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Sustainable agriculture is a rapidly growing field aiming at producing food and 
energy in a sustainable way for humans and their children. Sustainable agriculture 
is a discipline that addresses current issues such as climate change, increasing food 
and fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil ero-
sion, fertility loss, pest control, and biodiversity depletion.

Novel, environmentally-friendly solutions are proposed based on integrated 
knowledge from sciences as diverse as agronomy, soil science, molecular biology, 
chemistry, toxicology, ecology, economy, and social sciences. Indeed, sustainable 
agriculture decipher mechanisms of processes that occur from the molecular level 
to the farming system to the global level at time scales ranging from seconds to 
centuries. For that, scientists use the system approach that involves studying 
components and interactions of a whole system to address scientific, economic and 
social issues. In that respect, sustainable agriculture is not a classical, narrow 
science. Instead of solving problems using the classical painkiller approach that 
treats only negative impacts, sustainable agriculture treats problem sources. 

Because most actual society issues are now intertwined, global, and fast-
developing, sustainable agriculture will bring solutions to build a safer world. This 
book series gathers review articles that analyze current agricultural issues and 
knowledge, then propose alternative solutions. It will therefore help all scientists, 
decision-makers, professors, farmers and politicians who wish to build a safe 
agriculture, energy and food system for future generations. 
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Preface

This book is the second volume of Animal Biotechnology in Livestock Production, 
published in the book series entitled Sustainable Agriculture Reviews. Biotechnology 
has shown its impact in livestock production, and it will continue to be excel in 
coming years. This second volume of the book presents the essential concepts and 
in-depth analysis on animal reproduction and breeding methods.

Chapter 1 focusses the discussion on effects of sexual steroids on stress response 
and welfare of female ruminants. This chapter also discusses how the behavior and 
welfare of farm animals could be affected with the application of reproductive 
biotechnologies.

Chapter 2 provides valuable information on kidney diseases. This chapter 
includes the discussions on topics such as pathophysiology, molecular biomarkers, 
and proteomics of kidney diseases.

Chapter 3 covers the updated information on production of genetically modified 
pigs with the use of CRISPR/Cas9. This chapter focusses the discussion on the pro-
duction of genetically modified pigs along with pros and cons.

Chapter 4 summarizes various types of anti-nutritional factors and their benefi-
cial and deleterious effects on livestock. This chapter provides information on com-
mon factors such as enzymes and chemical compounds found in plant materials 
used for animal feed.

Chapter 5 summarizes the genetic engineering tools in livestock production. This 
chapter provides the updated information on biotechnological methods such as 
molecular gene cloning, diagnostics, vaccines, microarray, marker assisted selec-
tion (MAS) in animal breeding, genome editors, role of biotechnology in animal 
nutrition, artificial insemination, cloning and transgenic animals in livestock pro-
duction, embryo transfer technology (ETT), and embryo sexing and sperm sexing.

Chapter 6 focuses the discussion on role of specific minerals in female animal 
reproduction. This chapter covers the discussion on biochemical, enzymatic, and 
endocrine actions of macromineral (calcium, phosphorus, and magnesium) and 
micromineral (copper, zinc, and manganese) ions along the hypothalamo-pituitary- 
ovarian axis.
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Chapter 7 discusses genetic selection of livestock such as cattle, sheep, goat, buf-
falo, and poultry. This chapter also provides a brief overview on statistical models 
for genomic prediction and whole sequence data.

This book serves as an important reference source for professionals and acade-
micians working in the research area of livestock production. We would like to 
thank all the authors for their contribution and cooperation. We would like to thank 
the director of the Indian Council of Agricultural Research (ICAR)-National Dairy 
Research Institute (NDRI), Karnal, India, for providing institutional support. We 
would like to extend our thanks to the staff of Springer Nature for their support in 
publication of this book. We would like to acknowledge the Department of 
Biotechnology, Government of India, for providing financial support from “DBT-RA 
Program in Biotechnology & Life Sciences.”

