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Simple Summary: The present study simulated the effects of different dairy cow diets based on
local feeding strategies on enteric methane (CH4) emissions and surpluses of crude protein (CP)
in small-scale dairy systems (SSDS). Our study evaluated five scenarios of supplementation (S):
without supplementation (control diet), meaning no supplements were provided, only pasture (S1);
pasture supplemented with 4.5 kg dry matter (DM)/cow/day of commercial concentrate (CC) (S2);
supplemented with 200 g DM/kg per milk produced of CC (S3); supplemented with ground maize
grains and wet distiller brewery grains (S4); and S4 plus maize silage (S5). In addition, two pasture
managements (cut-and-carry versus grazing) and two varieties of legumes (red clover vs. white
clover) were considered. The results suggest that methane emissions and large nitrogen surpluses in
the diet are affected by the type of supplementation given to cows, in addition to the management
and chemical composition of the pastures offered. In SSDS, it is possible to formulate diets with local
inputs to reduce excess nutrients and dependence on external inputs, increasing feed efficiency and
reducing costs (excess of CP in the diet) and CH4 emissions.

Abstract: In cattle, greenhouse gas (GHG) emissions and nutrient balance are influenced by factors
such as diet composition, intake, and digestibility. This study evaluated CH4 emissions and surpluses
of crude protein, using five simulated scenarios of supplementation in small-scale dairy systems
(SSDS). In addition, two pasture managements (cut-and-carry versus grazing) and two varieties of
legumes (red clover vs. white clover) were considered. The diets were tested considering similar
milk yield and chemical composition; CH4 emission was estimated using Tier-2 methodology from
the Intergovernmental Panel on Climate Change (IPCC), and the data were analyzed in a completely
randomized 5 × 2 × 2 factorial design. Differences (p < 0.05) were found in predicted CH4 emissions
per kg of milk produced (g kg−1 FCM 3.5%). The lowest predicted CH4 emissions were found for S3
and S4 as well as for pastures containing white clover. Lower dietary surpluses of CP (p < 0.05) were
observed for the control diet (1320 g CP/d), followed by S5 (1793 g CP/d), compared with S2 (2175 g
CP/d), as well as in cut-and-carry management with red clover. A significant correlation (p < 0.001)
was observed between dry matter intake and CH4 emissions (g−1 and per kg of milk produced). It is
concluded that the environmental impact of formulating diets from local inputs (S3 and S4) can be
reduced by making them more efficient in terms of methane kg−1 of milk in SSDS.
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1. Introduction

In 2013, greenhouse gas (GHG) emissions in Mexico were 665 Mt Carbon Dioxide
Equivalent (CO2 eq). Emissions from the agri-livestock sector represented 12% of emissions
at the national level, with the main source of methane (CH4) emissions being from enteric
fermentation (63.9%) and, to a lesser extent, manure management (4.2%). For nitrous
oxide (N2O) emissions, approximately one-third (31.4%) were associated with manure and
agricultural soil management [1].

The diet of dairy cows is a determining factor in GHG emissions; at the same time, it
is necessary to formulate diets to fulfill the nutritional requirements of dairy cows during
lactation, considering the availability of different feeds throughout the year [2]. In addition,
the minimization of final byproducts is also sought to reduce the environmental impact.
The phosphorus content of manure is also associated with the contamination of tanks
and streams, promoting eutrophication—a consequence that can be minimized through
balanced rations [3] in dairy cattle.

Of the total gross energy intake (GEI) by dairy cows, 4% to 7% is lost as CH4 [4].
Enteric CH4 emissions and feces management differ based on the physiological state of
cows, but overall, emissions are negatively correlated with feed utilization efficiency [5].

If diets are not adequately formulated, the overfeeding of crude protein (CP) increases
feeding costs and also causes environmental problems. A large amount of nitrogen (N) may
then be wasted through feces and urine. In small-scale dairy systems (SSDS), Pozo-Leyva
et al. [6] found a positive N balance, indicating an excess of N in the diets of cattle. To
reduce GHG emissions and N2 O in dairy production, Jayasundara et al. [7] mentioned
that it is necessary to design appropriate feeding strategies and to implement a manure
management chain. However, among small producers, there is resistance to reducing the
amount of feed rich in CP in dairy cattle diets. Mostly, CP is supplied through commercial
concentrates (>20% CP) at levels of 3 to 5 kg dry matter (DM)/animal/day in SSDS [8,9]. It
is therefore recommended that animals graze pastures associated with legumes in order
to reduce feed costs and cover their nutritional requirements; however, they often do not
cover their energy or protein requirements, and hence farmers look for supplementation
strategies with commercial concentrates or local byproducts, which reduce costs and allow
them to cover their nutritional requirements throughout the year.

Given this context, the hypothesis addressed in the present study was that it is feasible
to reduce the emission of CH4 per kilogram of milk and reduce the excretion of nitrogen
and phosphorus, and thus reducing the environmental footprint of these systems.

In this study, we aimed to evaluate, through simulation, the effects of different dairy
cow diets grazing two different pastures management and two varieties of legumes (red
clover vs. white clover) with the inclusion as supplements of common local ingredients
used in SSDS on the emission intensity of CH4 per kilogram of milk and on nitrogen and
phosphorus intake and excretion.

2. Materials and Methods
2.1. Study Area

The simulation study was based on previous experience in the municipality of Aculco,
State of México, México (between 20◦ 05′57” N and 99◦ 49′41” W, 2428 m above sea level)
with a sub-humid temperature climate. The mean temperature during the years 2011–2019
was 16 ◦C, with a mean minimum temperature of 7 ◦C and a mean maximum temperature
of 24 ◦C, and 888 mm of rainfall (Figure 1).

Tmax: Maximal Temperature (◦C), Tmin: Minimal temperature (◦C), and rainfall (mm)
in the study area. The data were obtained from the meteorological station “La Concepcion”
(No. 15189) by CONAGUA-DGe.
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Figure 1. Rainfall and mean temperatures during the years 2011–2019 in the present study. 

