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Abstract: There are different alternatives when selecting removable prostheses for below the knee
amputated patients. The designs of these prostheses vary according to their different functions.
These prostheses designs can be classified into Energy Storing and Return (ESAR), Controlled Energy
Storing and Return (CESR), active, and hybrid. This paper aims to identify the state of the art related
to the design of these prostheses of which ESAR prostheses are grouped into five types, and active and
CESR are categorized into four groups. Regarding patent analysis, 324 were analyzed over the last
six years. For scientific communications, a bibliometric analysis was performed using 104 scientific
reports from the Web of Science in the same period. The results show a tendency of ESAR prostheses
designs for patents (68%) and active prostheses designs for scientific documentation (40%).

Keywords: ankle prosthesis; prosthetic foot; lower limb rehabilitation; below-knee amputee

1. Introduction

Below-knee amputation (BKA) is a surgical procedure that mainly originates from
trauma, diabetes, and peripheral vascular diseases [1]. While it is estimated that an average
person walks about 6500 steps per day, current trends suggest that 10,000 steps per day
represent a healthy lifestyle [2] for which a suitable prosthesis is necessary for a BKA patient
in order to achieve a complete user reintegration to his/her pre-amputation activities. These
designs should adapt to different patient’s activities.

In scientific documents, there is wide confusion with the terms prosthesis, prosthetic,
and prostheses; prosthetic is the process to manufacture an artificial member (AM), pros-
thesis a component of the AM, and prostheses are all the components that make up an
AM. From patents and scientific document searches, the term prosthesis is more commonly
used; in this paper, prostheses and prosthesis will be used interchangeably.

Understanding the functioning of these prostheses is necessary to identify the foot
movements: internal–external axial rotation, eversion–inversion, dorsiflexion (DF), and
plantarflexion (PF), as shown in Figure 1. The forces acting on the human foot are dis-
tributed with 60% towards the heel and 40% towards the phalanges. The loads are dis-
tributed between the heel and the metatarsals to the fourth and fifth phalanges and towards
the big toe to the second and third phalanges [3].

In order to improve and develop ankle/foot prostheses, it is necessary to know and
understand present-day solutions to walking and running for BKA patients (and the
people behind those solutions), so our designs meet both user and technical requirements.
A state-of-the-art analysis of BKA prostheses is performed in this research.

Appl. Sci. 2021, 11, 5591. https://doi.org/10.3390/app11125591 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4365-8537
https://orcid.org/0000-0002-5422-5593
https://doi.org/10.3390/app11125591
https://doi.org/10.3390/app11125591
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125591
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125591?type=check_update&version=1


Appl. Sci. 2021, 11, 5591 2 of 27Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 26 
 

 
Figure 1. Different movements of the foot. 

Foot prostheses can be classified as follows:  
• Ankle-cushion heel (SACH-foot): This was developed in the 1950s and incorporated 

a compressible heel that dampens the impact on the ground while emulating a 
plantarflexion movement. This type of prosthesis is used for its relatively low cost 
and weight [4]. 

• ESAR, also known as ESR, was developed in the 1980s. This type of prosthesis uses 
a foot-modeled plate (usually carbon fiber made) that stores elastic potential energy 
and progressively releases it as kinetic energy [5]. 

• CESR prostheses aim to capture the energy that is dissipated during a gait impact. 
On the loading phase of stance, energy is stored by a spring and locked. Then, this 
energy is timely released during the terminal stance of walking using microelectronic 
components [5]. 

• Active prostheses are considered state-of-the-art prostheses due to the use of actua-
tors, microcontrollers, or other electronic devices; usually, these work using ESAR 
foot systems combined with some external elements such as actuators or other elec-
tronic components. These prostheses have better control and stability during a walk 
cycle [6]. 
In the next section, it is explained how the investigation was performed for both pa-

tents and scientific communications. The Result Section presents a discussion about a new 
prosthesis classification according to this investigation, main authors, countries, and key-
words analyzed. In the discussion Section, findings and other designs of prosthesis de-
signs are disclosed. 

2. Search Method 
BKA prostheses designs vary in form and functions, so in order to understand the 

way these designs work, extensive patents and scientific documentation searches were 
performed. 

2.1. Used Keywords 
For the patents and scientific communications searches, the following boolean oper-

ations were used under the International Patent Classification (IPC) A61F2 belonging to 
artificial substitutes or replacements for parts of the body: ((Ankle OR foot) AND (pros-
thetic OR prosthesis OR artificial)). Dates ranges were set from 2014 to 2020. For the patent 
analysis, 9526 documents were found. A scientific communications search provided 406 
results. Figure 2 shows the results filtered on different search engines and the total num-
ber of documents obtained in every stage, among which The Lens was the most effective. 
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Foot prostheses can be classified as follows:

• Ankle-cushion heel (SACH-foot): This was developed in the 1950s and incorporated a
compressible heel that dampens the impact on the ground while emulating a plan-
tarflexion movement. This type of prosthesis is used for its relatively low cost and
weight [4].

• ESAR, also known as ESR, was developed in the 1980s. This type of prosthesis uses
a foot-modeled plate (usually carbon fiber made) that stores elastic potential energy
and progressively releases it as kinetic energy [5].

• CESR prostheses aim to capture the energy that is dissipated during a gait impact.
On the loading phase of stance, energy is stored by a spring and locked. Then, this
energy is timely released during the terminal stance of walking using microelectronic
components [5].

• Active prostheses are considered state-of-the-art prostheses due to the use of actuators,
microcontrollers, or other electronic devices; usually, these work using ESAR foot
systems combined with some external elements such as actuators or other electronic
components. These prostheses have better control and stability during a walk cycle [6].

In the next section, it is explained how the investigation was performed for both
patents and scientific communications. The Result Section presents a discussion about a
new prosthesis classification according to this investigation, main authors, countries, and
keywords analyzed. In the discussion Section, findings and other designs of prosthesis
designs are disclosed.

2. Search Method

BKA prostheses designs vary in form and functions, so in order to understand
the way these designs work, extensive patents and scientific documentation searches
were performed.

2.1. Used Keywords

For the patents and scientific communications searches, the following boolean oper-
ations were used under the International Patent Classification (IPC) A61F2 belonging to
artificial substitutes or replacements for parts of the body: ((Ankle OR foot) AND (pros-
thetic OR prosthesis OR artificial)). Dates ranges were set from 2014 to 2020. For the patent
analysis, 9526 documents were found. A scientific communications search provided 406 re-
sults. Figure 2 shows the results filtered on different search engines and the total number
of documents obtained in every stage, among which The Lens was the most effective.

2.2. Patent Search

For the patent search, five different search engines were used, of which four were
free-source, and one was paid. The databases were Derwent analytics (842 results), Es-
pacenet (86 results), Google patents (5539 results), Patentscope (2281 results), and The Lens
(778 results), with a total of 9526 results (see Figure 2).
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An initial filter was applied directly to the search engines where undesired categories
and keywords were removed, in addition to a manual selection of patents directly on
the website.
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Subsequently, data cleaning was performed using Open refine®. The second filter was
applied to eliminate duplicates, IPC categories that did not correspond, and keywords
such as heart, valve, elbow, Arthroplasty, and Orthosis. An individual selection of the
patents was made, and the unwanted results were eliminated. The remaining patents were
as follows: Patentscope (369), Google patents (390), Espacenet (55), Derwent analytics (546),
and The Lens (309), resulting in 1669 patents.

