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Abstract— This paper presents a novel approach that simulates 
the expansion of urban sprawl based on the Spatial Markov 
Chains and a random diffusion rule at the pixel level. Goodness 
fit metrics are selected to compare the accuracy of the satellite 
images against the model’s simulation results. Our approach is 
evaluated using Landsat 8 satellite’s raster images from the 
Toluca Metropolitan Area. Experimental results indicate that 
our approach is robust for spatial analysis, providing a more 
suitable alternative model to the traditional urban sprawl 
approach. 

Keywords—: Urban expansion, Spatial Markov Chains, 
random diffusion rule, goodness fit metrics  

I. INTRODUCTION 
This paper presents a methodology that combines 

mathematical methods, programming and Geographic 
Information Systems (GIS) to simulate the expansion of the 
urban sprawl based on novel spatial variation of the Markov 
Chains (MC). This methodology is tested with goodness fit 
metrics to assess the accuracy of the simulation performance. 
That is, to use indicators that measure how similar the results 
of the model are with respect to what happens in reality. In this 
paper four goodness fit metrics are used: Cohen's Kappa Index, 
Jaccard Index, Fractal Dimension and Shannon's Entropy. If 
the model acceptable resemble the real sprawl, then it can be 
used as an instrument that generates relevant information about 
the future of the city's growth. 

In fact, our method is a procedure in discrete time, where 
the value in time t1  depends on the values of the times t0 and t 
(i.e. second order markovian chain). The algorithm compares 
and counts data of two raster-based maps, where the occupied 
floor is coded as one and the unoccupied one as zero, these 
data estimate and configure a transition probability matrix. In 
our case study, we are using maps of the urban sprawl of the 
city of Toluca from 2003 and 2017. The prediction is done in a 
map of the city of Toluca of 2031, where there is occupied land 
and unoccupied ground at the pixel level that expresses the 
probability of changing or belonging to the analyzed category 
(i.e. binary category). The results are series of binary 
probability maps for time t1 , as a projection from t. To do this, 
we consider the number of temporary units (years in our case) 
elapsed between t0 and t, assuming that it is a linear evolution. 
In the case of the metropolitan area of Toluca, it has been 
projected to 2031 from the years 2003 and 2017. By having the 
projections of the metropolitan area and analyzing the  

goodness fit indicators we observed that our Spatial Markov 
Chains’ model resembles the real sprawl with an acceptable 
accuracy. 

An analytical approach of Socially Integrated Social 
Sciences is applied. This approach integrates mathematical and 
technological model, such as satellite photos, Geographic 
Information Systems, automated computer developments (had-
hoc programs) and a spatial vision to analyze social processes. 
Our methodology is novel since MC are computed at the pixel 
scale, in comparison to the typical spatial Markov Chains that 
only incorporates the spatial interaction between regions. 
Contrarily to the search for intra-distributional dynamics at the 
municipal level through spatial Markov Chains, our work do 
analyze the relationship between pixels within a map [1, 2]. 

Several investigations combinate MC, cellular automata 
(CA) and GIS's, where the MC determines the potential 
transition of the states in the neighborhood. While the CA 
controls the spatial change through the global rules, 
considering the configuration of the neighborhood and the GIS 
show the input and output maps of the model [3, 4]. In this 
work, MC and GIS are combined, leaving aside CAs, since 
only a local random growth rule is used. By using this scheme, 
an spatial Markov Chains Model is generated, which is strong 
in time and space.  

II. MARKOV CHAINS 
The MC shows the transition from one state to another within 
a finite number of possible states. It is the most useful method 
for modeling stochastic processes and probabilistic evolution, 
knowing only the present situation. The growth of urban 
sprawl and many other processes that can be observed over 
time are modeled by stochastic processes, like any random 
variable collection {X(t)} that depends only on time. 
 
A stochastic process X has the Markovian property if the 
conditional of any future event t1 is independent of the past 
event, it only depends on the current state of the process. In 
this case, the process has no memory, if for all integers n>=0 
and all states (i0, i1,…, in-1, i, j): 

 P (Xn+1 = j| Xn = i, Xn-1 = in-1,..., X0  = i0)= P (Xn+1 = j| Xn = i) (1) 

361

2018 International Conference on Computational Science and Computational Intelligence (CSCI)

978-1-7281-1360-9/18/$31.00 ©2018 IEEE
DOI 10.1109/CSCI46756.2018.00075

Authorized licensed use limited to: University of Exeter. Downloaded on June 25,2020 at 04:01:50 UTC from IEEE Xplore.  Restrictions apply. 