Tmax: Maximal Temperature (°C), Tmin: Minimal temperature (°C), and rainfall 
(mm) in the study area. The data were obtained from the meteorological station “La Con-
cepcion” (No. 15189) by CONAGUA-DGe. 
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[9], Celis-Alvarez el al. [15], López-González et al. [16], Jaimez-García et al. [17], Sainz-
Sánchez et al. [18], Plata-Reyes et al. [19], Becerril-Gil et al. [20]; Burbano-Muñoz et al. [21], 
Carrillo-Hernández et al. [22], Gómez-Miranda et al. [23], González-Alcántara et al. [24], 
López-González et al. [25], Marín-Santana et al. [26], Rosas-Dávila et al. [27], Vega-García 
et al. [28], Muciño-Álvarez et al. [29], identified different local feeding strategies used dur-
ing the rainy and dry seasons. Based on previous research studies, the different feeding 
scenarios were determined (Table 1). 
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The present simulation with dairy cows and research was performed previously with 

collaborating farmers in previous studies [8,9,17,18,25], following the procedures of the 
Universidad Autónoma del Estado de México. To determine the diet specifications, the 
following variables were kept constant: live weight (LW), days of lactation, milk yield, 
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(N; 990.02) using the Association of Official Analytical Chemists (AOAC) [32] standard 
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following Van Soest et al. [33] methods. In vitro dry matter digestibility (IVDMD) was 
performed of each ingredient by the Ankom–Daiy method [17,34]. Other details on diet 
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Figure 1. Rainfall and mean temperatures during the years 2011–2019 in the present study.

Dairy production is one of the main activities in Aculco, State of Mexico, where 82%
of milk is destined for artisanal cheese production. The study area is characterized by
SSDS, with a typical herd size of between 3–20 animals [9,10]. Martínez-García et al. [11] in
their study considering this criterion (data were collected from 115 farmers; the sample
size represents 5% of the total farms in the study area), found an average herd size of 10
cows, of which only 4.4 cows were in production. In other countries, the herd size of SSDS
is 1–10 cows in intensive and extensive systems (East Central Africa) [12] or 20 animals
in all reproductive stages (Central Colombia) [13]. Fadul-Pacheco et al. [14] previously
characterized the SSDS in the study area, and Alfonso-Ávila et al. [8], Martínez-García
et al. [9], Celis-Alvarez el al. [15], López-González et al. [16], Jaimez-García et al. [17], Sainz-
Sánchez et al. [18], Plata-Reyes et al. [19], Becerril-Gil et al. [20]; Burbano-Muñoz et al. [21],
Carrillo-Hernández et al. [22], Gómez-Miranda et al. [23], González-Alcántara et al. [24],
López-González et al. [25], Marín-Santana et al. [26], Rosas-Dávila et al. [27], Vega-García
et al. [28], Muciño-Álvarez et al. [29], identified different local feeding strategies used
during the rainy and dry seasons. Based on previous research studies, the different feeding
scenarios were determined (Table 1).

Table 1. Research studies published previously, which were based on determining the different feeding strategy systems
management and scenarios.

Author Cows Breed Milk Yield (kg) Feeding Strategy Observations

Jaimez-García
et al. [17] 10 Holstein 18.15

Maize silage, isoproteic
concentrate, continuous

grazing ryegrass, and white
clover associated orchard,
commercial concentrate.

Analysis was in a split-plot.

López-González
et al. [16] 6 Holstein 15.7

Ryegrass and Festulolium
grazing associated with white

clover and commercial
concentrate.

Latin Squares 3 × 3,
randomizing cows and

treatment sequences in the
first square, randomizing

cows in the second square.

Celis-Alvarez
et al. [15] 8 Holstein 15.52

Maize silage, Ryegrass
grazing associated with White

clover, and commercial
concentrate.

Replicated 4 × 4 Latin
Square design.

López-González
et al. [25] 6 Holstein 11.8

Fescue and Ryegrass grazing
associated with White clover,
and commercial concentrate.

Double cross-over design
was applied, with three 14

day each experimental
period.
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Table 1. Cont.

Author Cows Breed Milk Yield (kg) Feeding Strategy Observations

Sainz-Sánchez
et al. [18] 12 Holstein 11.87 Native pasture grazing and

commercial concentrate.

Cows were allotted to a
triple 4 × 4

Latin square design with
four cows per square

treatment.

Plata-Reyes et al.
[19] 12 Holstein 14.85

Ryegrass, Festulolium, Fescue,
and Kikuyu grazing,

associated with white clover
and commercial concentrate.

Cows were allotted to a
triple 4 × 4

Latin square with four cows
per

square treatment.

Becerril-Gil et al.
[20] 8 Holstein 15.90

Ryegrass cut and curry
pasture associated with white

clover, oat silage, and
commercial concentrate.

Latin square 4 × 4,
randomizing cows and

treatment sequences in the
first square treatment.

Burbano-Muñoz
et al. [21] 9 Holstein 18.86

Ryegrass grazing, Festulolium
associated with white clover,
oat silage, and commercial

concentrate.

Cows were allotted to a
triple 3 × 3

Latin square with four cows
per

square treatment.

Carrillo-
Hernández et al.

[22]
8 Holstein 15.05

Annual Ryegrass and
Perennial Ryegrass grazing

associated with white clover
and commercial concentrate.

Double-cross over
experimental design.

Gómez-Miranda
et al. [23] 9 Holstein 14.9

Ryegrass grazing associated
with white clover, oat silage,
and commercial concentrate.

Nine Holstein cows in
groups of three were

randomly assigned to a 3 ×
3 Latin square design
repeated three times.

González-
Alcántara et al.

[24]
8 Holstein 12.31

Ryegrass and Fescue grazing
associated with white clover,

triticale silage, and
concentrate commercial.

The experimental design
was 2 × 2 factorial in

repeated 4 × 4 Latin squares
treatment.

Marín-Santana
et al. [26] 9 Holstein 19.16

Ryegrass grazing, Kikuyu
associated with white clover
and commercial concentrate.

Experimental 3 × 3 Latin
Square design, repeated

three times.

Rosas-Dávila
et al. [27] 10 Holstein 13.4

Ryegrass grazing, Fescue
associated with White clover
and commercial concentrate.