Karnal, India Vinod Kumar Yata

Mukteswar, India Ashok Kumar Mohanty

Aix-en-Provence, France Eric Lichtfouse

 
Dairy cattle production at ICAR-National Dairy Research Institute, India
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Chapter 4
Dietary Anti-nutritional Factors and Their 
Roles in Livestock Nutrition

Salma H. Abu Hafsa, Ayman A. Hassan, Mona M. M. Y. Elghandour, 
Alberto Barbabosa-Pliego, Miguel Mellado, and Abdelfattah Z. M. Salem

Abstract Nutrition is widely recognized as one of the chief factors driving profit-
ability, efficiency, and development of livestock production. Plant-derived feed-
stuffs are high in macronutrients and micronutrients, but they also possess 
anti-nutritional factors (ANFs). Anti-nutritional factors are secondary compounds 
that lower the nutrient content of forages and reduce forage feed intake by livestock. 
Protease inhibitors, amylase inhibitors, lectins, tannins, mimosine, phytic acid, gos-
sypol, oxalates, cyanogens, saponins, nitrates, alkaloids, and anti-vitamins are some 
of the most common ANFs found in livestock feed. The ANFs  block or interfere 
with how the animal’s body absorbs other nutrients, resulting in reduced bioavail-
ability of various legumes and cereal components. Thus, ANFs may cause micronu-
trient malnutrition and mineral deficiencies. Different traditional techniques and 
methods are used alone or in combination to reduce the ANFs content in livestock 
feed, such as fermentation, germination, debarking, sterilization, steam steriliza-
tion, and soaking. The majority of ANFs found in livestock feeds offer potential 
health advantages or risks for livestock.

Keywords Plant-based diet · Anti-nutrients · Potential health benefits · Adverse 
health effects · Livestock
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4.1  Introduction

Plants grown as animal feed are the basic feedstuff that provides nutrients to ani-
mals. Various shrubs, cereals, legumes, roughs, trees, herbs, and other non- 
conventional feeds for animals contain anti-nutritional factors (ANFs). These ANFs 
limit the usefulness of edible leaves, twigs, and pods of shrubs and trees as livestock 
feed. The ANFs are substances that, either by themselves or through their metabolic 
products, interfere with feed absorption and utilization, reduce nutrient intake and 
digestion, affect animal health and reproduction, or may produce other adverse 
effects (Akande et al. 2010). When consumed by animals in quantities above a criti-
cal threshold, even at a minimum level, ANFs reduce animal productivity, reproduc-
tion efficiency, and the quality of their products (milk, meat, and eggs) and cause 
toxicity. There is a wide distribution of non-lethal toxic factors throughout the plant 
kingdom, especially in plants used as animal feed (Igile 1996; D’Mello 2000). 
Several ANFs with potential toxicity for farm animals have been identified and are 
either heat-labile or heat-stable. These factors include protease inhibitors, amylase 
inhibitors, lectins, tannins, mimosine, phytic acid, gossypol, oxalates, cyanogens, 
saponins, nitrates, alkaloids, and anti-vitamin agents. These ANFs, found in plant- 
derived feeds, cause nutritional and animal health problems. Recently, the knowl-
edge that these factors produce toxins and elicit beneficial biological responses has 
led to numerous investigations regarding their possible physiological implications 
in different biological systems (Igile 1996). Some of these factors are known as 
‘secondary metabolites,’ which are widely applied in nutrition and as pharmaco-
logically active agents as antioxidants and reduce inflammation (Soetan 2008; 
Petroski and Minich 2020). Proper precautions, including physical, chemical, and 
biotechnical treatments, and the quantities and methods of use can aid in destroying 
or reducing the ANF content in unconventional feeds before feeding to livestock 
and may help to overcome the deleterious actions of ANFs and to make them useful 
for livestock (Amaefule and Onwudike 2000; Balogun 2013).

4.2  Anti-nutritional Factors

Anti-nutritional factors (ANFs) are chemicals that interfere with the absorption and 
utilisation of feed and affect animal productivity and health by themselves or their 
metabolic products. ANFs are also referred to as anti-nutrients, secondary sub-
stances, or plant secondary metabolites. Many ANFs with potential toxicity for live-
stock have been identified and can be either heat-labile or heat-stable (Table 4.1).

S. H. Abu Hafsa et al.
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Table 4.1 Heat-labile and/or heat-stable types of anti-nutritional factors in livestock feed

Heat-stable anti-nutritional factors Heat-labile anti-nutritional factors

Maintained at high temperature
Phytic acid, polyphenolic compounds (such as 
condensed tannins), Alkaloids, Saponins, and 
non-protein amino acids (Mimosine), etc.