Based on a third filter, the results of all databases were merged, and keywords such
as knee, orthosis, and tibia were eliminated. Duplicated results were filtered, and the
remaining patents were individually analyzed for a total result of Derwent analytics (70),
Espacenet (12), Google patents (19), Patentscope (72), and The Lens (151), resulting in
324 patents directly related to ankle and foot prostheses. From Figure 2, it can be observed
that although Google patents and Patentscope were the ones with more results, these
contained a higher number of duplicates or undesired data.

2.3. Scientific Communications Search

For the literature analysis, the same keywords as for the patents’ search were applied
in the Web of Science (WOS), obtaining 406 documents related to foot/ankle prostheses.
The first filter was performed directly on the website, removing undesired keywords for a
total of 136 documents. Subsequently, a second filter was applied, deleting repeated and
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undesired results. An individual document selection was made, resulting in 97 results.
Finally, a bibliometric analysis was performed using data recovery software (R studio®)
and a complement for bibliometric analysis (Bibliometrix®).

3. Results
3.1. Patentometric Analysis

Among the 324 results obtained, 208 results match prostheses designs, 51 match
prosthetic mechanisms (motion blocking systems, aids to align prostheses, etc.), 22 match
sockets, 11 match aesthetic covers, and 10 match joints. In total, 22 results are associated
with methodologies (manufacturing methods, design methods, tests). Figure 3 shows these
results; the number of prosthesis designs suggests a high interest in the development of
new solutions for BKA amputees.
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The main offices in which patents are registered are the United States (178 patents),
European Office (45 patents), International Office (37 patents), and China (34 patents).

Among the results, 95 refer to foot prostheses, 65 to ankle prostheses, and 48 to
a combination of both, of which 182 are removable, and 26 are osseointegrated. In this
investigation, only removable prostheses are considered. Table 1 shows the selected patents,
the technology used, and the type of prostheses. Among removable prostheses, 135 are
mechanical or propelled with the body, hydraulic (18 results), and electronic or active
(29 results). These results are distributed among ESAR, CESR, active, and hybrid (which
did not match any of the aforementioned technologies or they are a combination of two
or more categories). From Figure 4, it can be observed that for electronic prostheses,
17 are active, three are CERS (use a controlled energy return without the use of complex
devices), one is ESAR, and eight are hybrid. For hydraulic prostheses, four use electronic
components, three are based on CERS, three on ESAR, and eight are a combination of
three or more categories. For mechanical prostheses, 94 use ESAR systems exclusively,
26 combine different technologies (but mostly are mechanical), 13 are CERS (energy return
is controlled using only mechanical devices), and two use actuators to release the energy.

Applicants and inventors in the databases were considered. Otto Bock Health Co. and
Clausen Arinbjorn V. are the main applicants with ten and eight patents, respectively, from
2014 to 2020. Figure 5 shows the main applicants for BKA prostheses.
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Table 1. Removable ankle/foot prostheses patents.

Cite Title Main Applicant Body Part Technology Type

[7] -Adjustment Device for A Lower
Limb Prosthesis

Blatchford Products
Limited. Ankle Hydraulic Hybrid

[8] -Below-knee Prosthesis Provided with
Power Ankle

Beijing Gongdao
Fengxing Intelligent Ankle/Foot Electronic ESAR

[9] -Bifurcated, Multi-purpose Prosthetic Foot Christensen Roland J. Foot Mechanical ESAR
[10] -Bi-modal Ankle-foot Device Hansen Andrew H. Ankle/Foot Mechanical CESR

[11]
-Controlling Power in A Prosthesis or orthosis

Based on Predicted Walking Speed or
Surrogate for Same

Herr Hugh M. Ankle/Foot Electronic CESR

[12] -Damping Device for A Prosthesis Ossur Hf. Ankle Mechanical Hybrid
[13] -Energy Storing Foot Plate Iversen Edwin Kay Ankle/Foot Mechanical ESAR

[14]
-Further Improvements to Ankle–foot

Prosthesis and orthosis Capable of Automatic
Adaptation to Sloped Walking Surfaces

Hansen Andrew H. Ankle/Foot Mechanical CESR

[15] -Joints for Prosthetic, orthotic and/or
Robotic Devices Rifkin Jerome R. Foot Mechanical Hybrid

[16] -Low Profile Prosthetic Foot Jonsson Orn Ingvi Foot Mechanical ESAR

[17] -Lower Limb Prosthetic Device with A
Wave Spring Rubie Eric W. Foot Mechanical ESAR

[18] -Modular Prosthetic Foot Miller Joseph A. Foot Mechanical ESAR
[19] -Orthopedic Foot Part Otto Bock Holding Ankle/Foot Electronic Active

[20] -Passive Ankle Prosthesis with Energy Return
Simulating that of A Natural Ankle Joseph M. Schimmels Ankle/Foot Mechanical CESR

[21] -Passive orthopedic Aid in the form of a Foot
Prosthesis or Foot orthosis Otto Bock Healthcare Ankle/Foot Hydraulic Active

[22] -Power Below-knee Prosthesis with Discrete
Soft Toe Joints

Beijing Gongdao
Fengxing Intelligent Ankle/Foot Mechanical ESAR

[23] -Prosthetic Ankle–foot System Universiteit Gent Ankle/Foot Mechanical Hybrid

[24] -Prosthetic Energy Storing and Releasing
Apparatus and Methods Phillips Van L. Foot Mechanical ESAR

[25] -Prosthetic Foot Keith B. Smith Foot Mechanical ESAR

[26] -Prosthetics Using Curved
Dampening Cylinders Aaron Taszreak Ankle/foot Mechanical ESAR

[27] -A Foot with A Vacuum Unit Activated by an
Ankle Motion Duger Mustafa Ankle Mechanical Hybrid

[28] -Artificial Ankle, Artificial Foot and
Artificial Leg

Falz & Kannenberg
Gmbh Ankle Electronic Active

[29] -Artificial Limb Prosthesis Leg Below Knee &
Above Knee Univ Bharath Ankle/Foot Mechanical ESAR

[30] -Flexible Prosthetic Appliance Brown Christopher A. Foot Mechanical Hybrid
[31] -Foot for Mobility Device Sanders Michael R. Foot Mechanical ESAR

[32] -High-performance Multi-component
Prosthetic Foot Rubie Eric W. Foot Mechanical ESAR

[33] -Hydraulic Actuating Unit and Artificial Foot
Prosthesis System Having the Same Gyeonggyeongcheol Ankle Electronic Hybrid

[34] -Hydraulic System for A Knee-ankle Assembly
Controlled by a Microprocessor Xavier Bonnet Ankle Electronic CESR

[35] -Prosthesis Structure for
Lower-limb Amputees

Officine Ortopediche
Rizzoli Sr. Ankle/Foot Electronic Hybrid

[36] -Prosthetic Foot Ability Dynamics Llc. Foot Mechanical ESAR
[37] -Prosthetic Foot Frizen Foot Mechanical ESAR
[38] -Prosthetic Foot Frizen Dzheff Foot Mechanical ESAR
[39] -Prosthetic Foot Luder Mosler Foot Mechanical ESAR

[40] -Prosthetic Foot The Ohio Willow
Wood Company Foot Mechanical ESAR

[41] -Prosthetic Foot with a Curved Split Jonsson Vilhjalmur
Freyr Foot Mechanical ESAR
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Table 1. Cont.