Double crossover design
with five cows per treatment

and four experimental
periods following the
treatment sequences.

Vega-García et al.
[28] 9 Holstein 15.16

Ryegrass grazing associated
with White clover, black oat
silage (Avena strigosa Schreb.),
and commercial concentrate.

Latin squares 3 × 3
replicated three times.

Muciño-Álvarez
et al. [29]

6 Holstein 16.75

Grazing Ryegrass, Fescue,
Bromo (Bromus willdenowii cv.
Matua), Festulolium, White

clover, Red clover, and
commercial concentrate.

Double cross-over
experiment design.

2.2. Diet Specifications

The present simulation with dairy cows and research was performed previously with
collaborating farmers in previous studies [8,9,17,18,25], following the procedures of the
Universidad Autónoma del Estado de México. To determine the diet specifications, the
following variables were kept constant: live weight (LW), days of lactation, milk yield, and
chemical composition (Table 2) in all treatments. The data were obtained from previous
research studies in the region [8,9,30,31]. Briefly, samples of pastures (red clover (RC)
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(Trifolium pratense) with perennial ryegrass (Lolium perenne) and white clover (WC) (Trifolium
repens) with annual ryegrass (Lolium multiflorum), commercial concentrate, ground maize
grains (GMG), and wet distillers’ grains (WDG), were dried in a forced-air oven at 60 ◦C for
48 h. Once dried, they were ground with a Wiley mill (2.0 mm screen; Arthur H. Thomas,
Philadelphia, PA, USA) and analyzed in duplicates for DM (930.15) and nitrogen (N; 990.02)
using the Association of Official Analytical Chemists (AOAC) [32] standard methods.
Neutral detergent fiber (NDF) and acid detergent fiber (ADF) were determined following
Van Soest et al. [33] methods. In vitro dry matter digestibility (IVDMD) was performed
of each ingredient by the Ankom–Daiy method [17,34]. Other details on diet preparation,
including the control and supplementation strategies, were described previously [8,9,30,31].

Table 2. Productive characteristics of cattle fed with two pasture managements (cut-and-carry
pastures) and supplemented with different feeding strategies.

Cow LW
(kg/cow)

MY
(kg/d) 1

MY
(kg/d) 2

Milk Fat
(%) DL (d) LW0.75

(kg/cow)

FCM
(kg/cow/d)

1

FCM
(kg/cow/d)

2

1 598 5.9 21.0 3.6 186 120.9 6.0 21.3
2 536 3.1 12.3 4.0 186 111.4 3.4 13.3
3 548 4.8 18.0 3.7 198 113.3 5.0 18.6
4 594 5.3 19.4 3.3 158 120.3 5.1 18.7
5 515 5.5 17.4 3.6 114 108.1 5.6 17.7
6 578 6.5 24.1 3.1 177 117.9 6.0 22.4
7 544 6.4 23.6 2.8 140 112.6 5.6 20.8
8 462 4.0 15 3.4 174 99.7 3.9 14.8
9 471 5.2 16.7 3.4 116 101.1 5.1 16.5

10 463 3.1 12.8 3.0 154 99.8 2.8 11.7
11 489 4.4 16.0 3.7 184 104.0 4.5 16.4
12 473 3.7 14.3 3.1 153 101.4 3.4 13.3
13 379 3.2 10.9 3.6 125 85.9 3.3 11.0
14 559 5.7 18.3 3.9 153 114.9 6.0 19.4
15 468 3.7 13.2 3.7 154 100.6 3.8 13.5

Average 512 4.7 14.0 3.4 158 107.5 4.6 16.6
LW: live weight, MY: Milk yield, DL: Days of lactation, FCM: Fat-corrected milk, FCM 3.5% (kg/d) = (0.432 ×
milk yield (kg)) + (16.23 × milk fat yield (kg)), 1 Milk yield and fat corrected milk used in scenario 1, 2 Milk yield
and fat corrected milk used in scenarios 2, 3, 4, and 5.

2.3. Diet Formulation

The chemical composition of feeds was obtained from information collected for pre-
vious research studies in the region during the dry season [9,30] and rainy season [8,31];
missing data were obtained using data from the National Research Council (NRC) [35] and
the Institut National de la Recherche Agronomique (INRA) [36]. The diets were formu-
lated using two pasture management strategies (M): grazing of cultivated pastures (G),
which has been a successful technology adopted by farmers to reduce feeding costs [30],
and cut-and-carry (C), a conventional feeding strategy used by the SSDS [31]. The two
pasture management strategies (G and C) were composed of different clover varieties (Var):
RC (Trifolium pratense) with perennial ryegrass (Lolium perenne) and WC (Trifolium repens)
with annual ryegrass (Lolium multiflorum). The four combined diets were then formulated
with different supplementation strategies and evaluated using the followed combinations:
G/RC, G/WC, C/RC, and C/WC, using 15 cows per diet (Table 1). The criterion used,
standardizing the number of cows, the breed, and their milk production, was used so that
there would be no significant differences between animals and milk production, and the
results would focus on feeding strategies based on previous studies (Tables 1 and 2) and
other suggested as the inclusion of wet distillers grains.

For each diet, the quantities of Metabolizable Energy (ME, MJ/d), Crude Protein (CP,
g/d), rumen degradable protein (RDP,g/d), neutral detergent fiber (NDF,g/d), Ca (g/d),
and P (g/d) required for maintenance, gestation, and lactation were estimated.
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2.4. Animals and Diets: Scenarios of Supplementation

After the chemical composition of the ingredients and nutritional requirements of
the cows of each diet was calculated, we simulated performing five diet scenarios of
supplementation (S).

Supplementation 1: No supplements were provided. Total dry matter intake (TDMI,
Kg/d) only consisted of that obtained from the two pastures managements (G and C);
Supplementation 2: The two pastures managements (G and C) supplemented with 4.5 kg
DM per cow per day of a commercial concentrate (19% CP) commonly used as a diet
component in local feeding strategies was provided [11]; Supplementation 3: The two
pasture management strategies (G and C) supplemented with 200 g DM per kg of milk
produced by cows using a commercial concentrate (19% CP), commonly used by SSDS in
the region, was provided; Supplementation 4: nutritional requirements were covered using
the two pasture management strategies (G and C) supplemented with ground maize grains
(GMG) and wet distillers’ grains (WDG). The prior is rich in non-fibrous carbohydrates
and the latter in CP. Both are commonly utilized in the region [8]; and Supplementation 5:
The two pasture management strategies (G and C) supplemented with maize silage (MS),
commonly used during the dry season [9], was added to grasses in a 50:50 ratio in addition
to supplementation with GMG and WDG to cover the nutritional requirements for the
dairy cows in the present study.

