
Author's Accepted Manuscript

Generalized multistable structure via chaotic syn-
chronization and preservation of scrolls

E. Jiménez-López, J.S. González Salas, L.J. Ontañón-
García, E. Campos-Cantón, A.N. Pisarchik

PII: S0016-0032(13)00252-4
DOI: http://dx.doi.org/10.1016/j.jfranklin.2013.06.025
Reference: FI1822

To appear in: Journal of the Franklin Institute

Received date: 18 September 2012
Revised date: 4 June 2013
Accepted date: 29 June 2013

Cite this article as: E. Jiménez-López, J.S. González Salas, L.J. Ontañón-García, E.
Campos-Cantón, A.N. Pisarchik, Generalized multistable structure via chaotic
synchronization and preservation of scrolls, Journal of the Franklin Institute, http://dx.
doi.org/10.1016/j.jfranklin.2013.06.025

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

www.elsevier.com/locate/jfranklin

dx.doi.org/10.1016/j.jfranklin.2013.06.025
dx.doi.org/10.1016/j.jfranklin.2013.06.025
dx.doi.org/10.1016/j.jfranklin.2013.06.025
dx.doi.org/10.1016/j.jfranklin.2013.06.025
dx.doi.org/10.1016/j.jfranklin.2013.06.025
dx.doi.org/10.1016/j.jfranklin.2013.06.025
dx.doi.org/10.1016/j.jfranklin.2013.06.025


Generalized multistable structure via chaotic

synchronization and preservation of scrolls
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Alvaro Obregón 64, Centro, 78000, S.L.P., México
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Abstract

Switched systems are capable of generating chaotic multi-scroll behavior in

R3 by means of a control signal. This signal regulates an equilibrium po-

sition of the system and is defined according to the number of scrolls that

is displayed by the attractor. Thus, if two systems are controlled by differ-

ent signals, They exhibit a different number of scrolls. Multistability can be

created by a pair of unidirectionally coupled unstable dissipative switched

linear systems. A theoretical study of this phenomenon is performed with

the jerky equations. Generalized synchronization is observed in numerical

simulations of the master-salve system with different control signals. The
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proposed configuration preserves the number of scrolls and can possess an

arbitrary large number of coexisting chaotic multi-scroll attractors.

Keywords: Multistability; chaotic multiscroll systems; generalized

synchronization; piece-wise linear systems.

1. Introduction

Complex dissipative nonlinear systems often exhibit the coexistence of

multiple stable equilibrium states for the same set of parameters. Some states

may be chaotic, while others are periodic or fixed points. The coexistence

of multiple attractors is one of the most exciting phenomena in nonlinear

dynamics, which was observed in various systems, including electronic [1],

lasers [2, 3], mechanical [4], chemical [5] and biological [6, 7] systems. Mul-

tistability, from the particular case of the coexistance of two attractors has

been used for different applications, the most known is the generation of flip

flops, widely used in memory storage devices. It has been recently shown

that flip flops can be constructed using the base Chua’s circuit by means

of standard interconnection between NAND gates [8] or using a bistability

mode [9]. Multistability may be of particular relevance to biological sys-

tems, which switches between discrete states, generate oscillatory responses,

or “remember” transitory stimuli [10].

Multistability often appears in coupled systems due to increasing com-

plexity, when two or more systems join together. The emergence of multiple

stable regions depends strongly on one (or the combination) of two factors:

the coupling interconnection (linear, nonlinear, unidirectional or mutually

coupled); the coupling strength. Dissipative weakly coupled systems can
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present a very large number of coexisting attractors[4]. In other systems,

the emergence of multistability often results in a loss of synchronization,

e.g., in the formation of clusters in oscillators ensemble [11, 12] and in cou-

pled logistic [13] and Hénon [14, 15] maps. Multistability in unidirectionally

coupled identical systems is accompanied by different kinds of intermittent

synchronization dependent on the coupling parameter [16, 17, 18].

