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a b s t r a c t

We propose an approach for generation of deterministic Brownian motion. By adding an

additional degree of freedom to the Langevin equation and transforming it into a system

of three linear differential equations, we determine the position of switching surfaces,

which act as a multi-well potential with a short fluctuation escape time. Although the

model is based on the Langevin equation, the final system does not contain a stochastic

term, and therefore the obtained motion is deterministic. Nevertheless, the system behav-

ior exhibits important characteristic properties of Brownian motion, namely, a linear

growth in time of the mean square displacement, a Gaussian distribution, and a �2 power

law of the frequency spectrum. Furthermore, we use the detrended fluctuation analysis to

prove the Brownian character of this motion.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Brownian motion has been extensively studied since the findings of the biologist Brown in 1828 [1] and first described by

the mathematician Thiele [2] in his paper on the least squares method published in 1880. At that time, Brownian motion was

defined as a continuous-time stochastic (or probabilistic) process characterized by normal distribution. The nature of the

Brownian motion is uncertain and many questions still remain open of how it could depend on particle interactions with

the environment, is this process stochastic or deterministic?

After the Thiele’s paper, the study of Brownian motion has been followed independently by Bachelier [3] and Albert Ein-

stein [4], who gave the first mathematical description of a free particle Brownian motion. Later, Smoluchowski [5] brought

the solution of the problem to the attention of physicists. In 1908, Langevin [6] obtained the same result as Einstein, using a

macroscopically description based on the Newton’s second law. He referred his approach to as ‘‘infinitely simplest’’ because

it was much simpler than the one proposed by Einstein. Since the pioneering work of Langevin, many papers have been de-

voted to the description of Brownian motion [7–16], where characteristic features of this behavior have been defined.

The dynamical model of Brownian motion provided by Langevin [6], who used a second-order differential equation with a

stochastic term, seems apparently from the nature of randomness. On the other hand, it is widely believed that Brownian

motion can be rigorously derived from totally deterministic Hamiltonian models of classical mechanics. One of the reasons

for this conviction is related to the widely used Van Hove’s method [17–19]. In one way or another, many attempts to

establish a unified view of mechanics and thermodynamics [20] traced back to the Van Hove’s approach. The result of their

method depended on whether one adopted the Heisenberg perspective corresponding to the time evolution of observables,
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or the Schrödinger perspective corresponding to the time evolution of the Liouville density. In [21] a Fokker–Planck equation

has been derived with the aid of a set of variables of interest interacting with a booster, i.e., a dynamical system mimicking

the action of an ideal thermostat with no need of ad hoc statistical assumptions; this approach is based on the assumption of

a large number of degrees of freedom, the booster is an n-dimensional deterministic system. In the former case, the usual

outcome was derived from the ordinary Langevin equation.

The idea of deterministic Brownian motion has been also moot in hydrodynamics and oscillatory chemical reactions,

where in spite of an erratic or random character of time evolution, the observed motion is completely deterministic and

sometimes it is referred to as microscopic chaos [22–26]. In 1998 Gaspard, et al. [27] have reported on the experimental evi-

dence of microscopic chaos in fluids, obtained by direct observation of Brownian motion of a colloidal particle suspended in

water. Deterministic random walk of a phase difference, similar to Brownian motion, has also been observed in coupled cha-

otic oscillators [28]. A deterministic Brownian motion generator has been previously proposed by Trefàn et al. [29], where

the nonlinear generator has been presented by a discrete system which generates pseudo-random numbers [30]. The micro-

scopic chaotic process drives a Brownian particle and has ‘‘statistical’’ properties that differ markedly from the standard

assumption of Gaussian statistics.

In many paper devoted to Brownian motion, this behavior is characterized by specific properties, such as a linear in time

growth of the mean square displacement, an exponential in time decay of the positional autocorrelation function, and the

Lorentzian shape of the power spectrum with a �2 power law of a high-frequency slope [19,27,31]. Another important

way to determine Brownian motion is the detrended fluctuation analysis (DFA) developed by Peng et al. [32]. The DFA allows

one to measure a simple quantitative parameter, the scaling exponent bm which characterizes correlation properties of a

signal.