2.5. Calculations

The metabolizable energy (ME) requirements for maintenance, pregnancy, milk yield,
and the live weight change of cows was calculated with the formulas proposed by the
Ministry of Agriculture, Fisheries, and Food [37], using the following equations:

MEm (MJ/d) = 8.3 + 0.091 × LW (1)

where LW = live weight (kg)

MEp (MJ/d) = 1.13 e 0.0106 t, (2)

where t = number of days pregnant.
The prediction of total DM intake (TDMI) and Fat corrected milk (FCM) was calcu-

lated [35] using the following equation

TDMI (kg/d) = 0.372 × FCM 0.0968 × LW0.75) × (1 − e 0.192 × (WOL +3.67))), (3)

where FCM = 3.5 percent fat-corrected milk (k/d), and WOL = week of lactation

3.5% FCM (kg/d) = [0.432 ×milk yield (kg)] + [16.23 ×milk fat yield (kg)], (4)

The calcium (Ca) and phosphorus (P) required for maintenance (m), gestation (g), and
lactation (l) of dairy cows were calculated as follows [35]

Cam (g/d) = 0.031 g/kg × LW (5)

where LW = live weight (kg)

Cag (g/d) = 0.02456 e((0.05581 − 0.00007 (t))(t)) − 0.02456 e((0.05581 − 0.00007(t − 1))(t − 1)), (6)

where t = day of gestation

Cal (g/kg milk) = 1.37 g for other breeds, (7)

Pm = 1 g/kg DM × total DM fed + 0.002 × LW, (8)

where DM = dry matter and LW = live weight (kg)

Pg(g/d) = 0.02743 e ((0.05527 − 0.000075 (t))(t)) − 0.02743 e((0.05527 − 0.000075 (t − 1))(t − 1)) (9)



Animals 2021, 11, 946 7 of 17

where t = day of gestation:

Pl (g/kg milk) = 0.9 g ×milk yield (10)

Forage intake was restricted using the Forage Unit for milk production [36], dividing
the amount of DM intake (DMI) by kg LW0.75 of the foraging pattern for the considered
feed. The P and Ca requirements per productive stage were also determined.

2.6. Estimation of Enteric Methane Emissions

To estimate CH4 emission from enteric fermentation, tier 2 equations proposed by
the Intergovernmental Panel on Climate Change (IPCC) [38] were used considering a
conversion factor (Ym) of 6.5% for dairy cattle.

Methane (CH4) production was calculated from the GEI (MJ head−1 day−1) of concen-
trate and grass intake. Daily methane production was calculated based on the IPCC [38]

CH4 (g/d) = (GEI × (Ym/100))/55.65 (11)

where CH4 = methane emission (g-head−1-day−1); Ym is the percentage of GE converted
to methane calculated

Ym = (6.5% of GEI) (12)

where GEI = gross energy intake (MJ-head−1-day−1)

GEI = (NE req/REM)/(DE/100) (13)

where NE req = summed net energy requirements (maintenance, lactation, and pregnancy),
REM = ratio of net energy available in a diet for maintenance to digestible energy consumed,
and DE = gross energy (MJ day−1).

2.7. Statistical Analysis

A completely randomized 5 × 2 × 2 factorial design was used, including the different
supplementations scenarios (n = 5), two pasture managements (n = 2), and two pasture
composition (different varieties of legumes WC/RC; n = 2). Sixty replicates (cows) were
used out for the evaluation of the scenarios along with the following interactions: scenario
×management, scenario× variety, management× variety, and scenario×management×
variety. The significant differences (p < 0.05) were evaluated by Tukey mean comparisons.

Subsequently, a Pearson correlation analysis was carried out to estimate the relation-
ship between the variables of LW0.75, DMI, NDF intake, N intake, ME intake, Milk Yield,
FCM, CH4, and to assess the association among nutrient intake, CH4 of different strategies,
five different supplementations (S), two pasture systems (grazing or cut-and-carry), and
two forage crops (red clover or white clover), using the statistical program Minitab V17
(Minitab LLC, State College, PA, USA) [39].

3. Results
3.1. Chemical Composition of Ingredients

The chemical composition of the ingredients considered in the diets is shown in Table 3.
The cut pastures (C/RC, C/WC) had the lowest amount of CP, highest fiber content, and
lowest digestibility compared with grazing pastures. Therefore, grazing pastures had better
nutritional quality. The GMG and WDG had higher non-fibrous carbohydrate content and
protein content, respectively, with respect to the forages, in addition to better digestibility.
The WDG also had the highest P content and ME (MJ/kg DM) compared to the rest of
the ingredients.
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Table 3. Chemical composition (g/kg DM) of the ingredients used to shape the different feeding
scenarios in dairy cows.

Item † G/RC G/WC C/RC C/WC GMG CC WDG MS

DM 182 157 188 175 872 902 250 310
CP 177 193 139 145 80 190 280 78

RDP 106 116 83 87 51 114 222 47
NDF 439 403 481 489 90 273 180 477
ADF 236 218 275 283 21 93 50 275

IVDMD 705 720 675 691 863 817 850 607
Ca 7.8 7.4 7.6 8.4 0.2 13.1 3.0 2.8
P 3.9 3.6 3,4 3.7 3.0 3.7 7.8 1.6

ME, MJ/kg DM 11.0 10.9 9.9 10.1 13.3 11.2 13.8 11.0
DE, Mcal/kg 3.14 3.10 3.14 3.04 3.85 3.96 3.72 2.08

NEL, Mcal/kg 1.54 1.53 1.54 1.50 1.54 2.09 1.97 1.65
† DM: Dry matter of fresh matter, CP: Crude protein, RDP: Rumen Degradable Protein, NDF: Neutral detergent
fiber, ADF: Acid detergent fiber, IVDMD: In vitro dry matter digestibility, Ca: Calcium, P: Phosphorus, ME:
Metabolizable energy, DE: Digestible energy, NEL: Net energy required for lactation, G/RC: Grazing red clover
with perennial ryegrass, G/WC: Grazing white clover with ryegrass annual, C/CR: Cut-and-carry red clover
with perennial ryegrass, C/WC: Cut-and-carry white clover with ryegrass annual, CC: Commercial concentrate,
GMG: Ground Maize grain, WDG: Wet Distiller Grains, and MS: Maize silage.

