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Abstract It is necessary to determine genetic diversity of

fragmented populations in highly modified landscapes to

understand how populations respond to land-use change.

This information will help guide future conservation and

management strategies. We conducted a population genetic

study on an endemic Mexican Dusky Rattlesnake (Crotalus

triseriatus) in a highly modified landscape near the Toluca

metropolitan area, in order to provide crucial information

for the conservation of this species. There was medium

levels of genetic diversity, with a few alleles and geno-

types. We identified three genetically differentiated clus-

ters, likely as a result of different habitat cover type. We

also found evidence of an ancestral genetic bottleneck and

medium values of effective population size. Inbreeding

coefficients were low and there was a moderate gene flow.

Our results can be used as a basis for future research and C.

triseriatus conservation efforts, particularly considering

that the Trans-Mexican Volcanic Belt is heavily impacted

by destructive land-use practices.
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Introduction

Mexico contains 8–12 % of all species in the world and is

one of the five most biologically diverse countries in the

world (Mittermeier and Goettsch de Mittermeier 1992;

Challenger 1998). It is also ranked second in number of

reptile species (Uetz 2015) and first in rattlesnakes, with 31

species (Beaman and Hayes 2008). Unfortunately, most of

the country has suffered strong environmental disturbances

in the last few decades, mainly due to unsustainable use of

natural resources (Sarukhán et al. 2009). Rattlesnakes are

abundant in many sites in Mexico, but their populations

have declined due to direct hunting and habitat loss, caused

by the expansion of urban areas (Campbell and Lamar

2004; Monroy-Vilchis et al. 2008).

The Trans-Mexican Volcanic Belt (TMVB; Fig. 1) is a

biogeographic regionwithmore species and endemisms than

any other part of the country (León-Paniagua et al. 2007;

McCormack et al. 2008; Navarro-Sigüenza et al. 2008;

Bryson et al. 2011; Bryson and Riddle 2012). It is the most

important region in terms of endemic species of herpeto-

fauna and the second terms of the number of reptile species

that inhabit the region (Flores-Villela and Canseco-Márquez

2004). The high diversity of this region is due to its complex

geological history and high heterogeneity of climates, soils

and vegetation types caused by the convergence of Nearctic

and Neotropical regions (Luna et al. 2007; Jiménez-Veláz-

quez 2013). TMVB is a geographical barrier that likely

restricted gene flow of several taxa and prevented interaction

between species and populations from the north and south
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literario # 100, Colonia Centro, CP 50000 Toluca,

Estado de México, Mexico
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(Ruiz-Sanchez and Specht 2013). In addition, the TMVB

contains several types of subtropical ecosystems that are

separated by high mountains. The mountains act as ecolog-

ical islands to restrict gene flow among lineages, and

therefore promote diversification and speciation (Ruiz-

Sanchez and Specht 2013). The TMVB is composed of

12,492.9 km2, but is the most disturbed region in Mexico,

with only 1346.9 km2 (1.1 %) of Abies forest and

6507.7 km2 (5.4 %) of Pinus forest remaining, the two

principle habitats for the species, Crotalus triseriatus, a

Mexican Dusky Rattlesnake. These habitats are also highly

fragmented by agriculture (44.7 %) and urban settlements

(3.4 %); in fact, some of the largest metropolitan areas in

Mexico (such as Mexico City, Toluca, Puebla, Morelia and

Guadalajara) are located in the TMVB. The valley ofMexico

City is one of the largest metropolitan areas in the world

(CONAPO 2010), with 2557.4 people per km2. Reptiles are

extremely sensitive to local habitat changes (Castellano and

Valone 2006; Ribeiro et al. 2009) due to their ecological and

physiological constraints, low dispersal capacity and small

home ranges (Huey 1982). In fact, some studies found that

reptiles and amphibians were more susceptible to landscape

changes than other vertebrate taxa (White et al. 1997;

Ribeiro et al. 2009).