In this paper we introduce an approach to generate deterministic Brownian motion and determine its character by ana-

lyzing time series, power spectrum, and via DFA.

2. Model

A typical example of Brownian motion is particle mixing agitation in fluids. The perpetual motion of a particle occurs due

to collisions with molecules of the surrounding fluid. Under normal conditions in a liquid, a Brownian particle suffers from

about 1021 collisions per second, this is so frequent that we cannot really speak of separate collisions. Furthermore, since

each collision can be thought of as producing a kink in the path of the particle, one cannot hope to follow the path in any

detail, i.e., the details of the path are infinitely fine. Each of these collisions is always determined by the last event produced

by physical interactions in the system.

The modern theory of Brownian motion of a free particle (in the absence of an external field of force) is generally gov-

erned by the Langevin equation [6]

€x ¼ �c _xþ Af ðtÞ; ð1Þ

where _x ¼ dx=dt and €x ¼ d
2
x=dt

2
denote the particle velocity and the acceleration, respectively. According to this equation,

the influence of the surrounding medium on the particle motion can be split into two parts. The first term �c _x stands for the
dynamical friction applied to the particle and the second term Af ðtÞ is the fluctuation acceleration which provides a stochas-

tic character of Brownian motion and depends on the fluctuation force Ff ðtÞ as Af ðtÞ ¼ Ff ðtÞ=m, where m is the particle mass.

It is assumed that the friction term �c _x is governed by the Stokes’ law which states that the friction force 6pag _x=m decel-

erates a spherical particle of radius a and mass m. Hence, the friction coefficient is

c ¼ 6pag=m; ð2Þ

where g denotes the viscosity of the surrounding fluid.

Concerning the fluctuation term Af (t), we make two principal assumptions:

(i) Af ðtÞ is independent of _x.

(ii) Af ðtÞ varies extremely fast as compared with the variation of _x.

The latter assumption implies that there exists a time interval Dt during which the variations in _x are very small. Alter-

natively, we may say that though _xðtÞ and _xðt þ DtÞ are expected to differ by a negligible amount, no correlation between

Af ðtÞ and Af ðt þ DtÞ exists.

Because a particle is immersed in a liquid or gas at ordinary pressure, Einstein [4] used the Stokes formula to calculate the

mean square Dx2 of displacement Dx of a spherical particle in a given direction x after a given time s to be

Dx2 ¼ 2Dt ¼
RT

N

1

3pga
s; ð3Þ

where Dx2 ¼ x2 � x20; D is the diffusion coefficient at temperature T; R is the gas constant, and N is the Avogadro number.

Brownian motion occurs in systems where the mechanisms governing energy dissipation are distinct from those of energy

storage [27,19,31]. In Brownian motion, the mean square displacement at short times grows linearly with time, i.e. Dx2 / tl.
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By changing the variables in the Langevin equation (1) we get the system of two differential equations:

_x ¼ y;

_y ¼ �cyþ Af ðtÞ:
ð4Þ

The evolution of the flow Eq. (4) with the stochastic term Af exhibits the characteristic properties of Brownian motion,

such as a linear growth of the mean square displacement and an approximately �2 power law frequency spectrum. In order

to generate deterministic Brownian motion we add an additional degree of freedom to the phenomenological system Eq. (4),

where the fluctuating acceleration Af ðtÞ is now replaced by variable z defined by a third differential equation. The proposed

variable z, which acts as fluctuating acceleration, produces a deterministic dynamical motion with a chaotic behavior as in

previous work [29]. However, in our model the fluctuation acceleration has a direct dependence on the position, velocity and

acceleration due to the jerky equation involved [33]. When a particle is moving in a fluid, friction and collisions with other

particles existing in the environment necessarily produces changes in the motion velocity and acceleration; all these changes

are considered in the jerky equation. Without loss of generality, we define an unstable dissipative system in the same spirit

that [34,35] as follows

_x ¼ y;

_y ¼ �cyþ z;

_z ¼ �a1x� a2y� a3zþ a4;

ð5Þ

where ai; i ¼ 1; . . . ;4, are constants. The first two equations are derived from the Langevin equation 1 with a little change:

the stochastic term is replaced by the deterministic term. The third derivative in Eq. (5), i.e. the rate of a change in acceler-

ation, is technically known as jerk. This jerky equation is derived in the same spirit as those introduced by Campos-Cantón,

et al. [34,35]. A great deal of qualitative information about the local behavior of this system near the equilibrium point x�

satisfying f ðx�Þ ¼ 0 is determined by the Jacobian of the system Eq. (5) and specifically its eigenvalues K ¼ fk1; k2; k3g.