3.2. Scenarios of Supplementation

The different scenarios of supplementation affected (p < 0.05) the DMI (g/kg LW0.75).
After adjusting the supplementation level per kg/cow/day (S2), supplement intake in-
creased and, therefore, DMI (g/kg LW 0.75/cow/day) (Table 4). As shown in Table 4, the
balance of the nutritional requirements in regard to ME and RDP in S4 and S5 also affected
(p < 0.05) the energy intake compared to the rest of the scenarios. S2 was associated with a
greater intake of CP (p < 0.05) due to the distinct protein contribution of this diet, and an
excess of CP was observed across all diets. However, as presented in Table 5, a decrease in
excess of CP was found for S5 (p < 0.05).

Table 4. Estimation of supplement and forage intake in live metabolic weight (g/kg LW0.75 cow/day)
using different strategies, five different supplementations (S) in dairy cattle under two feeding
systems (grazing vs. cut-and-carry) with two leguminous forages (red clover or white clover).

Supplement Strategies Supplement g/kg LW0.75 Forage, g/kg LW0.75 DMI, g/kg LW0.75

Supplementation (S)
S1 0.0 d 74.9 74.9 c

S2 42.2 a 74.9 117.1 a

S3 31.1 c 74.9 106.0 b

S4 41.1 ab 74.9 116.0 a

S5 39.4 b 74.9 114.3 a

SEM 0.850 1.41
p-Value <0.01 <0.01

Management (M)
Cut-and-Carry 31.5 a 74.9 106.4

Grazing 30.0 b 74.9 105.0
SEM 0.538 0.890

p-Value <0.01 0.112
Variety (Var)

White Clover 30.8 74.9 105.7
Red Clover 30.8 74.9 105.7

SEM 0.316 0.338
p-Value 0.538 0.890
Overall 30.8 74.9 105.7

SEM 1.410 1.650
p-Value
S ×M <0.01 0.342

S × Var 1.000 1.000
M × Var 0.646 0.774

S ×M × Var 0.984 0.997

SEM: standard error of means. a, b, c, d values with a row with different superscripts differ significantly at p < 0.05.
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Table 5. Energy (MJ), crude protein, rumen degradable protein (g/cow day) of different strategies,
five different simulated supplementations (S) in dairy cattle feed under two feeding systems (grazing
or cut-and-carry), and two forage crops (red clover or white clover).

Supplement
Strategies ME (MJ) CP (g/d) RDP (g/d) NDF (g/d) Ca (g/d) P (g/d)

Supplementation (S)
S1 85.0 a 1320.0 d 792.0 c 3655.1 d 62.8 c 29.4 c

S2 135.3 b 2175.0 a 1305.0 a 4883.6 a 121.8 a 46.1 a

S3 122.8 c 1960.6 b 1176.4 b 4575.7 b 107.0 b 41.9 b

S4 144.7 a 1900.0 bc 1210.5 b 4156.3 c 66.9 c 48.1 a

S5 144.7 a 1792.9 c 1210.5 b 4351.7 bc 50.3 d 45.5 a

SEM 3.38 46.9 29.0 104.0 1.99 1.13
p-Value <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Management (M)
Cut and Carry 124.3 b 1709.8 b 1075.4 b 4578.5 a 83.7 a 42.6

Grazing 128.7 a 1949.6 a 1202.3 a 4070.5 b 79.8 b 41.8
SEM 2.14 29.6 18.9 65.7 1.26 0.714

p-Value <0.01 <0.01 <0.01 <0.01 <0.01 0.307
Variety (Var)

White Clover 126.6 1861.0 a 1155.2 4268.8 82.3 42.0
Red Clover 126.4 1798.4 b 1122.5 4380.2 81.2 42.4

SEM 2.14 29.6 18.9 65.7 1.26 0.714
p-Value 0.952 <0.01 0.085 0.091 0.052 0.536
Overall 126.5 1829.7 1138.9 4324.5 81.75 42.19

SEM 2.21 30.7 19.4 75.9 2.46 0.69
p-Value
S ×M 0.589 <0.01 <0.01 0.636 0.908 <0.01

S × Var 1.000 0.847 0.736 0.998 0.996 0.946
M × Var 0.749 0.373 0.475 <0.01 <0.01 <0.01

S ×M × Var 0.999 0.995 0.987 0.991 0.958 0.968
EM: Energy metabolizable, CP: Crude protein, RDP: Rumen Degradable Protein, NDF: Neutral detergent fiber,
Ca: Calcium, and P: Phosphorus. SEM: standard error of means. a, b, c, d, e Values with a row with different
superscripts differ significantly at p < 0.05.

In the estimation of CH4 emissions, significant differences (p < 0.05) were found among
the simulated supplementation scenarios. The predicted CH4 emissions (g kg−1 FCM 3.5%)
decreased per kg of milk produced from S3 and S4, followed by S2 and S5, which also had
greater milk production than S1 (control diet) (Table 6). In addition, the lowest emissions
of g CH4/day were similar in S3 and S4, where S4 used GMG and WDG as supplements,
and where S3 used commercial concentrate based on kg of milk produced as a supplement
(Table 5).

3.3. Pasture Management

Intake among supplements had an effect on pasture management (p < 0.05). DMI
(g/kg LW0.75/cow day) was similar (p > 0.05). With respect to pasture management
(Table 4), a greater intake of supplements was observed in C with respect to G (p < 0.05).
Higher intake (p < 0.05) of Ca and NDF in addition to a lower intake of CP, RDP, and ME
was observed for C compared with G systems management (Table 6).