Equation 1, indicates the process in state i at time n, and 
{Xn}n>=0 a discrete stochastic process with state space 
E={i,j,k,..}.  
Note that the typical MC’s method considers the probabilistic 
situation of temporal change, but not spatial; therefore, within 
our approach the image in t is used to apply the transition 
probability and incorporates a random diffusion rule that 
spatially locates  pixels that have the highest probability of 
change in each category. With this procedure the probability 
of change depends on the number of pixels and their 
relationship within a neighborhood. Hence, an Spatial Markov 
Chain is generated based on time and space. 

III. MODEL FOR GIS 
Our developed Markov chains tool is an extension coded in the 
programming language Python for GIS environments. This tool 
calculates the transition matrix from two input images in raster 
file format with the projection based on the transition matrix 
and a secondary raster file, which shows only the new pixels 
that are part of the projection, thus giving the possibility to 
generate adequate explanations from a particular phenomenon. 
Figures 1a and 1b show images of the city of Toluca where the 
urban area is compared in two years, 2003 and 2017. Figure 1c 
presents the area’s projection in year 2031, whereas Figure 1d 
depicted projection pixels from the 2031 raster file. 

 
Figure 1: Images from the city of Toluca in different years: a) 2003, b) 

2017, c) 2031 projection, and d) 2031 projection pixels. 

IV. RANDOM DIFFUSION RULE 
In this section, we present our diffusion rule methodology. 

To better understand our method, a case of study is used to 
show how projection pixels are computed by using the Spatial 
Markov Chains Model. In Fig. 2, the growth cases covered by 
the diffusion rule are shown when going through the study 
image, as well as its algorithm. 

Programmed expansion-diffusion rules are based on the 
conventional transition matrix calculation. After that, following 
algorithm is executed: 

1) A point in the grid is randomly selected. 
2) If selected point is a black pixel or cell, its eight 

surrounding neighbors are turned into black pixels or cells. 
Note that a black pixel can be rewrote in this step. 

3) Number of pixels or cells in the transition matrix is 
decreased. 

4) If selected point is a white pixel or cell, it is not 
considered.  

5) Go back to step one until the transition matrix is 
completed.  
 

 
Figure 2: Three growing cases based on the central pixel: A, B, or C, 

respectively. 

 
Our random diffusion rules proposed in this paper define a 

neighborhood for each pixel or point in the territory, assuming 
that what happens to one pixel, also affects its neighbors. 

Other investigations have used a limited aggregation model 
that is similar to our proposed random diffusion rule, in which 
urban pixels are randomly spread over a probabilistic field until 
they join another pixel [5, 6, 7]. 

V. GOODNESS ADJUSTMENT METHOD 
For the validation of the method it is necessary to compare 
real against simulated maps. That is, compare the results 
generated by the proposed technique, with respect to the real 
data to decide how accurate the model is to resemble real 
maps. The comparison is not simple, and it is essential to 
adopt feasible methods or techniques [8,9,10], for that reason, 
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four metrics are selected in this research: Cohen’s Kappa 
Index, Jaccard index, Fractal dimension and Shannon entropy. 

A. Cohen's Kappa Index 
Cohen's Kappa Index (k) is a map comparison measure that 
adjusts the effect of change. The value k can take values 
between -1.0 and +1.0 and is interpreted in a similar way to 
the Pearson correlation index. The closer to +1.0, the greater 
the degree of agreement between the maps is. The closer 
to -1.0, the higher the degree of discordance between the maps 
is. An index equals to 0.0 indicates absence of similarity 
between the maps. The important thing about the results of 
Cohen's Kappa Index is that they control the effect of change 
and it is possible to know if their results are statistically 
significant [11,12,13]: 
 

 
(2) 

Where  is the observed similarity ratio, Pe is the expected 
similarity ratio and  represents the similarity or 
maximum match. If the Kappa index is equal to 1.0, it means 
that the similarity between the maps is perfect, when that 
index is 0.0 the maps have zero similarity (i.e. they are 
completely different). Finaly, a Kappa index equals to -1.0 
means that one map is the inverse of the other [13,14]. 
 
Thresholds for Kappa Index have been proposed by [13] and 
they are shown in Table 1. Note that those values are note 
generalized among researchers in the field. However, this is 
suitable guide when experimental images’ resolutions is high 
[14], which is our case with about 4.0 million pixel images. 
 

 
Table 1: Similarity values for Kappa Index [13]. 