Sensitive to standard temperature and lost at 
high temperature
Lectins, Cyanogenic Glycosides, and Protease 
inhibitors, etc.

Adapted from Felix and Mello (2000)

4.3  Classification of Anti-nutritional Factors

Anti-nutritional factors (ANFs) in plants can be classified based on their chemical 
composition, properties, mechanisms of action (Aletor and Adeogun 1995), effects 
on the nutritional value of feedstuffs, and biological effects on the overall animal 
health (Huisman and Tolman 2001). ANFs which are frequently found in animal 
feed can be grouped as follows:

The major ANFs commonly found in plant-derived feedstuffs used in animal 
feed are summarised in Tables 4.2 and 4.3.

4.3.1   Direct and Indirect Factors Affect on Protein Digestion 
and Metabolism 

4.3.1.1  Enzyme Inhibitors

Protease Inhibitors

Proteinases are enzymes that have diverse effects in improving the functional and 
nutritional properties of different protein molecules (Salas et al. 2018; Samtiya et al. 
2020). Protease inhibitors are natural plant inhibitors. They have been amply stud-
ied due to their proteolytic action (reduces enzyme activity by protein–protein inter-
actions), inflammatory response, ability to coagulate blood, and role in numerous 
hormone processing pathways (Gomes et  al. 2011). They are widely distributed 
within the plant kingdom. For instance, protease inhibitors are present in seeds of 
most leguminous crops, and their presence prevents the utilization of the seeds as 
livestock feed, which may lead to reduced mineral bioavailability as well as reduced 
digestion and nutrient absorption (Bajpai et al. 2005; Yasmin et al. 2008) (Table 4.6). 
Compared with legumes, cereals contain much less of these digestive inhibitors, 
particularly those that act against proteases and amylases (Nikmaram et al. 2017). 
Protease inhibitors are concentrated in the outer portion of cereal cotyledons, which 
are the most common areas containing anti-nutritional factors in plants, and they 
can inhibit the activity of proteolytic enzymes secreted in the digestive system of 
animals (Nørgaard et al. 2019) by blocking the active site of the enzymes through a 
catalytic means. The N- and C-terminal and the exposed protease inhibitors are 

4 Dietary Anti-nutritional Factors and Their Roles in Livestock Nutrition
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Table 4.2 Classification of major anti-nutritional factors present in the plant-derived feedstuffs 
used in livestock feed

Anti-nutritional 
factors Plant-derived nutrient source Means of alleviation

Interaction with protein nutrition
Enzyme inhibitors Soybean, sunflower oil cake, 

rapeseed meal, lupin seed meal, 
sesame meal, pea seed meal, 
Jatropha kernel meal, Rapeseed, 
mustard oil cake

Heat, autoclaving, boiling, soaking

Lectins 
(Heamagglutinins)

Soybean, pea seed meal, Jatropha 
kernel meal

Heat, autoclaving

Saponins Peas, Jatropha kernel meal, 
sunflower oil cake, lupin seed meal, 
pea seed meal

Soaking,

Tannins Sorghum, mustard oil Cake, Jatropha 
kernel meal, pea seed meal, 
Rapeseed, mustard oil cake

Soaking, germination followed by 
dehulling, genetic modification

Mimosine Leucaena leucocephala Heat and chemical treatments, 
supplementation with amino acids 
or with metal ions

Interaction with mineralavailability
Phytic acid Soybean, pea seed meal, cottonseed 

meal, Jatropha kernel meal, sesame 
meal, Rapeseed, mustard oil cake

Supplementation, use of phytase, 
roasting, soaking, autoclaving, 
fermentation, germination, genetic 
modification