G was associated with the lowest CH4 emissions (g kg−1 of FCM 3.5%) compared to
C (p < 0.05).

3.4. Pasture Varieties

White Clover was associated with the largest intake of CP (p < 0.05) and an excess
of nutrients (p < 0.05), specifically CP and RDP, with respect to red clover (Table 7). In
addition, the lowest g CH4 day emissions corresponded to white clover as part of the
pasture composition.
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Table 6. Balance (g/d) and metabolizable energy (MJ/d) of different strategies, five different simu-
lated supplementations (S) in dairy cattle grazing under two feeding strategy systems management
(grazing vs. cut-and-carry), and two legume varieties (red clover or white clover).

Supplement
Strategies ME (MJ/d) CP (g/d) RDP (g/d) Ca (g/d) P (g/d)

Supplementation (S)
S1 0.0 c 304.4 b 81.1 a 39.4 c 10.9 c

S2 −9.3 b 445.7 a 94.5 a 82.0 a 13.3 b

S3 −21.9 a 231.4 c −34.1 c 67.2 b 9.1 d

S4 0.0 c 170.7 d 0.00 b 27.0 d 15.4 a

S5 0.0 c 63.6 e 0.00 b 10.4 e 12.7 b

SEM 1.09 11.3 8.30 1.05 0.34
p-Value <0.01 <0.01 <0.01 <0.01 <0.01

Management (M)
Cut-and-Carry −7.7 b 132.0 b -29.0 b 47.4 a 13.1 a

Grazing −4.8 a 354.3 a 85.6 a 43.0 b 11.5 b

SEM 0.69 7.14 5.25 0.66 0.21
p-Value <0.01 <0.01 <0.01 <0.01 <0.01

Variety (Var)
White Clover −6.2 274.2 a 44.5 a 45.7 12.2
Red Clover −6.3 212.1 b 12.1 b 44.6 12.4

SEM 0.69 7.14 5.25 0.66 0.21
p-Value 0.901 <0.01 <0.01 0.093 0.516
Overall −7.4 8.1 183.9 38.4 11.0

SEM 0.89 8.8 16.7 2.2 0.35
p-Value
S ×M <0.01 <0.01 <0.01 0.414 <0.01

S × Var 1.000 <0.01 <0.01 0.962 <0.01
M × Var 0.510 <0.01 <0.01 <0.01 <0.01

S ×M × Var 0.957 0.244 0.188 0.697 <0.01

SEM: standard error of means. a, b, c, d, e values with a row with different superscripts differ significantly at
p < 0.05.

Table 7. Emissions of methane (CH4)) of different strategies, five different supplementations (S) in
dairy cattle under two feeding strategy management systems (grazing vs. cut-and-carry), and two
legumes varieties (red clover or white clover).

Supplement Strategies CH4 (g d−1) CH4 (g kg−1 FCM 3.5%)

Supplementation (S)
S1 253.55 c 52.87 a

S2 415.48 a 25.74 b

S3 375.04 b 22.83 c

S4 364.72 b 22.23 c

S5 422.58 a 25.88 b

SEM 9.29 0.84
p-Value <0.01 <0.01

Management (M)
Cut and Carry 368.5 31.0

Grazing 364.1 28.9
SEM 5.87 0.53

p-Value 0.452 <0.01
Variety (Var)

White Clover 359.9 b 30.4
Red Clover 372.7 a 29.5

SEM 5.87 0.53
p-Value <0.01 0.094
Overall 366.3 29.9

SEM 5.86 1.87
p-Value
S ×M 0.245 <0.01

S × Var 0.180 <0.01
M × Var 0.117 <0.01

S ×M × Var 0.394 <0.01

FCM 3.5% (kg/d) = (0.432 ×milk yield (kg)) + (16.23 ×milk fat yield (kg)); SEM: standard error of means. a, b, c,

values with a row with different superscripts differ significantly at p < 0.05.
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3.5. Correlation CH4

DM intake was positively correlated (p < 0.001) with MY (r = 0.938), FCM (r = 0.947),
and negatively correlated (p < 0.001) with CH4 (g/kg−1 FCM 3.5%) (r = −0.740) (Table 8).

Table 8. Correlations among nutrient intake, emissions of methane (CH4) of different feeding
strategies in dairy cattle in small dairy farmers under different feeding management systems.

Item LW0.75

(kg/cow)
DMI
(g/kg)

NDFI
(g/d)

PC
Intake
(g/d)

ME
Intake
(g/d)

MY
(kg/d)

FCM
(kg/d)

CH4
(g d−1)

CH4
(g kg−1

FCM 3.5%)

LW0.75

(kg/cow)
0.596 0.682 0.543 0.543 0.425 0.433 0.527 −0.136

DMI (g/kg) 0.001 0.821 0.869 0.978 0.938 0.947 0.931 −0.740
NDFI (g/d) 0.001 0.001 0.704 0.698 0.746 0.749 0.828 −0.479
CP Intake

(g/d) 0.001 0.001 0.001 0.833 0.849 0.857 0.810 −0.691

ME Intake
(g/d) 0.001 0.001 0.001 0.001 0.919 0.929 0.901 −0.745

Milk Yield
(kg/d) 0.001 0.001 0.001 0.001 0.001 0.989 0.896 −0.832

FCM
(kg/cow/d) 0.001 0.001 0.001 0.001 0.001 0.001 0.904 −0.853

CH4 (g
d−1) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 −0.676

CH4
(g kg−1

FCM 3.5%)
0.019 0.001 0.001 0.001 0.001 0.001 0.001 0.001

LW: live weight, DMI: Dry matter intake, NDFI: Neutral detergent fiber Intake, CP: Crude protein, and fat
corrected milk, FCM 3.5% (kg/d) = (0.432 ×milk yield (kg)) + (16.23 ×milk fat yield (kg)). The upper part shows
the absolute values, and the lower part shows the degree of significance (p-value).

Acccording to the supplementation strategies (Table 8) correlated with CH4 emissions
(g/d) there was an effect (p < 0.001) when it was correated with DMI (kg/d), S2 to S5 were
positively correlated (p < 0.001) except S1 (p < 0.001) where a negatively correlation with
DMI (r = 0.990) was observed.