C. triseriatus is endemic to Mexico and its distribution

is restricted to the highlands, along the TMVB in eastern

Michoacán, Estado de México, Morelos, Distrito Federal,

Hidalgo, Tlaxcala, Puebla, and Veracruz states (Bryson

et al. 2014). This species can be found in Pinus-Abies

forests and grasslands associated with this type of forest, in

altitudes from 2500 to 4572 MASL (Campbell and Lamar

2004). Although C. triseriatus is considered in the category

of ‘‘least concern’’ (Canseco-Márquez and Mendoza-Qui-

jano 2007) according to the IUCN, along with 29 other

species of the genus Crotalus, this assignment may be due

to a lack of knowledge on its distribution, ecology, natural

history and genetic diversity (Canseco-Márquez and

Mendoza-Quijano 2007; Bryson et al. 2014). Therefore, the

aim of this study was to assess C. triseriatus genetic

diversity and inbreeding, its effective population size, and

the presence of bottlenecks in a highly modified landscape.

These results will provide valuable information for man-

agement decisions to help preserve this endemic species.

We expected, based on the species’ life history, the pres-

ence of isolated and fragmented populations, and its

endemic status, that the C. triseriatus study population

would have low genetic variability, high genetic structure

and low gene flow.

Materials and methods

Study area and population sampling

Sampling was conducted in a small and highly fragmented

area (Figs. 1, 2) near the Toluca metropolitan area

(19�2405400N; 99�4101500W, with an altitude of 2606

MASL) in the State of Mexico. In this area, crop fields,

livestock and human settlements have replaced the

majority of the native vegetation, and remnant populations

of C. triseriatus persist in pastures, crops, and along the

margin of crop fields. The study area had three different

types of vegetation and land use; the first area had crop

fields and wetlands, the second area had a fauna protection

area and several areas of urbanization, and the third area

had agricultural fields and livestock areas. 98 rattlesnakes

were captured between February 2012 and August 2014.

Tissue samples (ventral scale) were obtained and imme-

diately placed in 90 % ethanol. All rattlesnakes were

released immediately at the point of capture.

Habitat description

Satellite photographs of the study area were obtained from

Google Earth (Google Inc.) to obtain spatial information

about microhabitats of genetic clusters. In each image

pixels were changed to meters using the software Image J

1.64r (Rasband 2012) and the area of each cover type was

measured in each microhabitat. Cover types included water

(W), grassland (G), agriculture (A), urbanization (U),

minor road (MR), major road (MaR), water canal (WC),

cattle grassland (CG), sheep grassland (SG) and protected

wildlife area (PWA). In each locality, the percentage of

each cover type was determined for multivariate analysis

using a Spearman’s correlation with a 95 % confidence

level, to determine if microhabitat cover types (variables)

were correlated with each other. In order to reduce the

number of microhabitat variables, a principal components

Fig. 1 Map of Mexico showing the Trans-Mexican Volcanic Belt

and the study site
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analysis (PCA) was performed. Using the most important

variables found in the PCA, we created a dendrogram with

1000 replicates to estimate bootstrap values using the

Ward́s algorithm with a Euclidean similarity index, to

determine microhabitat similarities. All statistical analyses

were performed using the software Paleontological Statis-

tics ‘‘Past’’ 3.06 (Hammer 2015).

Genetic analysis

DNA was extracted from rattlesnake scales using a com-

mercial GF-1 nucleic acid extraction kit (Vivantis), fol-

lowing the manufacturer’s instructions. Briefly, added 60

uL DTT (5 %), 39 of proteinase K, and lysis enhancer

were added to rattlesnake scales, and the eluted DNA was

used directly as a template for polymerase chain reaction

(PCR). Eleven fluorescently labeled microsatellite loci

were amplified: CWA29 and CWB6 (Holycross et al.

2002), 5A and 7-87 (Villarreal et al. 1996), CRTI09,

CRTI05, CRTI08 and CRTI10 (Goldberg et al. 2003),

CC1110 (Pozarowski et al. 2012), and MFRD5 and MFR15

(Oyler-McCance et al. 2005). PCR microsatellite products

were multiplexed and run on an ABI Prism3730xl (Applied

Biosystems), with Rox-500 as an internal size standard.

Allele size was determined with the software PEAKS-

CANNER 1.0 (Applied Biosystems), and fragment lengths

were measured and binned with TANDEM 1.08 (Mat-

schiner and Salzburger 2009). Negative controls were

included in all runs and standards were included in at least

two runs to assure accuracy, precision, and reproducibility.

Statistical analyses

Identification of duplicate genotypes and potential scoring

errors

GIMLET 1.3.2 (Valière 2002) was used to identify

recaptured rattlesnakes and reduce error in the interpreta-

tion of the population’s genetic diversity (Kohn et al.

1999). The presence of null alleles and other typing errors

were determined using MICROCHECKER 2.2.3 (Van

Oosterhout et al. 2004).