For simplicity, the equilibrium can be given in terms of a single state by defining switching surfaces (SW). The SW are

planes perpendicular to the x axis, which are considered as edges of each domain. In case of real systems, SW can be seen

as multi-well potential with short fluctuation escape time, where x is bounded by SW as � SW
2
< x < SW

2
. For all SW ; a4 is de-

fined as follows

a4 ¼ C1 � Roundðx=C2Þ; ð6Þ

where C1 ¼ 0:9 and C2 ¼ 0:6 are constants which determine the system equilibrium and RoundðKÞ rounds K to a nearest

integer less than or equal to K. Eq. (6) bounds the displacement of a Brownian particle when it is immersed in a short or

a large container.

3. Numerical results

Numerical simulations are performed using the forth order Runge–Kutta algorithm by exploring different combinations

of initial conditions. Fig. 1 shows the time series of the particle position where the memoryless behavior characterized

Brownian motion can be clearly seen.

To study Brownian motion generated by Eq. (5), we fix c ¼ 7� 10�5 and explore different values of a1; a2, and a3. The

trajectory of Brownian motion is determined by initial conditions and a’s values. For initial conditions x0 ¼ 1:0; y0 ¼ 1:0,

and z0 ¼ 1:0, deterministic Brownian motion is found for the following range of parameters a1�3:

(a) (b)

Fig. 1. (a) Trajectory of deterministic Brownian motion for one hundred SW generated by the proposed model. The inset shows a linear growth of the mean

square displacement Dx2 / tl ðl ¼ 1Þ. (b) Trajectories of deterministic Brownian motion started from 16 different initial conditions.

a1 ¼ 1:5; a2 ¼ 1:2; a3 ¼ 0:1. Strong sensitivity to the initial conditions results in completely different trajectories.
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1:49 6 a1 6 1:52; ð7Þ

0:1 6 a2 6 2:0; ð8Þ

0:1 6 a3 6 1:5: ð9Þ

Since there are many steps with short time duration and few steps with long time duration, the predicted mean square

displacement at short times is observed. Both the linear growth in time of the mean square displacement (inset in Fig. 1(a))

and the strong dependence on the initial conditions (Fig. 1(b)) indicate that the observed motion has a Brownian character.

It is known that traditional Brownian motion is characterized by zero-mean Gaussian probability distributions of system

variables. Fig. 2 shows the probability distributions of a particle displacement (Fig. 2(a)), velocity (Fig. 2(b)), and acceleration

(Fig. 2(c)) in our system. One can see that the distributions of the motion generated by our system are very close to Gaussian,

similar to those obtained by the booster proposed in [21]. It is different from a U-shaped distribution obtained by Trefán et al.

[29], typical for discrete chaotic systems [36–38] (see Fig. 3).

Another important feature of this motion is its specific power spectrum which obeys the scaling relation

IðxÞ � xb
; ð10Þ

where IðxÞ is the spectral intensity at frequencyx. The experiments on the motion of a colloidal particle in a liquid [27] gave

b � �2. By applying a Fourier transform to the time series of the displacement of our system Eq. (5), we obtain a b � �2

power law scaling in the frequency spectrum for different a1; a2; a3, and different SW. Fig. 4 shows the power spectrum

for the same parameters as those explored in Fig. 1, which yields b � �2.