B. Jaccard Index 
The Jaccard Similarity Index ( ) measures the similarity 
degree between two images (e.g. maps), considering both the 
number of pixels as well as their position within the maps 
[15]. The Jaccard index value goes from 0.0 to 1.0, a 0.0 index 
value means a total dissimilarity between the maps, contrarily, 
an index value equals to 1.0, means a complete similarity. The 
Jaccard Index is computed as: 

 
(3) 

The Jaccard Index is easy to analyze using set theory [14]. Let 
us name elements in set A as  and elements in set B as . 
Then, the union between A and B ( ) are denominated as 

, whereas elements outside the union are labeled as .  
 

Remember that Jaccard Index (Equation 3) calculates two key 
aspects to compare a pair of maps: the equality of the raster 
maps and the pixels’ position correspondence between the 
maps. 

C. Fractal Dimension 
Fractals were introduced by [16], in a study of irregular and 
fragmented structures presented at different scales (e.g. as the 
coasts or mountains). The appearance of a structure at 
different scales is called self-similarity, since each part, 
whatever its degree of approach is, it is presented as the 
original figure. If we observed at the microscopic level an 
object it could be noted its geometric characteristics, which 
would be in somehow the fractal’s theory fundamentals. 
 
Then, using the object’s degree of irregularity and 
fragmentation in its form (e.g. in this work maps), it is 
possible to be measured using Fractal Dimension (D), which is 
a expressed value from a geometric point of view. When 
measuring irregular objects, the Fractal Dimension is a non-
integer value (i.e. is a fractional number), whereas in the 
Euclidean space, values are well defined as D=0 (point), D=1 
(line), D=2 (two-dimensional plane) and D=3 (volume) [17]. 
 
Note that considered dimension is also the fractal’s growth 
dimension, since D = 1 is a line and D = 2 is a plane. 
Therefore, the fractal dimension used in this research would 
be a real value between 1 and 2. If the metric is close to one, 
we can say that the projection has no points, it is empty (i.e. a 
decrease in the model’s projection). The other case, if the 
measurement is close to two, we can say that the projection is 
almost full of points (i.e. an increase in the model’s 
projection). 
 
The calculation of D is based on the corresponding 
measurement of the number of black pixels that cover a 
certain image. The fractal dimension, D, is computed by: 
 

 
(4) 

Where L is the scale factor and N is the number of 
similar objects. The relationship between N(L) and 1/L 
is referred as potential relationship, which is also called 
the box counting method and it measures the growth or 
contraction of the urban sprawl. When using the fractal 
concept many fractal objects have been found not only 
in different natural systems (irregular and fragmented 
systems), but also in social systems and in socio-spatial 
structures [18]. With this we can differentiate between 
perfectly self-similar fractals (generated through 
iterative processes in a regularly way) and fractals 
whose self-similarity is basically statistical (non-
deteministic or generated through a stochastic process) 
[7]. 
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D. Shannon Entropy 
Shannon Entropy is a concept that has been used to describe 
the structure and behavior of different systems [19]. In this 
paper, the application of the entropy measure in urban 
expansion is proposed to determine the spatial concentration 
and dispersion. 
 
Shannon's entropy indicates the proportion of the maximum 
possible dispersion in which a variable is distributed among 
categories or spatial zones. That is, it has a value of 1.0, the 
variable is evenly distributed among all the zones, and if it 
approaches 0.0, the variable is concentrated in a small number 
of zones [20]. It is expressed by equation: 
 

 
(5) 

 
Where  is the relative entropy,  is the probability that 
the variable  is in one of the zones, classes or categories. 
 
The calculation of Shannon Entropy is an index of urban 
expansion that uses data obtained remotely (e.g. with GIS), 
which can identify and efficiently characterize the degree of 
spatial concentration or dispersion in a specific area [22,10]. 
 
With the value of entropy, we can see that, for all the 
dimensions of urban systems, there is a range of values in 
which entropy could be tolerated without compromising its 
efficiency and/or resilience. If the entropy has a value near 
zero, then the urban area is too uniform, therefore, vulnerable 
to changes or disasters. If the entropy has a value close to one, 
then the urban system will not be able to allocate efficiently 
the resources necessary for the system to work [19,20]. 
 
Therefore, entropy must be maintained within a range defined 
by the minimum value, below which the system becomes 
vulnerable and unstable, and at the maximum value, above 
which the system becomes unsustainable [10]. 
 

Goodness fit metrics presented in this section are calculated 
by the Territorial Intelligence Station: CHRISTALLER®. 

VI. RESULTS   
The classification of the occupied and empty space gives a 
sample of the growth of the urban spot in a determined period. 
Consequently, the MC allow us to know the probability that 
the pixels are kept in one or another classification of occupied 
or empty space. A simple and efficient way to discretize the 
categories is to label or set as 1 to the occupied space and 0 to 
the empty space. Table 2 shows the states or categories in 
which the urban space of each city is classified. Total Initial 
Vectors (s) were constructed from the binary pixel count in 
each category per year, in relation to the total. 
 