Fig. 2 a Study site: Cluster 1: blue dotted line, Cluster 2: red line with
one dot, Cluster 3: green line with two dots. b Distribution of the three

genetic clusters inferred from STRUCTURE; assignment graphs

represent the mean membership coefficient for each individual to each

genetic cluster. c Proportions of the three genetic clusters assigned by

STRUCTURE to Cluster 1. d Proportions of the three genetic clusters

assigned by STRUCTURE to Cluster 2. e Proportions of the three

genetic clusters assigned by STRUCTURE to Cluster 3. (Color

figure online)
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Genetic structure

Several approaches were used to assess the degree of

genetic structure. First, genetic structure was defined with a

Bayesian clustering method, which uses multilocus geno-

type data and identifies the number of K clusters (genetic

groups) with the software STRUCTURE 2.3.4 (Pritchard

et al. 2000; Falush et al. 2003; Hubisz et al. 2009). The

number of K was determined by testing the K value from 1

to 8 and running the analysis ten times per K value in order

to determine the maximum value of posterior likelihood

[lnP(D)]. Each run was performed using 1,000,000 burn-in

periods and 1,000,000 MCMC iterations with correlated

allele frequencies (Falush et al.2003). A Dirichlet param-

eter was used for the degree of admixture, assuming that

for several generations following population subdivision,

the evolution of allele frequencies in each genetic group

was correlated with the allele frequencies of an ancestral

population, and without prior information on population

origin. Therefore, we determined the most probable num-

ber of clusters to best represent our data, and we considered

the change of DK (i.e. the ad hoc quantity related to the

second order rate of change of the log probability of data)

with respect to the number of clusters, using the maximum

value of DK, following the method in Evanno et al. (2005),

using the software STRUCTURE HARVESTER 0.6.92

(Earl and von Holdt 2011). The genetic variance distribu-

tion was calculated between and within populations and we

used an analysis of molecular variance (AMOVA) based on

FST as implemented by GENALEX 6 (Peakall and Smouse

2006). Significance was calculated using a Wilcoxon test

with 30,000 permutations in order to detect the degree of

similarity of the populations based on the populations’

genotypes in GENALEX 6. In the software GENEPOP 4

(Raymond and Rousset 1995) FST was calculated with

10,000 dememorization steps and 1000 batches of 10,000

iterations per batch, in order to test the divergence between

populations. We estimated Nei’s genetic distance (Nei

1972) between sampling localities using the software

GENALEX 6.

Genetic diversity

Genetic diversity indices were calculated for observed

(A) and effective (Ae) number of alleles, number of

genotypes, observed (Ho) and expected (He) heterozygos-

ity, using the software GENALEX 6. All loci and depar-

tures from Hardy–Weinberg equilibrium (HWE) were

tested with a Fisher’s exact test and linkage disequilibrium

(LD), which was assessed by a log-likelihood ratio statistic

(G-test) using the software GENEPOP 4.0. Allelic fre-

quencies and FIS statistics were estimated to evaluate

heterozygote deficiency or excess, derived from analysis of

variance according to Weir and Cockerham (1984) (W&C),

using GENEPOP 4.0, and significance tests were done

using the Markov chain method implemented in GENE-

POP 4.0, using 10,000 dememorization steps, 1000 batches

and 10,000 iterations per batch. We used a False Discovery

Rate (FDR) approach according to Benjamini and Hoch-

berg (1995) using QVALUE software (Storey 2002) for R

(version 3.0.1; R Development Core Team, 2013) to cor-

rect for multiple testing.

Migration, genetic bottlenecks, effective population size

and relatedness

Gene flow between demes was estimated using the Baye-

sian inference implemented in MIGRATE-N 3.0 (Beerli

2008). Brownian motion was used with five independent

runs using four long chains with a run of 10,000,000

genealogies sampled every 1000 steps and a burn in of

1,000,000. Four hot chains were used with temperatures:

T1 = 1.0, T2 = 1.5, T3 = 3.0 and T4 = 1,000,000.

Default values were applied for the remaining parameters.

To estimate the number of migrants per generation (Nem),

M was multiplied by h (Beerli 2009, 2012). The h values

used in this calculation were: Cluster 1, h = 0.01554;

Cluster 2, h = 0.04751; and Cluster 3, h = 0.03271.