Finally, to further ensure that the proposed system generates Brownian motion, we apply the DFA evaluation method for

one hundred SW for the same values as those used in Fig. 1. The DFA is a scaling analysis which yields a simple quantitative

parameter, the scaling exponent dm. The main advantages of the DFA over many other methods are that it allows the detec-

tion of long-range correlations of a signal embedded in seemingly nonstationary time series, and also avoids the spurious

detection of apparent long-range correlations that are an artifact of nonstationarity. Fluctuation function Fðm; sÞ obeys the

following power law scaling relation
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Fig. 2. Probability density, in red squares, obtained from the motion showed in Fig. 1(a), for (a) displacement, (b) velocity, (c) acceleration, compared with a

fitted Gaussian distribution (straight blue line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
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Fig. 3. Power spectrum of deterministic system Eq. (5) for one hundred SW represented a b ¼ �2:0612 power law scaling, typical for Brownian motion.
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Fig. 4. Log–log plot of fluctuation function FðmÞ versus segmented lengths (m) of time series of Eq. (5) for one hundred SW. dm � 1:5 obtained by DFA

indicates the Brownian character of the observed motion.
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Fig. 5. Time series (left column), phase-space portraits (middle column), and leading the Lyapunov exponent (right column) of different dynamical regimes

of system Eq. (5). (a)–(c) Brownian motion for a1 ¼ 1:5; a2 ¼ 1:2, and a3 ¼ 0:1, (d)–(f) chaos for a1 ¼ 1:6; a2 ¼ 1:3; a3 ¼ 0:9, and (g)–(i) intermittency

(metastability) for a1 ¼ 1:5; a2 ¼ 0:5; a3 ¼ 1:5.
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Fqðm; sÞ � sdm ð11Þ

for which the time series is segmented in s pieces with length m. When the scaling exponent dm > 0:5 three distinct regimes

can be defined as follows.

1. If dm � 1, DFA defines 1=f noise.

2. If dm > 1, DFA defines a non stationary or unbounded behavior.

3. If dm � 1:5, DFA defines Brownian motion or noise.

The scaling law with dm ¼ 1:5401 revealed by the DFA and shown in Fig. 4 confirms the Brownian character of the ob-

served motion.

Finally, we should note that in addition to Brownian motion, the proposed system Eq. (5) displays other dynamical re-

gimes for different sets of the parameters a, such as chaos, intermittency, limit cycles, and fixed points. Typical examples

of different dynamical behaviors of our system are illustrated in Fig. 5 with the time series, phase-space diagrams, and

the leading Lyapunov exponents.

During the Brownian motion shown in Fig. 5(a) and (b), the particle trajectory visits 16 SW, whereas in the chaotic

(Fig. 5(d) and (e)) and intermittency (Fig. 5(g) and (h)) regimes the particle visits only 5 and 8 SW, respectively. Strong sen-

sitivity to initial conditions inherent to Brownian motion is also an essential feature of chaos, because both are characterized

by the positive leading Lyapunov exponent (Fig. 5(c) and (f)). However, there is a significant difference between Brownian

and chaotic dynamics. While chaos is an attractor localized within a certain area of phase space, Brownian motion as noise is

not an attractor and hence occupies infinite space.

4. Conclusions

In this paper we have introduced an approach to generate deterministic Brownian motion, by adding an additional degree

of freedom to the Langevin equation. In our three-dimensional model, the fluctuation acceleration in the Langevin equation

has been replaced by a new variable defined by a third differential equation with a Gaussian probability density distribution.

Also, the numerical simulations of the resulted deterministic three-dimensional model displayed typical characteristics of

Brownian motion, namely, a linear growth of the mean square displacement and an approximately �2 power law of the fre-

quency spectrum, widely accepted in scientific literature. Furthermore, an approximately 1.5 power law scaling of the fluc-

tuation function versus segmented lengths obtained by DFA, confirmed a Brownian character of the observed motion. Our

results show that the main characteristics of the motion generated by our system do not represent a subtle difference from

traditional Brownian motion.

Since the results of this paper have been obtained using a generic unstable dissipative system, we believe that the ap-

proach could help in the development of adequate realistic models with real parameters in order to obtain the Brownian

motion in many natural systems. Based on the mathematical model proposed in this paper, an electronic device coupled

can be developed to generate deterministic Brownian motion.
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