In this work, we study the emergence of coexisting attractors in two

multi-scroll chaotic systems coupled in a master-slave configuration, when

the master and the slave systems display different number of scrolls. There

are different approaches to obtain multi-scroll chaotic attractors. One of

them is by switching a piece-wise linear (PWL) system [19] and controlling

the stability of its equilibrium points. Other approaches imply the modi-

fication of the Chuas system [20, 21] by replacing the nonlinear term with

different nonlinear functions [22, 23]. Here, we consider unstable dissipa-

tive systems [24], a class of 3-D dynamical systems that presents multiple

scrolls. This class of systems is constructed with a switching law to display

various multi-scroll strange attractors, which result from a combination of

several unstable “one-spiral” trajectories by means of changing the equilib-

ria. Switching systems have been commonly used to switch only one system

or the control signal. However there have been some approaches in which,

instead of stabilizing the system the idea is to preserve or generate a specific

dynamic [25]. Here we will show how multistability can be obtained using

coupled switched systems.

The article is arranged as follows: Section 2 presents the theory that involves

the unstable dissipative systems and the generation of multiple scrolls; Sec-
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tion 3 describes the type of coupling used; Section 4 introduces the multi-

modal structures generated; the numerical results to prove the theory are

depicted in Section 5; and conclusions are drawn in Section 6.

2. Multiscroll attractors by unstable dissipative systems

We consider the class of autonomous systems of linear differential equa-

tions given as follows:

χ̇ = Aχ+B, (1)

where χ = [x1, x2, x3]
T ∈ R3 is the state variable, B = [β1, β2, β3]

T ∈ R3

stands for a real vector, A = [αij] ∈ R3×3 denotes a linear operator and the

equilibrium point is located at χ∗ = −A−1B, which has a stable Es and

unstable Eu manifold. A Saddle equilibrium points, which connects stable

and unstable manifolds play an important role in chaos creation, because

they are responsible for successive stretching and folding processes. The

stretching causes the system trajectories to exhibit sensitive dependence on

initial conditions, whereas the folding creates a complicated microstructure

[26]. The saddle points of a chaotic PWL system in R3 can be divided

basic categories according to their eigenvalues Λ = {λi, λj, λk} ∈ C: (i) The

saddle points that are stable in one direction only and unstable or oscillatory

in the other two [24], i.e., it has one negative real eigenvalue (Re{λi} <

0, Im{λi} = 0), and two complex conjugated eigenvalues (Re{λj,k} > 0,

Im{λj,k} ̸= 0). (ii) The saddle points that are stable in two directions

and unstable in only one, i.e., the dissipative components are oscillatory

(Im{λj,k} ̸= 0 and Re{λj,k} < 0), while the unstable component corresponds

to a real positive eigenvalue (Re{λi} > 0, Im{λi} = 0). If the system given
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by Eq. (1) has a saddle equilibrium point responsible for unstable and stable

manifolds and the sum of its eigenvalues is negative, then the system is called

an unstable dissipative system (UDS). According to the above speculations,

we define in the same way as [27] two different types of UDS, Type I and

Type II as follows:

Definition 2.1. A system given by Eq. (1) in R3 with eigenvalues λi, i =

1, 2, 3, is said to be an UDS Type I, if
∑3

i=1Re{λi} < 0 and one eigenvalue

is positive real and the other two are complex conjugate with a negative real

part.

Definition 2.2. A system given by Eq. (1) in R3 with eigenvalues λi, i =

1, 2, 3, is said to be an UDS Type II, if
∑3

i=1Re{λi} < 0 and one eigenvalue

is positive real and the other two are complex conjugate with a negative real

part.

The above definitions imply that the UDS Type I is dissipative in one of

its components, but unstable in the other two, which are oscillatory. The

converse is the UDS Type II, which are dissipative and oscillatory in two of

its components, but unstable in the other one. Since we are interested in the

UDS Type I, the next corollary is important to note what kind of behaviors

are possible in the system given by (1).

Corollary 2.3. Let the system (1) be a UDS Type I. Then, the system has a

stable manifold Es = span{λ1} ⊂ R3 and another, unstable manifold Eu =

span{λ2, λ3} ⊂ R3 and the following statements are true:

(a) All initial condition χ0 ∈ R3 − Es leads to a unstable orbit that goes to

infinity.
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(b) All initial condition χ0 ∈ Es leads to a stable orbit that settles down at

χ∗ and the system does not generate oscillations.

