
in the brain of water organisms, as our results highlighted. Nonetheless, fu-
ture studies should investigate the histopathological damage thismetabolite
may induce in the brain of fish. To the best of our knowledge, our results
provide the first evidence of neurotoxic effects in fish exposed to environ-
mentally relevant concentrations of GUA.
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