Oxalic acid Leaf proteins Heat treatment, Boiling
Gossypol Cottonseed meal Genetic modification, fermentation, 

use of iron salts
Interaction with vitamin availability
Cyanogens, Cassava, sorghum, pea seed meal Heat treatment, boiling, simmering, 

blanching
Alkaloids Lupin seed meal Heat treatment, soaking
Antivitamins Cottonseed meal, soybean meal, pea 

seed meal
Heat treatment

Francis et al. (2001)

often considered structural features necessary for inhibiting enzyme activity 
(Otlewski et  al. 2005). They bind proteases, which resist digestion in the small 
intestine; thus, ensuring their removal through excretion (Fig. 4.1). Because of their 
protein-particular nature, protease inhibitors can be easily denatured by heat treat-
ment, although some residual activity may remain in commercially produced prod-
ucts. The anti-nutrient activity of protease inhibitors is related to growth suppression 
and pancreatic hypertrophy (Chunmei et al. 2010). There are two types of protease 
inhibitors, the Kunitz inhibitor (inhibits trypsin only) and the Bowman-Burk inhibi-
tor (inhibits trypsin and chymotrypsin) (Ramteke et al. 2019), commonly found in 
soybeans and cannot be quickly inactivated by heat treatment due to the presence of 
disulfide bridges (Liu 1997; Van Der Ven et  al. 2005). The trypsin inhibitor in 

S. H. Abu Hafsa et al.
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Table 4.3 The types of anti-nutritional factors in forage crops

Anti-nutritional substances Crops/species

Non-protein amino acids
Mimosine Leucaena leucocephala

Indospecine Indigofera spicta

Glycosides
Cyanogens Acacia giraffae

Acacia sieberiana
Acacia Cunninghamii
Barteria fistulosa
Bambusa bambos
Manihot esculenta

Saponins Albizia stipulate
Sesbania sesban
Bassia latifolia

Phytohemagglutinins
Ricin Bauhinia purpurea

Robinia pseudoacacia

Robin Ricinus communis

Polyphenolic compounds
Tannins All vascular plants
Lignins All vascular plants
Alkaloids
N-methyl-B-phen Acacia berlandieri

Ethylamine Sesbania vesiceria

Sesbanine Sesbania punicea
Sesbania drummondii

Triterpenes
Azadirachtin Azadirachta indica

Limonin Azadirachta indica

Oxalate Acacia aneura

soybean interferes with methionine availability from raw soybean and forms non- 
digestible complexes with dietary protein in the gastrointestinal tract (Ramteke 
et al. 2019). These complexes are not digestible even in large amounts of digestive 
enzymes (Thakur et al. 2019). Chicks fed raw soybeans develop pancreatic hyper-
trophy, but this is not observed in pigs and calves (Ramteke et al. 2019). The pres-
ence of trypsin inhibitors in the diet creates an irreversible condition known as the 
enzyme-trypsin inhibitor complex, which leads to a reduction of trypsin in the intes-
tine and a decrease in protein digestion, slowing down the animal growth. Several 
enzyme inhibitors are found in plant-derived feeds, but those that affect trypsin and 
α-amylase activity are the two main types found in all cereals and legume-based 
feeds. The factors controlling the destruction of protease inhibitors are heat treat-
ment, duration of heating, particle size, and moisture level (Vaz Patto et al. 2015).

4 Dietary Anti-nutritional Factors and Their Roles in Livestock Nutrition
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Fig. 4.1 Potential Target molecules of protease inhibitors

Amylase Inhibitors

α-amylase regulates the breakdown of carbohydrates, such as the breakdown of 
polysaccharides into oligosaccharides. Amylase inhibitors are known as starch 
blockers because they contain substances that prevent the absorption of dietary 
starches. Therefore, α-amylase inhibitors increase the time for carbohydrate absorp-
tion by delaying carbohydrate digestion, thus decreasing the rate of glucose absorp-
tion and affecting the average postprandial plasma glucose concentration (Bhutkar 
and Bhise 2012). These inhibitors are heat-labile and are active in the pH range of 
4.5–9.5 (Marshall and Lauda 2007). Amylase inhibitors do not inhibit bacterial, 
fungal, or endogenous amylase but can inhibit bovine pancreatic amylase. This 
inhibitor’s instability in the gastrointestinal tract leads to reduced insulin responses 
and increased caloric production from food when the inhibitor is used in starch 
blocking tablets (Giri and Kachole 1998).