 
Table 2: Initial state vectors, 2003-2017, computed by CHRISTALLER®. 

 
Initial state vectors show the increase or change of pixel status 
in 2003 and 2017. Those that remain in 1 went from 736,513 
to 1,220,632 (an increase of 11.1%) and those that remained in 
0 decreased from 2,946,179 to 2,462,060 (a decrease of 
13.1%). In total in the city of Toluca, the pixels that change 
their state (i.e. the urban area that is modified or grows) are 
484,119 in 14 years (an increase of 13.1%). 
 

1) Transition matrix:2003-2017 
 
One way to observe the changes within the distribution over 
time are the MCs where the main input is the matrices of 
transition probabilities, which represent the probability of 
being in a  state in the  period, starting with the 
distribution in the  period [21]. 
 
The construction of the transition matrix for 2003-2017 is 
generated by a count of changes between the two categories of 
pixels (0 and 1) from one year to the next. This is done by 
using CHRISTALLER® applications to compute the 
transition matrix as shown in Table 3. 

 
Table 3: Transition Matrix 2003-2017 computed by CHRISTALLER®. 

 
Table 3 shows that, in 14 years, when measuring the growth of 
cities, 2,349,918 remain at 80% at zero (no occupied land). 
There is a transition from zero to one (change to occupied 
land) 596,261 equals to 20%. Change from one to zero 
112,142 equals to 15%, land that became unoccupied; and 
finally land that remains in occupied land status 624,371 
equals to 85%. Therefore, it can be inferred that there is a 
large amount of land that has not been occupied or that has 
changed its status. 
 

2) Second transition state: 2017-2031 
 
Table 4 is the new transition matrix that is a projection of 
binary data that will be in the 2017-2031 map of Toluca and 
that maintained the conditions for counting. 

 
Table 4: Projection matrix, 2017-2031 computed by CHRISTALLER®. 
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Main changes in the period 2003-2017 are: 3,249,918 pixels 
that were in the category of unoccupied land (pixels in zero 
that remain zero), which was equivalent to 80% of the total. 
Projection in Table 4 indicates that by 2031 the probability 
that the pixels remain in that category is reduced to 67%. The 
probability of transiting from zero to one would be increased 
from 20% to 33%, whereas the probability of transiting from 
one to zero value goes from 15% to 25%. In short, the 
projection suggests an important progressive redistribution of 
living or working conditions, therefore there is more occupied 
than empty land. 
 

3 Results of the urban expansion model with 
Spatial Markov Chains 

 
The satellite images that we use as a reference for the results 
of the Space Markov Chains Model were obtained from 
Landsat 8. The image of 2003, together with the image of 
2017, are the maps with which the transition matrix is made, 
which is the entry for the Markov Chains, used as the input 
data for the model in CHRISTALLER®. 
 
Using the tools of CHRISTALLER®, the comparison 
indicators are estimated, in addition to the growth indicator 
and the distribution indicator that validates the random growth 
rule used in the Markov Space Chains, which shows how 
effective the methodology is in the expansion of the urban 
sprawl in the city of Toluca during the period of 
experimentation.  
 
To make a model test bench it is necessary to make a 
projection using the Toluca map as a reference in 2003 to 
project the map in 2017 and thus make the comparison with 
the real map of 2017. To carry out the diffusion or expansion, 
values are taken of Table 3, which correspond to the transition 
matrix. From the matrix, only the values that change from zero 
to one are 596,261 pixels and those that remain in one are 
624,371 pixels, giving a total of 1,220,632 pixels that will 
change in the 2003 map. 
 
With the projection of the city of Toluca for 2017, by means 
of the random diffusion rule we can observe how efficient is 
the method of pixel distribution. As mentioned, the maximum 
value of Cohen and Jaccard's Kappa indices is 1.0. Cohen's 
Kappa index for Toluca is 0.78, indicating that the diffusion 
rule is good in the process of urban sprawl expansion. 
 
The Jaccard index shows even more encouraging results for 
the random rule. Toluca registered a Jaccard of 0.85, which 
indicates a high capacity of the rule to distribute the pixels on 
the map with high efficiency. The values of the comparison 
indicators are good, the rule allows us to distribute the pixels 
with less uncertainty in the expansion of the urban spot for the 
city of Toluca, for a period of fourteen years.  
 
By joining the random diffusion rule to Markov Chains, the 
Spatial Markov Chaining Model is generated, and the Fractal 

Dimension is calculated to determine how much the urban 
stain grew, showing good results (Table 5). The differences in 
growth between the satellite image of 2017 and the projection 
using the Space Markov Chaining Model made by 
CHRISTALLER® register a variation of less than one tenth, 
which can be considered a very good adjustment. 
 