Using MSVAR 0.4.1 (Beaumont 1999) to implement

coalescent simulations, we explored hypotheses about the

historical signal of demographic expansion or contraction

in a closed population. Each hypothesis was evaluated and

the parameters were estimated via Bayesian inference. We

estimated the rate of change (r) of the effective population

size, defined as Ncrnt/Nstbl (where Ncrnt was the current

inbreeding effective population size and Nstbl was the

ancestral stable inbreeding effective population size). The r

ratio was expressed in log10. Therefore, the population

declined if r was negative, stable if r = 0 and, and

expanded if r was positive (Gasca-Pineda et al. 2013).

BOTTLENECK 5.1.26 software (Cournet and Luikart

1996; Piry et al. 1999) was used to test for a genetic sig-

nature of recent bottlenecks. Observed and expected

heterozygosity were estimated under the infinite alleles

model (IAM; in this mutational model every mutation

event created a new allele, independent from the progenitor

allele), step mutation model (SMM; adds or subtracts one

or more repeat units from the string of repeats at some

constant rate to mimic the process of mutations introduced

during) and the two-phase model (TPM; allows a certain

proportion of multistep mutations to involve a greater

number of repeat units. TPM is an intermediate model of

evolution that is considered more appropriate for

microsatellites), with settings of 90 % step-wise mutation

model, 10 % infinite allele model, and 10 % variance; and

used default values (70 % step-wise mutation model, 30 %
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infinite allele model, and 10 % variance). Both settings

were run with 10,000 replicates. Excess heterozygosity was

tested using a Wilcoxon test in the software BOTTLE-

NECK 5.1.26. Relatedness among individuals was evalu-

ated using the software ML-RELATE (Kalinowski et al.

2006), which is based on maximum-likelihood tests and

uses genealogical relationships between individuals (rep-

resented mathematically) as probabilities that genotypes

share zero, one or two alleles identical by descent. In

addition, to explore demographic information of C. trise-

riatus, actual effective population size (Ne) was estimated

by examining LD. Ne was estimated using the molecular

co-ancestry method of Nomura (2008), as implemented in

the software NEESTIMATOR 2 (Do et al. 2014).

Results

Population sampling

Ventral scales were collected from 98 rattlesnakes for

DNA extraction and DNA of sufficient quality for geno-

typing was obtained from 85 samples.

Microhabitat PCA and cluster analysis

The PCA found that the first component had an eigenvalue

of 1.24E ? 11 and explained 96.97 % of the variation. The

second component had an eigenvalue of 3.88E ? 09 and

explained 3.03 % of the variation; therefore, we restricted

our analyses to the first component (Table A1). The cover

types that distinguished the three microhabitat clusters

from each other were: A, G (positive value), PWA and U

(negative value) (Table A2 and Fig. 3), indicating that the

land composition differed drastically between microhabitat

clusters. Microhabitat clusters A and G were positive

because they occupied large extensions while PWA and U

were negative because there were few protected and

urbanized areas and had small extensions (Table A3).

A Ward́s dendrogram was constructed to examine the

relationships within and between clusters, this analysis

found more similarity between microhabitat Clusters 1 and

3 (Fig. 3), because they had a greater percentage of A (70.9

and 49.1 %, respectively), lower percentages of PWA (0

and 0 %, respectively), and lower percentages of U (2.3

and 2 %, respectively; Table A3).

Population genetic results

Identification of duplicate genotypes and potential scoring

errors

We did not find evidence that the same rattlesnake was

accidentally sampled twice when DNA samples were ana-

lyzed. Null alleles were observed for 2 loci (CRTI05 and

CRTI10). After FDR correction, we found departures from

HWE in CRTI10 (FIS W&C = 0.164, p = 0), CRTI08 (FIS
W&C = 0.065, p = 0.006) and CRTI05 (FIS W&C =

0.190, p = 0), due to heterozygote deficiency. If loci were

not in HWE and had null alleles it is not appropriate to use

them for inferring neutral population genetic structure

(Falush et al. 2003) and genetic diversity indices (Shaw et al.

1999; Van Oosterhout et al. 2004). Therefore, we discarded

these three loci for further analysis. We did not find LD

between the loci in any population after FDR correction.