Similarly, the pasture management and pasture varieties showed a positive correlation
(p < 0.001) with DMI and CH4 emissions (g/d).

A negative correlation (p < 0.001) was observed between DMI and CH4 (g/kg FCM
3.5%) for the supplementation strategies and pasture management and pasture varieties
(Table 9).

Table 9. Correlations among dry matter intake (DMI, kg/d) using different feeding strategies, five
different supplementations (S) in dairy cattle under two feeding management systems (grazing
or cut-and-carry), and two forage crops (red clover or white clover) compared with emissions of
methane (CH4) and carbon dioxide (CO2).

DMI (kg/d) CH4 (g d−1) CH4 (g kg−1 FCM 3.5%)

S1 −0.990 *** −0.370 ***
S2 0.991 *** −0.916 ***
S3 0.997 *** −0.798 ***
S4 0.992 *** −0.668 ***
S5 0.784 *** −0.648 ***

Cut−and−Carry 0.972 *** −0.736 ***
Grazing 0.892 *** −0.779 ***

Whit Clover 0.966 *** −0.736 ***
Red Clover 0.905 *** −0.770 ***

DMI: Dry matter intake. Fat corrected milk, and FCM 3.5% (kg/d) = (0.432 ×milk yield (kg)) + (16.23 ×milk fat
yield (kg)); *** p < 0.001.
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4. Discussion
4.1. Energy (MJ/ME) and Nutrient Intake (g/kg)

In all feeding scenarios (S, M, and Var), high CP intake was observed. A larger supply
of CP in the diet results in greater excretion of N [40]. In dairy cattle grazing native
pastures, Sainz-Sánchez et al. [18] did not find differences in the productive response of
low-production cows (11.9 kg/d) at two levels of CP supplementation (6 kg (high) and 4 kg
(low) of concentrate per day). Following protein supplementation, Danes et al. [40] did not
observe an improvement in production, nutrient digestion, or microbial protein synthesis
in grazing dairy cattle but did observe an effect on the concentrations of plasma urea
nitrogen (PUN), nitrogen urea in milk (MUN), and N-NH3. These authors [40] highlighted
that the protein content of grass in addition to an energy supplement was sufficient for
fulfilling the nutritional requirements of dairy cows. Similar results were observed in
medium-production cows (20 L/d−1) grazing on tropical gramineous plants containing
18.5% CP [40].

Marín-Santana et al. [26], in their study, found similar milk yields (19.16 kg milk yields)
as the present study, grazing ryegrass pastures and Kikuyu grass (Pennisetum clandestinum)
associated with white clover. In another study [21], carried out in dairy cows feed with
Ryegrass grazing Festulolium associated with white clover, oat silage, and commercial
concentrate, obtained similar milk yields (18.86 kg/d/cow) as in the present study. It
is important to consider that under the conditions of the present simulation study, the
predictions made with previous studies coincide [15,20–23,26], considering that under
SSDS systems, they are in the range of 14 to 20 kg milk production.

Specifically, the S5 diet, including maize silage, had the lowest excess CP, similar to
the results of Wilkinson and Garnsworthy [2], who simulated and formulated different
diets based on pasture grazing, grass, and maize silage, and their co-products. Specifically,
the diets with grass and maize silage were associated with the lowest N levels and highest
nitrogen use efficiency (NUE). In this sense, the diets based on maize silage had a better
balance between the supply and requirement of effective rumen degradable protein (ERDP).
In the present study, S5 corresponded with a 50:50 ratio of maize silage to grass. Notably,
maize silage is characterized by its low concentration and digestibility of N in the rumen
compared to N from grass [2]. Therefore, in the cut-and-carry strategy, there was a greater
excess of CP. In dairy systems with moderate levels of milk production based on pasture
feeding, such as New Zealand, higher N intakes in the diet are common due to the
high content of CP in the pasture [41]. Grasses in cut-and-carry management had lower
CP content compared to grazing management. Wilkinson and Garnsworthy [2] found
that grass under grazing pastures presented a higher N content than cut grass due to
phenological characteristics and the presence of leaves. Mainly, grass under grazing is in
earlier phenological stages compared to cut grass at a later stage of maturity. As a result,
a higher concentration of N can be excreted to the environment, and the NUE of animals
is reduced. Therefore, the use of environmentally friendly diets allows animals to graze
while reducing N emissions to the environment [42].

Low-cost supplement options are commonly used in diets. Energy is the most limiting
and costly nutrient when milk production levels are low, as shown in this study where
scenarios S1–S3 showed a limitation with respect to ME (MJ/d). To cover this requirement
at a low cost, protein-rich supplements are often provided, yet these can result in excess
protein levels in the diet [2]. Danes et al. [40] mentioned that dairy producers in Brazil
face this problem when providing protein-rich supplements. Although this strategy is
frequently used, excess supplementation can destabilize the balance between economic
costs and environmental consequences, resulting in the elimination of large quantities of
nitrogen in urine and feces [42], as we observed in the S2 strategy. Therefore, in moderate
dairy production systems, the use of complementary high-protein ingredients should be
reduced, and the proportion of forage in the diet increased to balance the energy to protein
relationship and fulfill animals’ energy requirements.
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The estimation of P in the nutritional balances of the feeding scenarios indicated an
excess of this mineral and a potentially greater environmental impact in animals fed with
WDG (S4 and S5) and higher proportions of commercial concentrate (S2). The average P
intake was 42 g/d, less than that reported by Wu et al. [43], who suggested the inclusion
of 0.38% to 0.40% P (75 to 93 g/d P), which appears to be adequate for maintaining
the P balance in high-production cows (>10,000 kg per lactation). In this regard, the P
content in feces and urine increases with increasing P concentrations in the diet [43]. The
apparent digestibility of the P in each ingredient (not calculated in this work) should also be
considered, as this could possibly influence the amount of excess P. Wu et al. [43] observed
that 36% of P (digestible P) was absorbed by dairy cows; so, it might be implied that for
each additional gram of P, an additional 0.64 g of P would be excreted in feces, exceeding
the amount required by animals. Notably, excess of P has an important environmental
impact on water resources by promoting eutrophication [3].