(c) The basin of attraction D is Es ⊂ R3.

Now, let us consider Luré-type systems of the form:

χ̇(t) = Aχ(t) +Bu(t), (2)

y(t) = Gχ(t), (3)

u(t) = F (y(t)), (4)

where G ∈ R3, F : R → R. In the control system, Eq. (2) represents a plant

with control input signal Bu(t), Eq. (3) is the system output (observable

states), and Eq. (4) is the control signal which is a function of the output.

Since the system (2) is unstable (because it present a saddle equilibrium

point), it is necessary to design a control signal u capable of stabilizing the

system in a specific region. Different F functions have been reported [28, 29].

Our goal is to design a function F for Eq. (2) that generates a class of 3-

D dynamical systems with chaotic oscillations, i.e., the flow Φ(χ(t)) of the

system Eq. (2) is trapped in an attractor A by means of modifying the

function F . This class of systems can display various multi-scroll strange

attractors as a result of the combination of several unstable “one-spiral”

trajectories by means of u. In the other words, we are interesting in functions

that can yield multi-scroll attractors constitute by a commuted signal, u = Si,

(i = 1, . . . , n and n ≥ 2). Each signal Si has a domain Di ⊂ R3, containing

the equilibrium point χ∗
i = −A−1BSi. Then, the function F governs the

dynamics of system (2) by changing the equilibria from χ∗
i to χ∗

j , i ̸= j, when
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the flow Φt : Di → R3 crosses from the i−th to the j−th domain. According

to the above discussion it is possible to define a chaotic multi-scroll system

based on UDS Type I as follows:

Definition 2.4. A system given by (2) in R3 and with equilibrium points χ∗
i

(i = 1, . . . , n and n ≥ 2) is said to be a chaotic multi-scroll system, if each

χ∗
i contains oscillations around and the flow ϕ(χ0) generates an attractor

A ⊂ R3.

The easiest chaotic system based on the UDS is defined with a step func-

tion F commutated in two values, S1 and S2. Since the system Eq. (2) has

two equilibria, a double scroll appears. The function F is defined as a PWL

function. Adding more PWL segments Si to the step function F , makes

possible to obtain a number of scrolls proportional to the number of signals

Si. For simplicity, the function F is given in terms of one state only, which

defines the borders of domains as parallel planes orthogonal to one axis, that

is achieved by defining G = [1, 0, 0].

F (x1(t)) =



S1, if x1 ∈ D1,

S2, if x1 ∈ D2,
...,

...

Sn if x1 ∈ Dn,

(5)

where S1, S2, . . ., Sn are constants, preserving the following order S1 < S2 <

. . . < Sn. In order to illustrate our approach, we consider the particular case

of the linear ordinary differential equation (ODE) written in the equation of

a jerky form as
...
x +α33ẍ+α32ẋ+α31x+β3 = 0, representing the state space

of Eq. (1), where the matrix A and the vector B are given as follows:
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A =


0 1 0

0 0 1

−α31 −α32 −α33

 ;B =


0

0

β3

 , (6)

with the coefficients α31, α32, α33, β3 ∈ R. We should note that the A matrix

is not restricted to the form derived from a jerky equation. The jerky form is

just a convenient approach to build the matricesA and B. The characteristic

polynomial of matrix A given by Eq. (6) takes the following form:

λ3 + α33λ
2 + α32λ+ α31. (7)

The classical Descartes’ rule of signs is a useful tool to state how many

positive or negative roots can be expected from polynomial Eq. (7). Thus,

since the system Eq. (6) is assumed dissipative, a direct implication yields

−α33 = Tr(A) =
∑3

i=1Re{λi} < 0. Additionally, the system Eq. (6) has

a saddle point at the equilibria as −α31 = det(A) < 0. Moreover, α32 > 0

in Eq. (7) is required to ensure that the real root of Eq. (7) is negative.