Fig. 3 a PCA. The first component explained 96.97 % of the

variation and the second component explained 3.03 % of the

variation. The most important cover types were: area covered by

agriculture field (A), area covered by grassland (G), area covered by

protected wildlife area (PWA) and area covered by urbanization (U).

b Dendogram (using the Ward’s algorithm with a Euclidean similarity

index) showing three different types of microhabitats (Clusters 1, 2

and 3)
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Genetic structure

The best log likelihood given by STRUCTURE was

observed when K = 3 (LnPr (k = 3) = -1520.7) and DK
chose the best model considering three populations (Clus-

ter 1, N = 25; Cluster 2, N = 30; and Cluster 3, N = 30),

rattlesnakes were systematically distributed in the same

clusters (Fig. 2 and Fig. A1). Other methodologies showed

little differentiation, and AMOVA results revealed that the

majority of genetic variation resided within clusters (91 %;

p = 0.001), followed by among clusters (9 %; p = 0.001)

(Table A4). The FST and Nei’s genetic structuring was low

among clusters (Table 1); Clusters 1 and 2 had a pairwise

FST = 0.046, Nei = 0.123 and the same was observed for

Clusters 1 and 3 (pairwise FST = 0.048, Nei = 0.135). A

greater difference was observed between the Clusters 2 and

3 (FST = 0.053, Nei = 0.161), although the values were

not significantly different between clusters.

Genetic diversity

With regards to genetic diversity values, 32 alleles were

identified across the eight loci in all clusters, with a range

of 3–7 (average 3.79) alleles per locus: Cluster 1 had 3–4

alleles (mean = 3.5) with a total of 28 alleles, Cluster 2

had 3–6 alleles (mean = 3.85) with a total of 31 alleles,

and Cluster 3 had 3–7 alleles (mean = 4) with a total of 32

alleles (Table 2; Fig. 4). Cluster 3 was the only sampling

locality that had private alleles (Table 2).

We found 57 genotypes for all clusters (Table A5), with a

range of 3–12 (average 7.12) genotypes per locus. Cluster 1

had 22 heterozygous genotypes and 17 homozygous geno-

types with a total of 39 genotypes, Cluster 2 had 23

heterozygous genotypes and 23 homozygous genotypes with

a total of 46 genotypes and Cluster 3 had 28 heterozygous

genotypes and 23 homozygous genotypes with a total of 51

genotypes. Expected and observed heterozygosity in each

cluster showed medium values: Cluster 1: Ho = 0.590,

He = 0.527; Cluster 2: Ho = 0.633, He = 0.594; and

Cluster 3: Ho = 0.558, He = 0.568 (Table 2).

Migration, genetic bottlenecks, effective population size

and relatedness

All migration models had M values greater than one,

indicating that migration (and not mutation) was the main

factor contributing to genetic variation in these groups.

Estimates of h for the three demes were: Cluster

1 = 0.01554, Cluster 2 = 0.04751 and Cluster

3 = 0.03271. Migration rates per generation between all

clusters were determined. Between Cluster 1 to Cluster

2 = 1.4, between Cluster 1 to Cluster 3 = 3.7, between

Cluster 2 to Cluster 1 = 1.2, between Cluster 2 to Cluster

3 = 2.6, between Cluster 3 to Cluster 1 = 3.6 and between

Cluster 3 to Cluster 2 = 1.6. Bayesian analysis of recent

bottlenecks implemented in MSVAR indicated that all

populations of C. triseriatus had evidence of population

decline. Cluster 1: r = -3.474, Cluster 2: r = -3.570 and

Cluster 3: r = -3.487. The MSVAR r estimate ranged

from -1.129 for Cluster 2 to -3.623 for Cluster 1, indi-

cating a historical bottleneck. BOTTLENECK results

suggested a recent genetic bottleneck for the three clusters,

with a variance of 30 % and probability of 70 % under the

IAM model (Cluster 1, p = 0.006; Cluster 2, p = 0.002

and Cluster 3, p = 0.014) and with the TPM model

(Cluster 2, p = 0.009 and Cluster 3, p = 0.038) and with a

variance of 10 % and probability of 90 % under the IAM

model (Cluster 1, p = 0.006; Cluster 2, p = 0.002 and

Cluster 3, p = 0.014; (Table A6). The actual Ne estimated

from LD with 0.05 allele frequency was Ne = 31.7 for

Cluster 1, Ne = 33.4, for Cluster 2 and Ne = 29.4 for

Cluster 3.