Cite Title Main Applicant Body Part Technology Type

[42] -Prosthetic Foot with Dual Foot Blades and
Vertically offset Toe

Lecomte Christophe
Guy Foot Mechanical ESAR

[43] -Prosthetic Foot with Floating forefoot Keel Christensen Roland J. Foot Mechanical ESAR
[44] -Prosthetic Limb 3d Systems Ankle/Foot Mechanical ESAR
[45] -Prosthetic System Hawkins Ryan Ankle Mechanical Hybrid

[46] -Smooth Rollover insole for Prosthetic Foot Clausen Arinbjorn
Viggo Foot Mechanical ESAR

[47]

-System for Powered Ankle–foot Prosthesis
with Active Control of

Dorsiflexion-plantarflexion and
inversion-eversion

Mo Rastgaar Ankle Electronic Hybrid

[48] -Walking Controller for Powered
Ankle Prostheses Michael Goldfarb Ankle Electronic Active

[49] -Actuated Prosthesis for Amputees Bedard Stephane Ankle/Foot Electronic Active

[50] -Additive Manufacturing Produced
Prosthetic Foot James M. Colvin Foot Mechanical ESAR

[51] -Ankle Prosthesis Assembly Ermalyuk Vladimir
Nikolaevich Foot Hydraulic Hybrid

[52] -Ankle Prosthesis Assembly of Foot Suslov Andrej
Vladimirovich Foot Mechanical ESAR

[53] -Artificial Foot Inha Industry
Partnership Institute Foot Electronic Active

[54] -Artificial Foot for Sports Seo Jung Woong Ankle/Foot Mechanical ESAR
[55] -Artificial Foot Prosthesis System Sogang University Ankle Electronic Active

[56]
-Artificial Human Limbs and Joints Employing

Actuators, Springs, and
Variable-damper Elements

Massachusetts
Institute of Technology Ankle Mechanical Active

[57] -Controlled Coronal Stiffness Prosthetic Ankle Klute Glenn Ankle Mechanical Hybrid
[58] -False Foot of Carbon -fibre Composite Beijing Baimtec. Foot Mechanical ESAR
[59] -Foot Prosthesis Medi Gmbh & Co. Foot Mechanical ESAR
[60] -Foot Prosthesis with Adjustable Rollover Mccarvill Sarah Foot Mechanical ESAR
[61] -Hybrid Ankle Joints Jo Hyun Ankle Electronic Active

[62] -instrumented Prosthetic Foot Victhom Human
Bionics Inc. Foot Mechanical ESAR

[63] -Layering Technique for An Adjustable,
Repairable Variable Stiffness Prosthetic Foot Gonzalez Roger V. Foot Mechanical ESAR

[64] -Passive orthopaedic Aid in the form of a Foot
Prosthetic or orthotic Mosler Foot Mechanical Hybrid

[65] -Prosthetic Ankle Module Ásgeirsson Sigurõur Foot Mechanical ESAR
[66] -Prosthetic Ankle Module Nijman Jeroen Foot Mechanical ESAR

[67] -Prosthetic Ankle: A Method of Controlling
Based on Adaptation to Speed Arinbjorn Clausen Ankle Mechanical Active

[68]
-Prosthetic Device and Method with

Compliant Linking Member and Actuating
Linking Member

Matthew A. Holgate Ankle/Foot Electronic CESR

[69] -Prosthetic Foot Ability Dynamics Llc. Foot Mechanical ESAR
[70] -Prosthetic Foot Ability Dynamics Llc. Foot Mechanical ESAR
[71] -Prosthetic Foot Doddroe Jeffrey L. Foot Mechanical ESAR
[72] -Prosthetic Foot Starker Felix Foot Mechanical ESAR

[73] -Prosthetic Foot Sulprizio Michael
Scott Foot Mechanical ESAR

[74] -Prosthetic Foot and Manufacturing
Method Thereof Kim Sa Yeop Foot Mechanical ESAR

[75] -Prosthetic Vacuum System Ossur Hf. Foot Electronic Hybrid
[76] -Responsive Prosthesis Howell Foot Mechanical ESAR
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Table 1. Cont.

Cite Title Main Applicant Body Part Technology Type

[77]

-A Prosthesis or orthosis Comprising a Hinge
Joint System for Functionally Assisting,

Enhancing and/or Replacing A Hinge Joint of
a Human or Animal Subject

Vrije Universiteit
Brussel Ankle/Foot Mechanical CESR

[78] -Active Lower Leg Prosthesis Device Sogang University Ankle Hydraulic CESR
[79] -Apparatus and Method for A Split Toe Blade Rubie Eric W. Foot Mechanical ESAR

[80] -Artificial Ankle Joint Limb Based on
Flexible Driver

Nanjing Institute of
Technology Ankle Mechanical Hybrid

[81] -Artificial Foot Hornos Pedro Foot Mechanical ESAR

[82] -Artificial Foot and Method for Controlling the
Movement Thereof Otto Bock Holding. Foot Mechanical ESAR

[83] -Bow -shaped Ankle Structure Combined
Material Artificial Limb Foot Core Lin Yusen. Foot Mechanical ESAR

[84] -Catapult Ankle and Related Methods Rouse Elliott J. Ankle Electronic Hybrid

[85]
-Dispositif De Prothese De Cheville Controle

Par Une Prothese De Genou Motorisee
Sensible A La Pesanteur

Millinav Ankle Mechanical Hybrid

[86] -Electronically Controlled Prosthetic System Martin James Jay Foot Electronic Active
[87] -Fine Energy Storage Foot of Carbon Sun Yongshang Foot Mechanical ESAR
[88] -Foot Prosthesis Kranner Werner Foot Mechanical ESAR

[89] -Foot Prosthesis with Resilient
Multi-axial Ankle

Lecomte Christophe
Guy Foot Mechanical ESAR

[90] -Microprocessor Controlled Prosthetic Ankle
System for Footwear and Terrain Adaptation Palmer Michael Ankle Hydraulic Active

[91] -Novel Fine Prosthetic Foot of Comfortable
Energy Storage Carbon

Guangzhou
Kangmeite Prostheses

Co Ltd.
Foot Mechanical ESAR

[92] -Oil Pressure Ankle Joint Ken Dall Enterprise. Ankle Hydraulic Hybrid

[93] -Overmould Attachments for Prosthetic Foot Lecomte Christophe
Guy Foot Mechanical ESAR

[94] -Prosthetic Ankle and Method of Controlling
Same Based on Adaptation to Speed Ossur Hf. Ankle Electronic Active