Hence, under the above rationale, there are no positive real roots, because all

coefficients in Eq. (7) are positive. Such implications give us the possibility

that one of the three eigenvalues is a negative real value and the other two

are complex with a real positive part.

3. Multimodal generalized synchronization

Consider a pair of unidirectionally coupled systems given as follows:
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χ̇m = Aχm +Bum, (8)

χ̇s = Aχs +Bus +C(χm − χs), (9)

where the vectors χm = (xm
1 , x

m
2 , x

m
3 )

T ∈ R3 and χs = (xs
1, x

s
2, x

s
3)

T ∈ R3

are the state variables of the master and slave systems, respectively, B =

(0, 0, 1)T ∈ R3, and C ∈ R3×3 is a constant matrix. In this work, we focus

on the case when each system given by Eqs. (8) and (9) represent a different

number of scrolls, i.e., ♯Ss < ♯Ss, when C is the null matrix and um ̸= us.

♯Sm and ♯Ss stand for the number of scrolls that display the master and the

slave system, respectively. When the systems are coupled, C is defined by

just one real number as follows: (c22) ̸= 0, otherwise (cij) = 0, i, j = 1, 2, 3.

Using this kind of coupling, it is possible to explore generalized synchro-

nization between a pair of different chaotic systems. The chaotic synchro-

nization occurs whenever the master and the slave system flows are related

by a function, that is:

lim
t→∞

|χm(t)− h(χs(t))| = 0 (10)

for every different pair of initial conditions χm(0) = χm
0 and χs(0) = χs

0

inside a ball of dissipation D (basin of attraction). For the case of generalized

synchronization, the function h is difficult to find, but fortunately there are

several approaches to determine generalized synchronization. One approach

is by considering an auxiliary system χa proposed in [30], which is a replica of

the slave system. Using the auxiliary system, it is easy to detect generalized

synchronization, meaning that
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lim
t→∞

|χs(t)− χa(t)| = 0. (11)

This is true, if there is no multistability and the system Eqs. (8)) and

(9) exhibit generalized synchronization. For the case of multistability, the

basin of attraction is comprised by several basins of attraction D =
∪v

k=1Dk,

where v represents a number of stable modes. Now, initial conditions for

the slave and the auxiliary systems play an important role to detect general

synchronization between the master and the slave systems.

lim
t→∞

|χs(t)− χa(t))| =

 0, for Di(χ
s
0) = Dj(χ

a
0) ,

dij > 0, for Di(χ
s
0) ̸= Dj(χ

a
0),

(12)

where χs
0 ∈ Di = Di(χ

s
0) and χa

0 ∈ Dj = Dj(χ
a
0), i, j = 1 . . .m and d ∈ R

is an arbitrary distance. There exist a c0 value that guarantees generalized

synchronization between the coupled systems given by Eqs. (8) and (9),

c0 ≤ (c22).

4. Generalized multistable structure

A multistable structure is created by the coupled system given by Eqs.

(8) and (9), each in the jerky form Eq. (6) with β3 = 1 in both the master

and the slave systems. The coupled system is explicitly written as follows:
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ẋm
1 = xm

2 ,

ẋm
2 = xm

3 ,

ẋm
3 = −α31x

m
1 − α32x

m
2 − α33x

m
3 + um(xm

1 ),

ẋs
1 = xs

2,

ẋs
2 = xs

3 + c22(x
m
2 − xs

2),

ẋs
3 = −α31x

s
1 − α32x

s
2 − α33x

s
3 + us(xs

1).

(13)

Theorem 4.1. Let Sm = {Sm
1 , Sm

2 , . . . Sm
♯Sm

} and Ss = {Ss
1, S

s
2, . . . S

s
♯Ss

} be

the sets conformed by the control signals um and us, respectively. A given

system in the form of Eq. (13) exhibits multistability if S∗
m ⊂ Ss, and the

number of multiple basins of attraction is ♯Ss − ♯Sm +1, with ♯Ss > ♯Sm and

S∗
m = {Sm

1 + δ, Sm
2 + δ, . . . Sm

♯Sm
+ δ}, where δ ∈ R is the displacement from

one basin of attraction to another.