 
Table 5: Fractal Dimension Indices computed by CHRISTALLER®. 

 
On the other hand, Table 6 shows the Shannon Entropy index 
for the city of Toluca, remembering that the maximum value 
of this index is 1.0. The entropy index shows a uniform 
distribution of the concentration of the pixels in the 
metropolitan area. This shows a growth of urban sprawl. 
 

 
Table 6: Shannon Entropy indices computed by CHRISTALLER®. 

 
The Shannon Entropy index for the city of Toluca in 2003-
2017 and the projection 2017, indicates a good distribution of 
pixels with a difference of almost two tenths, indicating that 
the urban spot is growing adequately (e.g. it does not grow in 
just one area, but in all areas of the map). In the projection 
made by the Spatial Markov Chains model when calculating 
the entropy results in very close to one, this is interesting, 
because, apparently, the speed of growth of the urban sprawl 
is high, therefore, the value indicates that growth is very well 
distributed, this is a conjecture that should be tested 
considering more cities. 
 
Despite used files and images are massive and highly 
complex, CHRISTALLER® was able to handle all this 
information. The satellite images of the city of Toluca contain 
around four million pixels. Considering the magnitude of the 
information, the complexity of the calculations, the use of the 
random diffusion rule, the iterative estimation of the urban 
comparison or expansion indices, and the automatic 
generation of the simulation map, we can consider that the 
Space Markov Chains Model performance by using 
CHRISTALLER® is very fast and good in the projection, as it 
was expected. On average, CHRISTALLER® requires a 
minute to generate the results and projections of the city, these 
are very good results in the application. 
 
Now having a certainty that the proposed model of Space 
Markov Chains is efficient and has good results, we can 
generate a projection of the city of Toluca to 2031. This map 
shows a balance in the values that changed from one to zero 
and conversely, therefore, it can be said that in a period of 14 
years the growth speed of the city of Toluca decreases, but it 
is necessary to verify this result with tests that are not 
discussed in this paper. 
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The visual comparison showed how the model developed with 
Spatial Markov Chains in the growth of urban sprawl, 
responds to the basic pattern that occurs, but showing a greater 
and more compact growth. In addition, with this model the 
new growth of the urban sprawl not only adds existing 
buildings, but also disappears new isolated urbanizations due 
to lack of neighborhood or space constraints.  

VII. CONCLUSIONS  
In this work, an innovative technique was adopted to explore 
the growth of urban sprawl in the city of Toluca: Space 
Markov Chains. The objective is to show how this growth-
projection technique works, taking as an example the 
metropolitan area of the city of Toluca that can be said to have 
a high growth rate because it is a millionaire city in relation to 
its inhabitants. The results show that the analysis approach 
using Spatial Markov Chains offers valuable information and 
has an alternative vision to the traditional approach of growth 
with regions, focusing mainly on the growth of the urban spot 
with pixels in binary maps in raster files. 
 
In Spatial Markov Chains, the most remarkable thing is its 
Spatial-Temporal analysis, which is very difficult to find in 
techniques that project maps or perform growth on maps. The 
power that the Markov Chains have is the time, is what is used 
to only add the space with a random distribution rule in the 
distribution, which is the main contribution of this work. 
Projections are generated over 14 years, where time is a 
constant, dependent on the maps of the city that we have 
available.    
 
The techniques of comparison of maps and comparison-
position of the urban spot leads us to use statistical 
comparison techniques, such as Cohen's Kappa Index and the 
Jaccard Index. Where it is observed that the results were 
encouraging and precise.  
 
The procedures of comparison of maps, led us to explore 
techniques, which are rarely used in cartographic research. 
These techniques are the fractal dimension and the entropy of 
Shannon. Which is an important contribution in our research 
by showing the growth-diffusion of the urban sprawl.  
 
With the results shown by the Spatial Markov Chains and 
GIS, we can say that it is possible to build a predictive model. 
The projection of the data is done with Markov Chains, which 
is a technique already proven in related literature. This 
technique gives us a projection in certain years, it depends on 
the construction of the transition matrix. Also, it is important 
to remark that to generate the projection in space we add a rule 
that we baptize it as a rule of random diffusion to get Spatial 
Markov Chains. 
 
It can be concluded that the combination of mathematical 
tools and GIS is a powerful tool for analysis, supervision and 
control of urban phenomena; especially, having maps or 

images with high spatial and temporal resolution will improve 
indices and cities’ projection accuracy. 
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