[95] -Prosthetic Foot Keith B. Smith Foot Mechanical ESAR
[96] -Prosthetic Foot Otto Bock Holding. Foot Mechanical ESAR
[97] -Prosthetic Foot Sun Yongshang Foot Mechanical ESAR
[98] -Prosthetic Foot Structure Cheng Yao Teng Foot Mechanical ESAR

[99] -Prosthetic Foot with Energy Transfer Medium
including Variable Viscosity Fluid Christensen Roland J. Foot Mechanical ESAR

[100]
-Prosthetic Foot, System of A Prosthetic Foot
and A Shoe, and Method for Adapting the

Heel Height of a Prosthetic Foot
Hermann Meyer Ankle/Foot Mechanical ESAR

[101] -Prosthetic Joint with Mechanical Response
System to Position and Rate of Change Lincoln Lucas Samuel Ankle Mechanical CESR

[102] -Prosthetic Sport Feet Clausen Arinbjorn V. Foot Mechanical ESAR

[103] -Shock Attenuation Energy -absorbing
Prosthetic Foot Foot Core Li Jingtong Foot Mechanical ESAR

[104]
-Single-freedom-degree Active Type Ankle
Joint Artificial Limb Based on Closed Type

Hydraulic Driving System
Wang Xingjian Ankle/Foot Hydraulic Active

[105]
-Systems and Control Methodologies for
Improving Stability in Powered Lower

Limb Devices
Vanderbilt University Ankle/Foot Electronic Active

[106] -Actuator Control System and
Related Methods

Northern Arizona
University. Ankle/Foot Electronic Active

[107] -Ankle–foot Prosthesis Device Liu Yan Nan Ankle Electronic Active
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Table 1. Cont.

Cite Title Main Applicant Body Part Technology Type

[108]

-Articulated orthopaedic Foot with Shock
Absorption, Which Prevents the Impact

Produced in Each Foot-loading Cycle When
Walking or Running, Providing Natural

Movement and Stability for The User

Mora Morales Miguel Foot Mechanical ESAR

[109] -Artificial Foot Lindhe Christoffer. Foot Mechanical ESAR

[110] -Biomimetic and Variable Stiffness Ankle
System and Related Methods Rouse Elliott J. Ankle Mechanical Hybrid

[111] -Bionic Prosthetic Mechanical Foot with
Parallel Joints Xing Zhiping Ankle/Foot Electronic Hybrid

[112] -Clearance Enhancer for Lower
Limb Prosthesis Palmer Jeffrey Ray Foot Mechanical ESAR

[113] -Energy Storage Foot Bonawei
Rehabilitation. Ankle/Foot Mechanical ESAR

[114] -Foot Prosthesis Otto Bock Holding. Ankle/Foot Electronic Hybrid
[115] -Foot Prosthesis Sven Kaltenborn Ankle/Foot Hydraulic Hybrid
[116] -Foot Prosthesis Has Blade Benjamin Penot Ankle/Foot Mechanical Hybrid

[117] -Foot Prosthesis with Dymic Variable
Keel Resistance Matthew J. Habecker Ankle/Foot Mechanical CESR

[118] -Foot Prosthesis with Dynamic Variable
Keel Resistance Matthew J. Habecker Ankle/Foot Mechanical Hybrid

[119] -Hydraulic Ankle Chia-pao Cheng Ankle Hydraulic Hybrid
[120] -Hydraulic Ankle Joint Ken Dall Enterprise. Ankle Hydraulic Hybrid
[121] -Jointless Prosthetic Foot Boiten Herman. Foot Mechanical ESAR

[122] -Light intelligent Energy-storage
Energy-releasing Ankle Prosthesis Ye Yanhong. Foot Mechanical CESR

[123] -Limb Prosthesis System and Method Bartlett Brian. Ankle/Foot Mechanical Hybrid

[124] -Linear Actuator for Asymmetric Power
Generation and Dissipation Michael Goldfarb. Ankle Electronic Hybrid

[125]
-Lower Limb Prosthesis Comprising A

Hydraulic Damping and A Vacuum
Generating Mechanism

Graham Harris. Ankle/Foot Hydraulic Active

[126]
-Medial-lateral Stabilizing Prosthetic
Ankle/foot for Angled and Rough

Ground Gait
Maitland Murray E. Ankle/Foot Mechanical Hybrid

[127] -Method for Operating A Prosthetic Ankle Clausen Arinbjorn V. Foot Electronic Active
[128] -Modular Lower Limb Prosthesis System Fairley Joseph. Foot Mechanical ESAR
[129] -Movement Support Apparatus Endo Ken. Ankle/Foot Mechanical CESR
[130] -Polycentric Powered Ankle Prosthesis Lenzi Tommaso. Ankle Electronic Active

[131] -Powered Artificial Ankle Based on
Electro-hydraulic Direct Drive Technology Huang Qi-tao. Ankle Hydraulic Hybrid

[132]
-Prosthetic and Orthotic Devices Having

Magnetorheological Elastomer Spring with
Controllable Stiffness

Gudmundsson Ivar. Foot Mechanical ESAR

[133] -Prosthetic Ankle and Foot Combination Moser David. Ankle/Foot Mechanical ESAR
[134] -Prosthetic Device Fillauer Euro Ab. Ankle/Foot Mechanical ESAR
[135] -Prosthetic Device Ramirez Christoffer. Foot Mechanical ESAR
[136] -Prosthetic Foot Bonacini Daniele. Foot Mechanical ESAR
[137] -Prosthetic Foot Smith Keith. Foot Mechanical ESAR
[138] -Prosthetic Foot Willowwood Global. Foot Mechanical ESAR
[139] -Prosthetic Foot Zamora David A. Foot Mechanical ESAR
[140] -Prosthetic Foot with Hybrid Layup Gunnarssonn Ragnar. Foot Mechanical ESAR
[141] -Prosthetic Foot with Modular Construction Kramer Leslie D. Foot Mechanical ESAR

[142] -Shank Prosthesis Provided with Double Foot
Sole Plates Zhang Jun. Foot Hydraulic ESAR

[143] -Spring Design for Prosthetic Applications Prost Victor. Foot Mechanical Hybrid

[144] -Stair Ascent and Descent Control for Powered
Lower Limb Devices Vanderbilt University. Ankle/Foot Mechanical ESAR
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Table 1. Cont.

Cite Title Main Applicant Body Part Technology Type

[145] -Tapered Flex Plate for Prosthetic Foot Jonsson Orn Ingvi. Foot Mechanical ESAR

[146] -Variable Bar Length Gear Five-bar Mechanism
Active and Passive Ankle Artificial Limb

Univ Northwestern
Polytechnical. Ankle Mechanical Hybrid

[147] -Variable Stiffness Prosthetic Foot Sandahl David. Foot Mechanical ESAR
[148] -Adjustable Stiffness Prosthetic Foot Smith Justin R. Foot Mechanical ESAR

[149] -Ankle–foot Prosthesis for Automatic
Adaptation to Sloped Walking Surfaces Hansen Andrew H. Foot Mechanical CESR

[150]
-Artificial Ankle–foot System with Spring,

Variable-damping, and Series-elastic
Actuator Components

Massachusetts
Institute of
Technology.