Proof: The solution of the fifth linear differential equation of the system

(13) can be rewritten as follows:

xs
2(t) = e−c22 t

∫ t

0

ec22τ (c22x
m
2 (τ) + xs

3(τ))dτ + e−c22 txs
2(0). (14)

Since we are interested in adiabatically stable solutions, limt→∞ e−c22 txs
2(0) =

0. Therefore, we neglect the last term in Eq. (14). The next step is to

integrate by parts Eq. (14), resulting in

xs
2(t) = xm

2 (t) +
1

c22
xs
3(t)−

1

c22
e−c22 t

∫ t

0

ec22τ (c22ẋ
m
2 + ẋs

2) dτ. (15)

Using the fact that ẋm
2 = xm

3 and by applying integration by parts, the

term with the integral in Eq. (15) can be developed as
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1

c22
e−c22τ

∫ t

0

ec22τ (c22ẋ
m
2 + ẋs

2) dτ =
1

c22
xm
3 (t)+

1

c222
e−c22t

∫ t

0

ec22τ (ẋm
3 − ẋs

2)dτ.

From Eq. (15), we obtain

xs
2(t) = xm

2 (t) +
1

c22
(xs

3(t)− xm
3 (t)) + E(t), (16)

where E(t) = 1
c2
22

e−c22 t
∫ t

0
ec22τ (ẋm

3 −ẋs
2)dτ . Assuming that i) c22 ≫ 1, without

loss of generality E(t) ≈ 0, ii) c22 ≫ |xs
3(t) − xm

3 (t)| gives as a consequence

(xm
3 (t)− xs

3(t))/c22 ≈ 0. Under the above assumptions and after a transient

time, Eq. (16) becomes xm
2 (t) ≈ xs

2(t). Now, if ρ1(t) = xm
1 (t) − xs

1(t),

ρ2(t) = xm
2 (t)− xs

2(t), ρ3(t) = xm
3 (t)− xs

3(t), then we obtain

ρ̇1(t) = ẋm
1 (t)− ẋs

1(t) = xm
2 (t)− xs

2(t) ≈ 0,

ρ̇2(t) = ẋm
2 (t)− ẋs

2(t) = xm
3 (t)− xs

3(t) ≈ 0,

ρ̇3(t) = ẋm
3 (t)− ẋs

3(t),

that results in the difference between the first states of the master and the

slave systems as xm
1 (t)− xs

1(t) = K(xm
1 (0), x

m
2 (0)).

If we consider that xs
1 ≈ xm

1 + K(xm
1 (0), x

m
2 (0)), x

s
2 ≈ xm

2 , then for the

sixth state of the system (13), we obtain

ẋs
3 ≈ −α31x

s
1 − α32x

m
2 − α33x

s
3 + us(xs

1). (17)

By calculating the fixed points of the last equation, after transients we

obtain xm
1 = (1/α31)u

m(xm
1 ), x

m
2 = 0, xs

3 = 0 resulting in
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us(xs
1) = um(xm

1 ) + 1.5K(xm
1 (0), x

m
2 (0)). (18)

The last expression establishes that the us signal applied to the slave

system of Eq. (13) is given as a function of the um signal applied to the

master system of Eq. (13), but shifted by a constant, which depends on

the initial conditions x1(0) and x2(0). Besides, if we substitute us from Eq.

(18) into Eq. (17), the fixed points of the slave system are (2/3um(xm
1 ) +

K(x1(0), x2(0), 0), i.e., the slave has the same fixed points as the master, but

shifted by a constant K dependent on the initial conditions. The um signals

are restricted to take consecutive values of us, i.e., if Sm = {Sm
1 , Sm

2 , Sm
3 },

Ss = {Ss
1, S

s
2, S

s
3, S

s
4, S

s
5}, and Sm ⊂ Ss then the possibilities are {Sm

1 =

Ss
1, S

m
2 = Ss

2, S
m
3 = Ss

3}, {Sm
1 = Ss

2, S
m
2 = Ss

3, S
m
3 = Ss

4}, and {Sm
1 = Ss

3, S
m
2 =

Ss
4, S

m
3 = Ss

5}, but never {Sm
1 = Ss

1, S
m
2 = Ss

3, S
m
3 = Ss

4}. Therefore, the

multistable behavior is justified.