Furthermore, there was no evidence of inbreeding in the

relatedness analysis. In Cluster 1, relatedness analyses

showed the following results: unrelated (74.3 %), half-si-

blings (9.7 %), full siblings (9 %) and parent/offspring

(7 %). The percentage of relatedness in each cluster was

similar (Table A7). In addition, inbreeding coefficient

values were low in all clusters: Cluster 1 (FIS; from

-0.149), Cluster 2 (FIS; from -0.0.86) and Cluster 3 (FIS;

from 0.003), with a total FIS value of -0.077 (Table 2).

Discussion

This was the first study to investigate C. triseriatus genetic

variability and genetic structure from eightmicrosatellite loci.

Microhabitat

Cover types that differentiated between microhabitat cluster

types were agriculture (A), grassland (G), protected wildlife

area (PWA) and urbanization (U). Rattlesnakes require

certain habitat conditions to survive, grow, and reproduce.

Table 1 Genetic differentiation in each cluster

Cluster 1 Cluster 2 Cluster 3

Cluster 1 – 0.123 0.135

Cluster 2 0.046 – 0.161

Cluster 3 0.048 0.053 –

Below the diagonal FST, above the diagonal Nei’s genetic distance
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We believe that an agricultural habitat was a trade-off for

rattlesnakes. Many small mammals live in are found in

agriculture, which is favorable for rattlesnakes because they

eat small mammals (Doonan and Slade 1995; Hoss et al.

2010). On the other hand, agricultural habitats provide

insufficient cover for large-bodied rattlesnakes (Hoss et al.

2010) and may have unfavorably high ambient and substrate

temperatures due to a lack of trees (Hoss et al. 2010). On

large-scale agriculture, rattlesnakes are usually found in

narrow rows of Pinus, Abies and grassland bushes that

separate agriculture fields (the second important cover type

in our analysis). Grassland bushes allow rattlesnakes to

exploit the thermal gradients (Blouin-Demers and

Weatherhead 2001b) and the high density of prey at the edge

of crops (Martin et al. 2000; but see Blouin-Demers and

Weatherhead 2001a). However, agriculture fields are also

exposed to human activities, where practices such as agri-

cultural burning or roller chopping may eliminate the

advantages provided by agriculture fields and surrounding

areas (Hoss et al. 2010). Therefore rattlesnakes might thrive

in some seasons in agricultural fields, but in others they may

suffer increased mortality above a threshold of reproductive

sustainability (Hoss et al. 2010). Only the microhabitat of

Cluster 2 had a protected area (PWA) surrounded by a fence

to preserve flora and fauna. However, the fence or the

extinction of other clusters could have led to inbreeding due

to a disturbance in the natural dynamics of the metapopu-

lation. Finally, although there was little urbanization (U) in

the three clusters, urbanization and major roads (MaR) are

increasing and this may lead to isolation of clusters and an

increase in human-rattlesnake encounters.

Genetic diversity

In this small and highly fragmented population, we observed

moderate heterozygosity values and allelic diversity that

could have been caused by large founder size, large effective

population size in the past, multiple paternity and

Table 2 C. triseriatus genetic

diversity values in each cluster

and the entire cluster

N Na Ne Np Ho He FIS

Cluster 1 25 3.500 2.312 0 0.590 0.527 -0.149

Cluster 2 30 3.875 2.617 0 0.633 0.594 -0.086

Cluster 3 30 4.000 2.780 1 0.558 0.568 0.003

Total mean 28.333 3.792 2.570 0.333 0.594 0.563 -0.077

N sample size, Na number of alleles, Ne number of effective alleles, Np number of private alleles, Ho

observed heterozygosity, He expected heterozygosity, FIS fixation index

Fig. 4 Study site showing

migration dynamics between

clusters and genetic diversity in

each cluster
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overlapping generations (Sunny et al. 2014a). Medium

genetic diversity was found for the clusters obtained by

STRUCTURE in contrast with what would be expected for

small (\100 rattlesnakes) and isolated populations (Frank-

ham 1998). These levels of genetic diversity were similar to

that of Crotalus species and reptilian populations that suf-

fered recent habitat fragmentation, population size reduc-

tions and genetic bottlenecks associated with founder effects

(Prosser et al. 2000;Holycross andDouglas 2007;Clark et al.