Ankle/Foot Electronic Active

[151] -Biomimetic Prosthetic Device Schlafly Millicent Kay Foot Mechanical CESR
[152] -Carbon Fiber Prosthetic Foot Nelson Ronald Harry. foot Mechanical ESAR
[153] -Compression Heel Prosthetic Foot Parker Gene. Foot Mechanical ESAR
[154] -Foot Prosthesis Pusch Martin. Foot Mechanical ESAR

[155] -Hydraulic Pressure Energy Storage
Prosthetic Foot Wang Zitong. Ankle/Foot Hydraulic ESAR

[156] -Hydraulic Prosthetic Ankle Poulson Arlo Iii. Ankle Mechanical CESR
[157] -Low-energy Artificial Limb Wang Jianhua. Foot Mechanical ESAR
[158] -Lower Limb Prosthesis Blatchford Products. Ankle/Foot Electronic Active

[159] -Passive and Slope Adaptable Prosthetic
Foot Ankle Amiot David Foot Hydraulic CESR

[160] -Powered Ankle–foot Prosthesis Herr Hugh M. Ankle/Foot Electronic Active
[161] -Prosthesis and Prosthetic Foot Adapter Allermann Ralf. Ankle/Foot Mechanical ESAR
[162] -Prosthetic Ankle Joint Mechanism Moser David. Ankle Hydraulic Hybrid
[163] -Prosthetic Apparatus and Method Therefor Peter Gabriel A. Foot Mechanical ESAR

[164] -Prosthetic Feet Having Heel Height
Adjustability

Albertson Aron
Kristhjorn. Ankle Mechanical CESR

[165] -Prosthetic Foot Friesen Jeff. Foot Mechanical ESAR
[166] -Prosthetic Foot Grosskopf Stefan. Foot Mechanical ESAR

[167] -Prosthetic Foot Guangdong Lanwan
Intelligent Technology. Ankle/Foot Mechanical Hybrid

[168] -Prosthetic Foot Jo Sung Hun. Foot Mechanical ESAR
[169] -Prosthetic Foot Pusch Martin. Foot Mechanical ESAR
[170] -Prosthetic Foot Having A Function of Ankle Kim Hyun Cheol. Ankle/Foot Mechanical ESAR
[171] -Prosthetic Foot insert and Prosthetic Foot Mosler Loder. Foot Mechanical ESAR
[172] -Prosthetic Foot that Toe Part Can Rotate Kim Hyun Cheol. Foot Mechanical ESAR

[173] -Prosthetic Foot with Enhanced Stability and
Elastic Energy Return

Clausen Arinbjorn
Viggo. Foot Hydraulic CESR

[174] -Prosthetic Foot with Removable
Flexible Members

Clausen Arinbjorn
Viggo. Ankle/Foot Hydraulic ESAR

[175] -Prosthetic Foot with Spaced Spring Elements Day Jesse. Foot Mechanical ESAR

[176] -Prosthetic Foot and Prosthesis for A
Lower Extremity Radspieler Andreas. Ankle/Foot Mechanical ESAR

[177] -A Prosthetic Ankle and Foot Combination Blatchford Products. Ankle/Foot Mechanical Hybrid

[178] -Foot Prosthesis Comprising A
Damping Element

Pm Ingenierie Et
Design. Foot Mechanical Hybrid

[179] -Lower Limb Prosthesis Blatchford Products. Ankle/Foot Mechanical Hybrid
[180] -Oberschenkelprothesenpassteil Klopf, Johannes. Ankle/Foot Mechanical Hybrid

[181] -Prosthesis or orthosis Université Catholique
De Louvain. Foot Mechanical Hybrid

[182] -Prosthetic Ankle Assembly and Ankle–foot
System Comprising Same Hein, Emily. Ankle/Foot Mechanical Hybrid

[183] -Prosthetic External Fixation Assembly for
Post-amputee Ambulation Dennis G. Haun. Ankle/Foot Mechanical Hybrid

[184] -Prosthetic Foot Comité International
De La Croix-rouge. Foot Mechanical Hybrid
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Table 1. Cont.

Cite Title Main Applicant Body Part Technology Type

[185] -Prosthetic Foot and Connector for
Prosthetic Foot Xiborg Inc. Foot Mechanical ESAR

[186] -Prótesis Mecánica De Pie
Instituto Tecnológico

José Mario Molina
Pasquel Y. Henriquez.

Foot Mechanical CESR

[187] -Pyramidal Prosthetic Foot Gosakan, Haripriya. Foot Mechanical ESAR

[188] -Single Axis Ankle–foot Prosthesis with
Mechanically Adjustable Range of Motion

Mcnicholas Sara
Koehler. Ankle/Foot Mechanical HybridAppl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 26 
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3.2. Scientometric Analysis

After the final filter was applied, 98 scientific documents directly related to ankle/foot
prostheses were selected; results are shown in Table 2. Keywords were analyzed re-
sulting in the top 10: gait (frequency = 15 articles), prosthesis (frequency =14 articles),
prosthetics (frequency =13 articles), amputation (frequency =11 articles), biomechanics
(frequency =11 articles), ankle (frequency = 8 articles), transtibial (frequency = 8 articles)
prosthetic foot (frequency = 7 articles), powered prosthesis (frequency = 6 articles), and
gait analysis (frequency = 5 articles). This means there is a major trend in developing
prostheses devices compared with gait studies or the creation of new methodologies.

From the information obtained by the scientific documents, several aspects must be
considered when designing a new prosthesis, such as aesthetics, which allows empathy
between the users and their prosthesis [1], a size that permits the use of footwear, a mass
corresponding to 2.5% of bodyweight [160] (literature shows an average of 2.5 kg for a
75 kg person), an ankle torque corresponding to 100–140 Nm, an ankle power between
250–300 W, and a device capable of storing and releasing energy (5–9 J)

On the authors’ part, Lefeber D. and Vanderborght B. are the top authors (11 articles
each). Nevertheless, Hugh M. Herr is the most cited author in this field, with five of the
most cited articles.
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Table 2. Articles analyzed for ankle/foot prosthesis.

Cite Main Author Document Topics Year

[189] Huang, Stephanie Powered Ankle Prosthesis Design 2014
[190] Sun, Jinming Clinical Study 2014
[191] Wezenberg, Daphne Comparative Study 2014
[192] Nickel, Eric Component Design 2014
[193] Mulder, Inge A. Foot Prosthesis Design 2014

[194,195] Safaeepour, Zahra Powered Ankle/foot Prosthesis design 2014
[196] Zhu, Jinying Powered Ankle/foot Prosthesis design 2014

[197,198] Ko, Chang-Yong Clinical Study 2014–2016
[199,200] Cherelle, Pierre Powered Ankle/foot Prosthesis design 2014–2017
[201–203] Simon, Ann M. Component Design/Study 2014–2018

[204] Caputo, Joshua M. Gait Study 2014
[205] Asencio, J. G. Clinical Study 2015
[206] Bonnet, Xavier Comparative Study 2015
[207] Fairhurst, Stuart R. Component Design 2015
[208] Realmuto, Jonathan Component Design 2015
[209] Hessel, A. L. Powered Ankle/foot Prosthesis design 2015
[210] Rouse, Elliott J. Powered Ankle/foot Prosthesis design 2015
[211] Flynn, Louis Powered Ankle/knee Prosthesis design 2015
[212] Ficanha, Evandro Maicon Powered Ankle/foot Prosthesis design 2015

[213,214] Rice, Jacob J. Powered Ankle/foot Prosthesis design 2015–2016
[215] Jimenez-Fabian, Rene Component Design 2017

[216–218] Shultz, Amanda H. Component Design/Study 2015–2018
[219,220] Kim, Myunghee Powered Ankle/foot Prosthesis design 2015–2018

[221] Ingraham, Kimberly A. Powered Ankle Prosthesis Study 2016
[222] Quesada, Roberto E. Clinical Study 2016
[223] Delussu, Anna S. Comparative Study 2016
[224] Khaghani, Alireza Component Design 2016
[225] Narayanan, Govindarajan Foot Prosthesis Design 2016
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Table 2. Cont.