5. Numerical Results

In order to illustrate our approach, we consider the master system from

Eq. (8) given by the A matrix and the B vector as follows

A =


0 1 0

0 0 1

−1.5 −1 −1

 ;B =


0

0

1

 , (19)

and the control signal given by a real function um
i : R → R (henceforth i

denotes a number of scrolls that the orbit follows). The master system is
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Figure 1: Projection of chaotic multi-scroll attractors onto (xm
1 , xm

2 ) plane, generated by

different control signal ui: (a) Eq. (20), (b) Eq. (21), (c) Eq. (22), and (d) Eq. (23).

based on UDS type I because the A matrix has three eigenvalues: one neg-

ative real eigenvalue λ1 = −1.2041, and the others are complex eigenvalues

with positive real part λ2 = 0.1020 + i1.1111, λ3 = 0.1020 − i1.1111. The

system is dissipative due to
∑3

i=1Re{λi} < 0. Thus, a double-scroll system

can be given by Eqs. (8) and (19), and um
2 as follows

um
2 =

 0.9, if x1 ≥ 0.3;

0, otherwise.
(20)

The equilibrium points of the system given by Eqs. (8), (19), and (20)

are χ∗
1 = (0.6, 0, 0) and χ∗

2 = (0, 0, 0). Figure 1 (a) depicts the projection of

the double-scroll chaotic attractor onto the (xm
1 , x

m
2 ) plane. It is possible to

generate a triple-scroll attractor by modifying the ui function. Thus, um
3 is

14



given as follows

um
3 =


0.9, if x1 ≥ 0.3,

0, if −0.3 < x1 < 0.3,

−0.9, if x1 ≤ −0.3.

(21)

Notice that χ∗
3 = −χ∗

1. This issue is intentionally defined to illustrate the

symmetry in scrolls. Figure 1 (b) shows the projection of the triple-scroll

chaotic attractor onto the (xm
1 , x

m
2 ) plane by using Eqs. (8), (19), and (21).

This approach can be extended in order to generate systems with any number

of scrolls, i.e., quadruple and quintuple scroll chaotic attractors are produced

by defining u4 and u5 in accordance with the following features:

um
4 =



1.8, if x1 ≥ 0.9,

0.9, if 0.3 ≤ x1 < 0.9,

0, if −0.3 < x1 < 0.3,

−0.9, if x1 ≤ −0.3.

(22)

um
5 =



1.8, if x1 ≥ 0.9,

0.9, if 0.3 ≤ x1 < 0.9,

0, if −0.3 < x1 < 0.3,

−0.9, if −0.9 < x1 ≤ −0.3,

−1.8, if x1 ≤ −0.9.

(23)

The functions given by Eqs. (22) and (23) introduce other equilibrium

points located at χ∗
4 = (1.2, 0, 0) and χ∗

5 = (−1.2, 0, 0), respectively. Figures

1 (c) and (d) show the projection of the quadruple-scroll and quintuple-scroll

chaotic attractors onto the (xm
1 , x

m
2 ) plane, respectively.
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Figure 2: Projection of a chaotic multi-scroll attractor onto (xs
1, x

s
2) plane, generated with

the control signal given by Eq. (24).

Now, we consider the coupled system (13) given by the master system

from Eqs. (8), (19), and (21), and the slave system from Eqs. (9) and (19)

with

us
6 =



2.7, if x1 ≥ 1.5,

1.8, if 0.9 ≤ x1 < 1.5,

0.9, if 0.3 < x1 < 0.9,

0, if −0.3 < x1 ≤ 0.3,

−0.9, if −0.9 < x1 ≤ −0.3,

−1.8, if x1 ≤ −0.9.

(24)

Using the algorithm and based on the definition described by Wolf et.al

[31], the maximum Lyapunov exponent for the system (19) is 0.10185, show-

ing that the system is chaotic.