2008; Jansen et al. 2008; Clark et al. 2010; Ávila Cervantes

2011; Vázquez-Domı́nguez et al. 2012). However, when the

average number of alleles was considered, the clusters of C.

triseriatus had fewer alleles than in most other Crotalus

species and snakes (Na = 3.792; Table 2). Nevertheless,

these results should be interpreted with caution because they

are relative and factors such as number and type of loci,

number of individuals and population characteristics all

influence genetic diversity and allelic richness (Vázquez-

Domı́nguez et al. 2013). It is possible that the low number of

alleles found in the clusters is a sign that genetic diversity and

allelic richness is declining as a result of habitat fragmen-

tation, anthropogenic activities and isolation.

Genetic structure

We have three clusters (k = 3), therefore we may be

detecting a relatively recent genetic structure. It is impor-

tant to consider the biological and life history features that

characterize Crotalus species and serpents in general, like

the fine genetic structure over very short distances

(1–2 km) is common in Crotalus species and serpents

because of female philopatry (Gibbs et al. 1997; Bushar

et al. 1998; Lougheed et al. 1999; Clark et al. 2008) and

anthropogenic barriers (Keyghobadi 2007; Belkenhol and

Waits 2009). Roads can have a strong impact on gene flow

and population structure (Andrews and Gibbons 2005;

Clark et al. 2010; Souza et al. 2015). In the study site there

were several minor roads (MR) and major roads (MaR)

(Fig. 2) that may have delimited the populations by limit-

ing gene flow; snakes avoid roads because they don’t like

open areas and the high mortality suffered when they try to

cross them (Rosen and Lowe 1994; Shine et al. 2004;

Andrews and Gibbons 2005). Most of the road mortality

occurred between Cluster 2 and Cluster 3 and Cluster 1.

The causes of road mortality included being run over by

cars (N = 15) or killed by people (N = 13) based on how

their bodies looked on the road. Moreover, there were

many water canals and fences in the study site that may

acted as barriers to gene flow. Water canals are deadly

mainly for juveniles; we found many juvenile bodies that

appeared to have died from desiccation or drowning

(N = 28), mainly belonging to Clusters 1 and 3. Cluster 2

was fenced and the rattlesnake population in this cluster

had high heterozygosity values, likely because this area

was protected. Despite these barriers, clusters behaved as

metapopulations rather than isolated populations because

gene flow still occurred between them, especially during

mating season when males were more likely to move to

other clusters to mate (Beck 1995; Clark et al. 2008).

Effective population size

The Ne observed for each cluster was 29.4–33.4, however,

this estimate was sensitive to sample size and could have

been underestimated (England et al. 2005). To avoid loss of

genetic diversity and inbreeding a Ne[ 50 is needed to

minimize consanguinity effects, while a Ne[ 500 is nee-

ded to retain adaptive genetic variation (Allendorf and

Ryman 2002). Therefore, Ne values of 29.4–33.4 indicates

that cluster populations likely suffered from multiple neg-

ative consequences associated with small population size,

at both the demographic and genetic level (Frankham 1998;

Eldridge et al. 2004).

Historical demography

We found bottlenecks in Clusters 2 and 3 under the TPM

model when variance and probability were set to 30 and

70 %, respectively (Table A6). We also detected ancestral

bottlenecks in all clusters, which could have been associ-

ated with two factors: 1) a founder effect when the popu-

lation was separated from a larger ancestral population and

2) locals who kill rattlesnakes out of fear or beliefs that

rattlesnake consumption will cure cancer and diabetes

(Monroy-Vilchis et al. 2008). To solve all these environ-

mental problems, it will be necessary to provide support to

environmental education programs and increase awareness

to farmers and ranchers, to avoid killing rattlesnakes.

Inbreeding and relatedness

Despite the small sample size and the characteristics of this

species (endemic, restricted and isolated), our results show

that the majority of rattlesnakes in a population are unrelated

(74.3 %), indicating a low probability of inbreeding. The

low relatedness may be due to inherent characteristics of the

mating behavior and reproductive biology of Crotalus spe-

cies members such as differential male dispersal and high

juvenilemortality, which result in few relatives coexisting in

a colony (Dixon 2011). Other reproductive strategies (like

multiple paternity, sperm competition, long-term sperm

storage, facultative parthenogenetic and kin recognition)

that avoid inbreeding have also been observed in other

Crotalus species (Schuett 1992; Sever and Hamlett 2001;

Aldridge and Duvall 2002; Greene et al. 2002; Uller and

Olsson 2008; Booth and Schuett 2011; Clark et al. 2014).
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Conservation implications