Cite Main Author Document Topics Year

[226] Isaacs, M. R. Passive Ankle foot prosthesis study 2016
[227] Grimmer, Martin Powered Ankle Prosthesis Design 2016
[228] LaPre, Andrew Kennedy Powered Ankle/foot Prosthesis design 2016
[229] Rabago, Christopher A. Prosthesis Study 2016
[230] Ettinger, Sarah Study 2016

[231–233] Esposito, Elizabeth Russell Gait Study 2016–2018
[234] Lacraz, Alain Comparative Study 2017
[235] Gardiner, James Comparative Study 2017
[236] Ke, Ming-Jen Component Design 2017
[237] Tao, Zhen Foot Prosthesis Design 2017
[238] Lee, Jeffrey D. Pneumatic Ankle/foot Prosthesis design 2017
[239] Mazumder, O. Powered Ankle/foot Prosthesis design 2017
[240] Anonymous Powered Foot Prosthesis Design 2017
[241] Weerakkody, Thilina H. Review 2017

[242,243] Koehler-McNicholas,
Sara R. Powered Ankle/foot Prosthesis design 2017–2018

[244] Shepherd, Max K. Powered Ankle/foot Prosthesis design 2017
[245,246] Dong, Dianbiao Powered Ankle/foot Prosthesis design 2017–2018

[247] Lechler, Knut Clinical Study 2018
[248] Eslamy, Mahdy Biomechanical Study 2018

[249] Jayaraman,
Chandrasekaran Powered Ankle/foot Prosthesis study 2018

[250] Hahn, Andreas Powered Foot Prosthesis Evaluation 2018
[251] Armannsdottir, Anna Anathomical Study 2018
[252] Zelik, Karl E. Anathomical Study 2018
[253] Gardinier, Emily S. Clinical Study 2018
[254] Heitzmann, Daniel W. W. Clinical Study 2018
[255] Montgomery, Jana R. Clinical Study 2018
[256] Preissler, Sandra Clinical Study 2018
[257] Guerra-Farfan, Ernesto Comparative Study 2018
[258] Yang, Ja Ryung Comparative Study 2018
[259] Culver, Steven Component Design 2018
[260] Geeroms, Joost Component Design 2018

[261,262] Quintero, David Component Design 2018
[263] Tahir, Uzma Component Design 2018
[264] Yin, Kaiyang Component Design 2018
[265] Houdijk, Han Foot Prosthesis Design 2018
[266] Glanzer, Evan M. Powered Foot Prosthesis Design 2018
[267] Bai, Xuefei Prosthesis Study 2018
[268] Ray, Samuel F. Prosthesis Study 2018
[269] Burger, Helena Review 2018

[270,271] De Pauw, Kevin Anathomical Study 2018–2019
[272,273] Gao, Fei Powered Ankle/foot Prosthesis design 2018–2019

[274] Sahoo, Saikat Powered Ankle/foot Prosthesis design 2018
[275] Schmalz, Thomas Comparative Study 2019
[276] Wurdeman, Shane R. Comparative Study 2019
[277] Zarezadeh, Fatemeh Comparative Study 2019
[278] Bhargava, Rakesh Foot Prosthesis Design 2019
[279] Zhang, Xueyi Gait Study 2019
[280] Bartlett, Harrison L. Powered Ankle Prosthesis Design 2019

[281] Agboola-Dobson,
Alexander Powered Ankle/foot Prosthesis design 2019

[282] Convens, Bryan Powered Ankle/foot Prosthesis design 2019
[283] Lenzi, Tommaso Powered Ankle/foot Prosthesis design 2019
[284] Yu, Tian Powered Ankle/foot Prosthesis design 2019
[285] Popescu, Stefan-Catalin Prosthesis Study 2019
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Table 3 shows, in order, the most cited articles, and Figure 6 shows the most relevant
authors in scientific documentation.

Table 3. Top 10 most cited articles in ankle/foot prosthesis.

No. Cite Article Authors Year

1 [286]
Bionic ankle–foot prosthesis normalizes

walking gait for persons with
leg amputation

Hugh M. Herr, Alena M. Grabowski 2012

2 [287] Powered ankle–foot prosthesis to assist
level-ground and stair-descent gaits Samuel Aua, Max Berniker a, Hugh Herr 2008

3 [288] Powered Ankle-Foot Prosthesis Improves
Walking Metabolic Economy Samuel K. Au, Jeff Weber, Hugh Herr 2009

4 [289] Control of a Powered Ankle-Foot Prosthesis
Based on a Neuromuscular Model

Michael F. Eilenberg, Hartmut Geyer,
Hugh Herr 2010

5 [290] Powered Ankle-Foot Prosthesis Samuel K. Aa, Hugh M. Herr 2008

6 [291] Design and Control of a Powered
Transfemoral Prosthesis

Frank Sup, Amit Bohara,
Michael Goldfarb 2008

7 [292]
The human ankle during walking:

implications for design of biomimetic
ankle prostheses

Andrew H. Hansena, Dudley S.
Childressa, Steve C. Miff, Steven A. Garda,

Kent P. Mesplayd
2004

8 [293] Recycling Energy to Restore Impaired
Ankle Function during Human Walking Steven H. Collins, Arthur D. Kuo 2010

9 [294]

Energy expenditure during ambulation in
dysvascular and traumatic below-knee

amputees: A comparison of five
prosthetic feet

Leslie Torburn, Christopher M. Powers,
Robert Guiterrez, Jacquelin Perry 1995

10 [295] Estimating the Prevalence of Limb Loss in
the United States: 2005 to 2050

Kathryn Ziegler-Graham, Ellen J.
MacKenzie, Patti L. Ephraim, Thomas G.

Travison, Ron Brookmeyer
2008
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The United States (US) is the most productive country (46 documents), followed
by Belgium (seven documents) and China (five documents). Some documents showed
multiple country collaborations (Figure 7). There is a clear relation between authors,
journals, and countries. For example, most of the documents submitted in the US are
from IEEE magazines and Plos One; meanwhile, Europe tends to apply to Prosthetic and
Orthotic international and the American society of mechanical engineers (ASME).
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4. Discussion
4.1. Device Classification

From the selected patents and scientific documentation, a new ankle/foot prosthesis
classification has been created besides ESAR, CERS, and active, based on its components
and prosthesis functions.