Figure 1 (b) shows the projection onto the (xm
1 , x

m
2 ) plane of the mas-
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Figure 3: The d distance via c22 coupling parameter for master and slave systems given

by (a) um
3 and us

6, (b) u
m
4 and us

6, and (c) um
5 and us

6, respectively.

ter system, and Figure 2 shows the projection of the slave system onto the

(xs
1, x

s
2) plane when c22 = 0. The slave system displays six scrolls with equi-

librium points χ∗
j for j = 1, 2, 3, 4, 5, given previously, and χ∗

6 = (1.8, 0, 0).

The sets Sm = {−0.9, 0, 0.9} and Ss = {−1.8,−0.9, 0, 0.9, 1.8, 2.7} have

the cardinality ♯Sm = 3 and ♯Ss = 6, respectively. According to Theo-

rem 4.1, this system presents multistability due to S∗
m ⊂ Ss, with δ = 0

and there are ♯Ss − ♯Sm+1 = 4 basins of attraction. By choosing arbi-

trary initial conditions for the slave system χs(0) and its auxiliary system

χa(0) inside the ball of dissipation D, we calculate the eucliden distance

between their orbits in order to check the limit given by Eq. (11), where

d = 1
N

∑N
j=1

√
(xs

1(j)− xa
1(j))

2 + (xs
2(j)− xa

2(j))
2 + (xs

3(j)− xa
3(j))

2. Figure

3 shows the d distance via the c22 coupling parameter when the master sys-
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Figure 4: Generalized synchronization between master and slave systems. Projections of

a chaotic multi-scroll attractor onto (a) (xs
1, x

s
2) plane of slave system, and (b) (xs

1, x
a
1)

plane of slave and auxiliary systems.

tem and slave system are given by um
3 and us

6, respectively. Figure 3 (a)

shows d = 0 (marked in blue) for c22 ∈ (4.5, 26) when the initial conditions

belong to the same basin of attraction, and three distances d ̸= 0 (marked

in red, brown and black) when the initial conditions belong to a different

basin of attraction, proving that there is multistability. Figure 3 (b) shows

the d distance when the master and slave systems are given by um
4 and us

6,

respectively, thus exhibiting three basins of attraction. Finally, Fig. 3 (c)

displays the d distance for um
5 and us

6, thus giving two basins of attraction.

Figure 4 (a) shows the projection of the unidirectionally coupled slave

system given by Eqs. (13) and (19) onto the (xs
1, x

s
2) plane for c22 = 5. It

can be seen that the number of scrolls of the master system is preserved

in the slave system because um
3 and us

6 are given by Eqs. (21) and (24),

respectively. Figure 4 (b) shows the projection of the slave and auxiliary
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systems onto the (xs
1, x

a
1) plane when their initial conditions belong to the

same basin of attraction.

In the master-slave system, the number of scrolls of the master system is

preserved in the slave system independently of the number of scrolls in the

slave system. To illustrate this, the control signal us
6 is changed as follows

us
10 =



8.1, if x ≥ 6.7,

7.2, if 5.1 ≤ x1 < 6.7,

6.3, if 4.5 ≤ x1 < 5.1,

5.4, if 3.9 ≤ x1 ≤ 4.5,

4.5, if 3.3 ≤ x1 < 3.9,

3.6, if 2.1 ≤ x1 < 2.7,

2.7, if 1.5 ≤ x1 < 2.1,

1.8, if 0.9 ≤ x1 < 1.5,

0.9, if 0.3 ≤ x1 < 0.9,

0, if x1 < 0.3.

(25)

Now, the slave attractor presents ten scrolls when it is uncoupled and its

equilibrium points are given by χi = (6/10i, 0, 0), i = 0, 1, · · · , 9. The pro-

jection of the slave system onto the (xs
1, x

s
2) plane is shown in Figure 5. The

number of scroll is numerated from left to right. The setsSm = {−0.9, 0, 0.9}

and Ss = {0, 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1} have the follow cardinal-

ity ♯Sm = 3 and ♯Ss = 10, respectively. According to Theorem 4.1, this

system presents multistability due to S∗
m ⊂ Ss, with δ = 0.9 and there are

♯Ss − ♯Sm+1 = 8 basins of attraction.