4.2. Estimation of Enteric Methane Emissions

Currently, several indirect methods exist for the estimation of enteric CH4, including
that provided by the IPCC [5,7,42]. The level 2 calculations of the IPCC were presently
used with the aim of generating useful information for proposing mitigation strategies [44].

Average enteric CH4 emissions per year (kg CH4 y−1) were higher than reported in
dairy cows in Canada (118 kg/year) [45], but in terms of g CH4 per day/cow, emissions
were lower in dairy cows under rotational grazing in New Zealand (402 ± 52 g/day) [46],
but similar results in Ireland (357.6 ± 4 g/day) [47] and also in intensive dairy farm-
ing in China (370 g/day) [48]. Regardless of management cut and carry or grazing
(366 ± 2 g/day) was similar between treatments (p > 0.05), being lower when using white
clover (359.9 g/day) compared to red clover (372.7 g/day), the latter agrees with Car-
rillo Hernandez et al. [23] who found that cows that grazed annual pastures emitted a
higher amount of methane (266.6 g/day), compared to cows that grazed perennial pastures
(242.6 g/day); hence, it is important to consider that depending on the type of forage,
enteric fermentation and therefore methane emission will vary.

Boadi et al. [42] mentioned that the fermentation velocity of carbohydrates influenced
the proportion of volatile fatty acids (VFA) formed and, therefore, CH4 production. Notably,
grain supplementation in the diet was found to reduce the production of CH4 per evaluated
product. Meanwhile, Benchaar et al. [49] encountered a decrease in energy losses from
CH4 after providing ME in the diet. This was associated with a lower proportion of
acetate:propionate, without negative effects on fiber digestibility. Dall-Orsoletta et al. [50]
observed that CH4 production in cows grazing annual ryegrass supplemented with oats
and GMG was 321 g/day, whereas with MS was 356 g/day, similar values to the present
study. The use of MS and GMG as supplements is an effective strategy for reducing
CH4 excretion yield during grazing [51]. However, Boadi et al. [42] mentioned that net
GGE should be evaluated since the use of grains in diets might imply an increase in NO2
emissions due to the fossil fuels, fertilizers, and machinery required to produce grains.
Increasing animal productivity through integrating feeding and management strategies is
also a way to reduce CH4 production.

Among the additional factors to consider in CH4 production is the maturity of
grass [42]. In the present study, the cut-and-carry strategy had a lower protein content,
higher fiber content, and lower digestibility. On the other hand, plants under active growth
have a higher cellular content, which then declines as plants mature. In this respect, there
are several factors that interact to affect CH4 production, including the maturity of forage,
the presence of secondary compounds, and other environmental factors (i.e., season) [47].

Previously it was noted that CH4 emissions per kg of produced milk decrease as
milk production increases [2]. Jiao et al. [51] also observed that increasing the level of
supplementation (2.0, 4.0, 6.0, and 8.0 kg/cow/day) in dairy cows grazing perennial
ryegrass led to increased milk production per cow per day, thereby reducing CH4 emissions
per unit of produced milk due to the increase in soluble carbohydrates. As has been shown,
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an increased proportion of cereal concentrates in the diet decreases enteric CH4 emissions,
whereas the intake of non-structural carbohydrates such as starch increases hydrogen and
CH4 production in the rumen [52]. Accordingly, Zhu et al. [48] suggested that one option to
mitigate CH4 emissions in dairy cows is to increase milk production through optimization
of the ingredients in the diet. However, the improvement in the productivity of the diets
must be evaluated in terms of economic and environmental costs.

Similar to our study, Renand et al. [53] found in beef Heifers a positive correlation
between DMI with CH4. Methane is a byproduct of anaerobic microbial fermentation
of feed in the rumen, and energy used for its synthesis is considered as a loss of energy
for animal production; it has been calculated that the energy loss fluctuates between 3%
and 6.5% on average for cattle fed diets high in concentrates and low-quality pastures,
respectively [52]. The inclusion of supplementation strategies in the diets resulted in a
significant increase (p < 0.01) in CH4 production. The methane increase was 64%, 48%, 44%,
and 67%, compared S1 vs. S2, S3, S4, and S5, respectively (where 100% is equivalent to
the emission of CH4 measured without the inclusion of supplements, S1 as a control diet),
and coincided with the findings of Bell et al. [54], where the average CH4 concentration
calculated from burping peaks was positively associated with TDMI with a limited number
of animals.

Lassen et al. [55], in a study with Holstein dairy cows, found a positive genetic corre-
lation (p < 0.05) between milk yield and CH4 production, which suggests the relationship
between energy intake, CH4 production, and milk production, which agrees with the
present results, Hegarty et al. [56] reported a 40% lower daily DMI and an analogous 25%
lower methane production (g/d) between high and low-residual feed intake in steers,
which is the difference in daily DMI (15%) obtained between the high- and low intakes
in heifers.

In the present study, S1 presented 40% lower DMI (g/kg LW0.75) compared with the
rest of the supplementation strategies, which corresponded with lower CH4 production.
Total daily CH4 production was higher in S2 to S5 than S1; this was normal because the
forage proportion in the basal diets was higher than S1 (forage: concentrate ratio was
100:0, S1). It is well established that both daily CH4 emissions per unit of DMI increase
as a result of increased NDF intake [57]. The present results coincide with Bittante and
Cecchinato [58], who correlated milk yield, which is genetically determined, with estimated
daily methane production, although this is mainly because the latter is obtained from the
former and because increased milk yield implies larger DMI and rumen loads.

5. Conclusions

In small-scale dairy systems, it is possible to formulate diets from local inputs to
reduce excessive nutrients and dependence on external inputs. This practice reduces the
environmental impact in terms of CH4 emitted per kg of milk produced. Commercial
concentrate supplements, while popular with local farmers, not only cost more than local
supplements but may result in excessive crude protein in the diet, leading to higher
excretions of nitrogen to the environment.

The hypothesis is accepted as supplements from local inputs can fulfill the nutritional
requirements of dairy cattle at moderate production levels with the use of grazing pastures.
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