ESAR prostheses are categorized into five different designs (see Figure 8). CERS and
active categories are merged and divided into five different categories. There are some
unique designs whose components cannot be grouped; these will be discussed individually.
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From the previous analyses, it can be determined that the general form for ESAR
prosthesis is similar to the one illustrated in Figure 8A and mostly differs in form; some-
times, a single talon plate is aggregated, or the disposition of the plates may vary. In other
cases, as in Figure 8B, the center of mass is moved, and the plates are rearranged. In the
variation represented by Figure 8C, the foot plates are divided, so the prosthesis emulates
eversion and inversion movements. In Figure 8D, some polymeric cushions are aggregated,
replacing the use of extra plates. Figure 8E shows the usage of different types of damping
systems (springs, actuators, etc.) that replace some plates. All of these designs use pyramid
adapters as a connection between the prosthesis and transtibial components.

There are some variations for ESAR prostheses that use a simple plate arrangement
to adjust the return of energy (see Figure 9A). Other designs use a single spring bar that
regulates the energy storage/release (see Figure 9B).

For CERS prosthesis, the model by Endo Ken [129] (see Figure 10) considers a locking
mechanism that preserves the energy storage in the spring. This energy is released upon
the foot movement during the terminal stance. This impulse, in combination with the
ESAR foot, provides necessary torque during the walk cycle.



Appl. Sci. 2021, 11, 5591 15 of 27

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 26 
 

From the previous analyses, it can be determined that the general form for ESAR 
prosthesis is similar to the one illustrated in Figure 8A and mostly differs in form; some-
times, a single talon plate is aggregated, or the disposition of the plates may vary. In other 
cases, as in Figure 8B, the center of mass is moved, and the plates are rearranged. In the 
variation represented by Figure 8C, the foot plates are divided, so the prosthesis emulates 
eversion and inversion movements. In Figure 8D, some polymeric cushions are aggre-
gated, replacing the use of extra plates. Figure 8E shows the usage of different types of 
damping systems (springs, actuators, etc.) that replace some plates. All of these designs 
use pyramid adapters as a connection between the prosthesis and transtibial components. 

 
Figure 8. (A) General form of ESAR prosthesis, (B) Modified ESAR prosthesis, (C) ESAR with split plates, (D) ESAR pros-
thesis with cushions, (E) ESAR with damping system. 

There are some variations for ESAR prostheses that use a simple plate arrangement 
to adjust the return of energy (see Figure 9A). Other designs use a single spring bar that 
regulates the energy storage/release (see Figure 9B). 

 
Figure 9. (A) Multiple plates prosthesis, (B) Single spring prosthesis by Kim Sa Yeop [74]. 

For CERS prosthesis, the model by Endo Ken [129] (see Figure 10) considers a locking 
mechanism that preserves the energy storage in the spring. This energy is released upon 
the foot movement during the terminal stance. This impulse, in combination with the 
ESAR foot, provides necessary torque during the walk cycle. 

 
Figure 10. CERS prosthesis by Endo Ken [129]. 

Active prostheses can be categorized by the components they use into three types: 
Multi-Array Prostheses (MAP), Low Powered Prostheses (LPP), and Controlled Adapta-
tive Stiffness (CAS). For MAP, the form is similar to the one shown in Figure 11. It uses an 
ESAR composite foot (E), and a DC motor (A), usually a 200 W Maxon® connected to a 
ball-screw transmission (C) that moves the linkage system (D) upward/downward and 

Figure 9. (A) Multiple plates prosthesis, (B) Single spring prosthesis by Kim Sa Yeop [74].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 26 
 

From the previous analyses, it can be determined that the general form for ESAR 
prosthesis is similar to the one illustrated in Figure 8A and mostly differs in form; some-
times, a single talon plate is aggregated, or the disposition of the plates may vary. In other 
cases, as in Figure 8B, the center of mass is moved, and the plates are rearranged. In the 
variation represented by Figure 8C, the foot plates are divided, so the prosthesis emulates 
eversion and inversion movements. In Figure 8D, some polymeric cushions are aggre-
gated, replacing the use of extra plates. Figure 8E shows the usage of different types of 
damping systems (springs, actuators, etc.) that replace some plates. All of these designs 
use pyramid adapters as a connection between the prosthesis and transtibial components. 

 
Figure 8. (A) General form of ESAR prosthesis, (B) Modified ESAR prosthesis, (C) ESAR with split plates, (D) ESAR pros-
thesis with cushions, (E) ESAR with damping system. 

There are some variations for ESAR prostheses that use a simple plate arrangement 
to adjust the return of energy (see Figure 9A). Other designs use a single spring bar that 
regulates the energy storage/release (see Figure 9B). 

 
Figure 9. (A) Multiple plates prosthesis, (B) Single spring prosthesis by Kim Sa Yeop [74]. 

For CERS prosthesis, the model by Endo Ken [129] (see Figure 10) considers a locking 
mechanism that preserves the energy storage in the spring. This energy is released upon 
the foot movement during the terminal stance. This impulse, in combination with the 
ESAR foot, provides necessary torque during the walk cycle. 
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Active prostheses can be categorized by the components they use into three types: 
Multi-Array Prostheses (MAP), Low Powered Prostheses (LPP), and Controlled Adapta-
tive Stiffness (CAS). For MAP, the form is similar to the one shown in Figure 11. It uses an 
ESAR composite foot (E), and a DC motor (A), usually a 200 W Maxon® connected to a 
ball-screw transmission (C) that moves the linkage system (D) upward/downward and 
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Active prostheses can be categorized by the components they use into three types:
Multi-Array Prostheses (MAP), Low Powered Prostheses (LPP), and Controlled Adaptative
Stiffness (CAS). For MAP, the form is similar to the one shown in Figure 11. It uses an
ESAR composite foot (E), and a DC motor (A), usually a 200 W Maxon® connected to a
ball-screw transmission (C) that moves the linkage system (D) upward/downward and
converts motor rotary motion into linear motion. In some cases, the motor is located instead
of the spring (G) and connected to (C) using a timing belt. The linkage system (D) is in
charge of connecting different mechanisms and allows plantarflexion and dorsiflexion
movements; it may be composed of cables and/or pulleys, a bar mechanism, or crank
sliders. F and G, depending on the prostheses, represent springs or actuators (pneumatic,
electric, or hydraulic), for which torque varies from 100 to 140 Nm. Sometimes a parallel
spring is aggregated due to the demanding torque requirements, and it aims to reduce
the loads supported by the linkage system. Spring (G) saves energy during plantarflexion
and dorsiflexion and supplements it during the swing phase. Housing (B) allocates all the
electronic systems and provides stability to the system. The pyramid adapter (H) provides
a connection between the transtibial components and the prosthesis. Some models have a
lock mechanism, so the prosthesis could be used in a passive mode. See Figures 11–15.
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Another powered prosthesis design is the LPP shown in Figure 12. It aims to reduce
the necessary power required by the actuators. It contains different Footplates (G and C),
which in some designs (similar to the AMP Foot 2.1 [199]) are merged into a single plate.
In another case such as the VSPA Foot [245], footplates (G) are individually controlled,
allowing eversion–inversion movements; the DC motor (A) is located in a Housing (J)
and rotates the Ball screw transmission (B), which moves the Footplate (C) up or down,
allowing plantarflexion and dorsiflexion movement. Heel (D) may be composed of a
flexible plate; ankle stiffness is provided by Springs (H) and (E). Depending on the model,
two Springs (H) are used when there are individually controlled Footplates, and Spring
(E) is used when (G) and (C) are merged. In this case, Spring (E) is attached directly to
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Footplate (C). Spring (E) is elongated using a Pulley system (F) connected to the Footplate
(C). The pyramid adapter (I) provides a connection between the transtibial components and
the prosthesis. Designs for this model use an external power supply that is not integrated
into the main prosthesis body.
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CAS prostheses (see Figure 13) are mainly based on an ESAR foot (D), and in some
cases complemented with a Cushion (E). The main goal of this prosthesis is the modulation
of the stiffness during different stages of a gait cycle. This is granted by moving a Slider
(G) along the length of the foot. Depending on the gait cycle, this slider moves forward
and backward, providing the necessary stiffness to adapt to different situations such as
walking, running, or climbing stairs, and it is controlled by a DC motor (C). A linkage
system could be provided by a Ball screw transmission (F) or pulleys and belts. Motor (C)
could be programmed to adapt to different activities. Housing (B) provides support for
all the components and allows one degree of freedom (DOF) for the foot. The pyramid
adapter (A) provides a connection between the transtibial components and the prosthesis.