Figure 6 shows the projections of eight attractors of the slave system

onto the (xs
1, x

s
2) plane obtained by changing the initial conditions only. The
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Figure 5: Projection of a chaotic multi-scroll attractor of the slave system onto (xs
1, x

s
2)

plane using the us
10 control signal Eq. (25).

projection of the slave system trajectory for c22 = 0 is shown by very tenuous

gray lines, resulting from the slave system before being forced. We can see

that the slave system oscillates preserving the number of scrolls of the master

system, giving rise to multistability phenomena.

Table 1 describes the attractors in Figure 6. The first column indicates the

initial conditions of the slave system, the second column shows the number

of scroll, and the third column indicates the attractor color.

Since we are interested in the study of multistability, we vary the initial

conditions of the slave system on the (xs
1, x

s
2) plane, while fixing the initial

conditions of the master system at χm(0) = (1, 1, 1). Figure 7 shows eight

basins of attraction onto a region of the plane xs
3 = 0 (xs

1 ∈ [−1, 7] and xs
2 ∈

[−2, 2]) due to multistability of the coupled system (13) using um
3 and us

10.

The basin of attraction marked with blue dots corresponds to the attractor

that covers the scrolls 1, 2 and 3 (see Figure 6). The basin of attraction

20



Figure 6: Projection of multiple coexisting chaotic multi-scroll attractors onto (x1, x2)

plane.
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Initial Conditions Scrolls covered Color

(0.1, 0.1, 0) 1, 2, 3 Blue

(0.6, 0.6, 0) 2, 3, 4 Red

(1.5, 1.5, 0) 3, 4, 5 Green

(2, 2, 0) 4, 5, 6 Purple

(2.5, 2.5, 0) 5, 6, 7 Yellow

(3, 3, 0) 6, 7, 8 Brown

(3.6, 3.6, 0) 7, 8, 9 Cyan

(5, 5, 0) 8, 9, 10 Pink

Table 1: List of initial conditions, number of scrolls and colors of the orbits in Figure 6

for the resulting slave system.

Figure 7: Eight basins of attraction onto plane xs
3 = 0 given by the couple system (13)

using um
3 and us

10.
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marked with red dots corresponds to the attractor that covers the scrolls 2,

3 and 4. The colors of the basins of attraction in Figure 7 are related with

the colors of the attractors shown in Figure 6.

6. Conclusions

In this work, we have evaluated a mechanism for constructing generalized

multistable structures in a pair of unidirectionally coupled systems. Par-

ticularly, we have demonstrated the coexistence of multiple attractors in a

chaotic multi-scroll system composed by two unidirectionally coupled unsta-

ble dissipative subsystems, when they present generalized synchronization.

To illustrate this approach, the parameters of the jerky equation were tuned

to satisfy the definition of UDS type I. The control signal used to generate a

desired number of scrolls, was given by a step function. The chaotic behavior

of the proposed system is justified by the Lyapunov exponent analysis. We

have shown that the number of scroll of the master system is preserved in the

slave attractor under our approach when generalized synchronization exits.

That is, the master system determines the number of scroll in the slave sys-

tem by means of synchronization, which induces preservation on the number

of scrolls in the slave system. In a particular case, when the number of scrolls

in the master system is less than the number of scroll in the slave system,

the master-slave configuration results in multiple basins of attraction for the

slave. If two identical systems (slave and auxiliary) are synchronized by a

third different system (master), which is coupled unidirectionally with the

first two, we say that there exists generalized synchronization between the

master and the slave systems. But due to the coexistence of multiple attrac-
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tors, the two identical systems (slave and auxiliary) can be led to the same

or different basin of attraction depending on their initial conditions. This

phenomenon is called multimodal generalized synchronization meaning that

a functional relation between the master and the slave subsystems exists.

This approach may be further extended to generate: 1) coexistence of

chaotic attractors by UDS Type II subsystems, and 2) coexistence of chaotic

attractors by using other control signals u.
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