To maintain the C. triseriatus population, it will be nec-

essary to preserve highly endangered remnant patches of

Abies-Pinus forest (Figueroa-Rangel et al. 2010; Vargas-

Rodrı́guez et al. 2010; Ponce-Reyes et al. 2012; Bryson

et al. 2014). As well, it will be necessary to preserve the

connectivity between populations that sustain the natural

dynamics of C. triseriatus populations and another species

populations including C. tlaloci, Barisia imbricata,

Phrynosoma orbiculare, Plestiodon copei, Sceloporus

torquatus, S. grammicus and amphibians like: Hyla eximia,

H. plicata, Pseudoeurycea leprosa and several species of

the Genus Ambystoma. All these species are threatened by

loss and habitat fragmentation. The TMVB has undergone

habitat fragmentation and urbanization (Bryson et al. 2014;

Galicia and Garcı́a-Romero 2007). The TMVB is 44.7 %

agriculture, 25.3 % roads, 3.4 % urban and only 1.1 %

Abies forest and 5.4 % Pinus forest. Moreover, land-use

change has increased in recent years; this will exacerbate

C. triseriatus isolation and may potentially lead to its

extinction (Neuwald 2010; Sunny et al. 2014b). In order to

increase gene flow between fragmented populations, it will

be necessary build corridors to increase migration between

C. triseriatus. Several studies have indicated that corridors

may reduce road mortality and promote gene flow in rep-

tiles and amphibians (Yanes et al. 1995; Aresco 2005). To

accomplish these conservation efforts, the genetic infor-

mation provided in this study can be used as a basis for

future research and conservation planning. Furthermore, C.

triseriatus may be used as a proxy for other species in the

region and reptiles in fragmented environments
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terrestres de México. Pasado, presente y futuro. CONABIO,

Instituto de Biologı́a, Agrupación Sierra Madre, México
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Douglas ME, Greene HW (eds) Biology of the Vipers. Eagle

Mountain Publishing, Eagle Mountain, Utah

Hammer Ø (2015) PAST: Paleontological Statistics software package

for education and data analysis. Palaeontol Electron 4(1). http://

folk.uio.no/ohammer/past/

Holycross AT, Douglas ME (2007) Geographic isolation, genetic

divergence, and ecological non-exchangeability define ESUs in a

threatened sky-island rattlesnake. Biol Conserv 134:142–154

Holycross AT, Douglas ME, Higbee JR, Bogden RH (2002) Isolation

and characterization of microsatellite loci from a threatened

rattlesnake (New Mexico Ridge-nosed Rattlesnake, Crotalus

willardi obscurus). Mol Ecol Notes 2:537–539

Hoss SK, Guyer C, Smith LL, Schuett GW (2010) Multiscale

influences of landscape composition and configuration on the

spatial ecology of eastern diamond-backed rattlesnakes (Cro-

talus adamanteus). J Herpetol 44:110–123

Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring

weak population structure with the assistance of sample group

information. Mol Ecol Resour 9:1322–1332

Huey RB (1982) Temperature, physiology, and the ecology of

reptiles. In: Gans C, Pough FH (eds) Biology of the reptilia.

Physiology C. Physiological ecology, vol 12. Academic Press,

New York, pp 25–91

Jansen KP, Mushinsky HR, Karl SA (2008) Population genetics of the

mangrove salt marsh snake, Nerodia clarkii compressicauda, in

a linear fragmented habitat. Conserv Genet 9:401–410
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Martin FD, Wike LD, Paddock LS (2000) Role of edge effect on

small mammal populations in a forest fragment. Department of

714 Genetica (2015) 143:705–716

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Energy Technical Report, Savannah River Ecology Lab, Aiken,

SC

Matschiner M, Salzburger W (2009) TANDEM: integrating auto-

mated allele binning into genetics and genomics workflows.

Bioinformatics 25:1982–1983

McCormack JE, Peterson AT, Bonaccorso E, Smith TB (2008)

Speciation in the highlands of Mexico: genetic and phenotypic

divergence in the Mexican jay (Aphelocoma ultramarina). Mol

Ecol 17:2505–2521

Mittermeier RA, Goettsch de Mittermeier C (1992) La importancia de
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MM (2014b) Microhabitat types promote the genetic structure of

a micro-endemic and critically endangered mole salamander

(Ambystoma leorae) of Central Mexico. PLoS ONE 9:e103595.

doi:10.1371/journalpone0103595
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Genética y mamı́feros mexicanos: presente y futuro. New
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