4.2. Other Designs

Some designs do not correspond to the categories previously described. These designs
are the pneumatic foot prosthesis by Huang et al. [189] (see Figure 14A), where DF and PF
are managed by two artificial muscles each, so stiffness and PF torque are easier to control.
It is capable of emulating 3 DOF and is controlled via a desktop computer. Another design
is the two DOF cable-driven ankle–foot prosthesis by Ficanha et al. [213], where instead of
using pneumatic systems, it uses pulleys and Bowden cables that are externally controlled
by two motors (Maxon EC-4), see Figure 14B. Both systems have an external power source
and are capable of emulating foot eversion and inversion movements.

Another case is the robotic foot prosthesis made by Lapre [229]. This device aims to
actively align the foot during different stances of the gait cycle using a four-bar linkage
system to rotate and translate the foot with the use of a single actuator. It works using an
ESAR foot and a DC motor (Maxon® EC-30 200 W) that moves a Ball screw transmission
via a belt drive. As this actuator system (motor and ball screw) contracts, it extends and
shifts the foot center (see Figure 15).

4.3. ESAR Analysis

Most of the active prostheses use ESAR foot to generate enough power to initiate the
gait cycle. From the patentometric and scientometric analysis, it is evident that types A,
B, and C are the most used (see Figure 8). A structural analysis was performed to make a
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comparison between these types. Carbon-fiber footplates and a concrete floor were used. A
load of 785 N was applied on the prosthesis upper faces obtaining a maximum deformation
on the Y-axis of 0.63, 0.33, and 0.67 mm for types A, B, and C, respectively (see Figure 16).
Meanwhile, deformations on A and C mostly occur on the ankle; B shows major flexibility
along the foot. The red color shows maximum displacements on the foot connection with
the body, but blue shows no deformation.
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Figure 16. Comparative static analysis of ESAR prosthesis.

According to the structural analysis, B tends to offer major elastic energy compared to
A and C, as shown in the instep colored in green/blue.

To compare the effectiveness during a walk cycle on uneven terrain, prostheses A,
B, and C were analyzed using the same velocity and loads. Figure 17 shows a clear
advantage of (C) over the other two models, thanks to the uneven deformation on its
divided footplates, as shown for the displacement colored in red.
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5. Conclusions

The number of results per database does not reflect the effectiveness of each search
engine. For this research, priority was given to search engines that provided useful data
such as direct links to patents, the inventor’s name, and IPC codes. Nevertheless, there
are some difficulties with some of them, such as the lack of options for filtering results or
IPC categories, among others. Besides, some applicants may be included in the name of
their companies (for example, Herr Hugh in Massachusetts Institute of Technology); this is
because some search engines only show the applicant/owner’s name instead of the inventor.
In some cases, there is a lack of consistency between the author’s names in different
patents (for example, Smith Keith and Smith, Keith, B.); these kinds of inconsistencies were
clustered, but still, results could not be entirely precise.

The United States has 56% of patent applications and 34% of scientific documents
registered. These results do not necessarily display that they produce most of the knowl-
edge on this topic, but because of the language, most of the search engines are capable
of accessing the data, unlike languages such as Spanish, Chinese, or languages spoken in
India. Therefore, some designs could remain undiscovered for this investigation.

Based on the obtained results, it can be established that for this study, the effectiveness
per search engine is as follows: Derwent 8.4%, Google patents 0.34%, Patentscope 3.2%,
The Lens 19.9%, and Espacenet 13.95%.
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The classification of the 208 prosthesis patents related to prostheses designs was
obtained according to the main technology used; results show that the ESAR mechanical
prosthesis is the main patent object by 44%, although claims are different for each one. All
of them can be classified based on the five ESAR categories presented in this document.
Outcomes also show a tendency for the use of ESAR regardless of the technology used. For
151 removable foot/ankle patent prostheses analyzed, 53% use only ESAR-type prosthesis,
and 90% use ESAR in its components. From these, the more commonly used were selected
and compared using Ansys, with no major differences between A and C, but for B, results
show a more elastic foot thanks to its mass-centered design.

The significant trend in the use of ESAR prostheses may be because of their lower cost
and greater energy efficiency. Different designs are used according to the user’s lifestyle.

The minimum amount of components found for designing an active prosthesis is a
DC motor, housing, a power transmission unit, a composite foot or equivalent, an energy
storage device (springs, locking systems), a linkage system, an energy power supply, and
a prosthesis/socket connector. From these components, most prostheses use a Maxon®

Brushless motor between 12 and 200 W. Power variations are mostly due to the gear ratio
used (the more power, the lower the gear ratio), springs with stiffness between 60–445 kNm,
and a Li-ion battery between 12–24 V. From these components it is especially important
to consider when designing a BKA prosthesis the linkage system that needs to support
most of the necessary loads, and it must be capable of tolerating at least 2 kN (for an 80 kg
patient) without any failure.

Materials also play a vital role in supporting loads with 4000/5000 duty cycles per
day; that is why aluminum, carbon fiber, and other composites are used in fabrication,
and sometimes load reduction along the system is necessary and archived using a parallel
spring arrangement.

The current development of batteries allows active prostheses to obtain enough power
and charge duration without adding extra mass and weight, but for hydraulic and pneu-
matic prostheses, power supply currently is a problem because most of these systems are
connected externally and the mass could reach up to 15 kg. Nevertheless, these systems
are more efficient in mimicking human ankle movements.

For BKA prostheses, continuous growth in the development of active ones is estimated.
Even though actual prostheses are capable of emulating three degrees of freedom, there is
space for a complete body-integrated ankle/foot prosthesis.
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