4.3.1.2  Lectins (Haemagglutinins)

Lectins are sugar-binding proteins that readily bind to red blood cells to cause 
agglutination and are found in most plants, especially seeds such as grains and 
beans, tubers like potatoes, and raw meat (Hamid et al. 2013). Grains and legumes 
generally contain lectins, which are glycoproteins. Lectin activity has been deter-
mined in more than 800 legumes; 2–10% of the total legume seed proteins are 
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lectins in soybean and ricin (castor bean), the latter is toxic and causes severe 
inflammation in the intestine, kidney, thyroid gland, etc. (Ramteke et al. 2019). In 
addition, the transport and hydrolytic functions of intestinal cells can be impaired 
by the consumption of foods containing lectins (Krupa 2008). Lectins impair the 
absorption of nutrients by binding directly to the intestinal mucosa, interacting with 
enterocytes, and resulting in severe intestinal damage, which disrupts digestion, 
causes nutrient deficiencies and epithelial lesions within the intestine, and allows 
bacterial populations to come in contact with the bloodstream (Muramoto 2017) 
(Fig. 4.2). In a study by Bardocz et al. (1995), the epithelium had an increased den-
sity of goblet cells and a marked decrease or absence of absorptive vacuoles; the 
microvilli of the intestinal cells were shortened with an increase in microvillar 

Fig. 4.2 Binding of particle-lectin conjugates with sugar residues of the cell membrane
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vesicle formation and the number of intestinal crypt cells. The increase in the den-
sity of the goblet cells may have been due to the production of hypertrophic mucus 
in the intestine as a result of the irritation by lectins; thus, preventing the absorption 
of digestion end products in the small intestine. Lectins may also have resisted 
digestion through pancreatic juice (Ramteke et al. 2019). Lectins from soybeans, 
known as soybean agglutinins, impair animal growth, cause enlargement of the 
small intestine, damage the small intestine’s epithelium, and stimulate hypertrophy 
and pancreas hyperplasia (Grant 1991) (Table 4.6). Lectins also bind with the gly-
coprotein components of erythrocytes, causing cell agglutination. Lectins have 
some interesting chemical and biological properties, such as interacting with spe-
cific blood groups, performing various mitotic division functions, destroying cancer 
cells, and having toxic effects in some animals. Since they bind with different sugar 
groups, lectins that attach to the intestinal wall may vary depending on sugar type. 
Dietary lectins are important because they are resistant to digestion and are not 
hydrolyzed in the intestine (Fig. 4.2). Although lectins are proteins, they are par-
tially resistant to proteolytic degradation in the intestine. Soybean lectins can bind 
to brush border surfaces, particularly in the small intestine’s distal part (Grant 1991; 
Dublecz 2011). Lectins selectively bind carbohydrates and, most importantly, the 
carbohydrate moieties of glycoproteins present on most animal cell surfaces. Lectins 
act as protein antigens that simultaneously bind to surface glycoproteins or glyco-
lipids in red blood cells and immune factors, causing haemagglutination and anemia 
(Sauvion et al. 2004). They are present in small amounts in 30% of foods and in 
higher quantities in whole-grain diets. Haemagglutination of red blood cells is com-
monly used to measure lectin activity (Dublecz 2011; Fereidoon 2014). Consumption 
of feed-containing lectins may result in endogenous loss of nitrogen and reduced 
protein utilization. Undigested and unabsorbed proteins and carbohydrates in the 
small intestine reach the colon, where the bacterial flora ferments them into short- 
chain fatty acids and gases. These may, in turn, contribute to some digestive symp-
toms related to the intake of raw beans or purified lectins. The gastrointestinal 
mucosal disruption caused by lectins may allow bacteria and their endotoxins to 
enter the bloodstream and cause toxicity. Lectins can also be absorbed directly and 
cause systemic effects such as increased protein catabolism, breakdown of stored 
fats and glycogen, and mineral metabolism disturbances (Fereidoon 2014).

4.3.1.3  Tannins

Tannins are astringent and bitter plant polyphenols with molecular weights higher 
than 500 Da. One of the properties of these compounds is their ability to precipitate 
proteins and various other organic compounds, including amino acids and alkaloids. 
Tannins are secondary compounds found in plants’ leaves, fruits, and bark (Timotheo 
and Lauer 2018). They are also found in cereals such as sorghum (containing up to 
5% condensed tannin) and barley (Serrano et al. 2009; Morzelle et al. 2019), food 
crops and legumes such as lima beans, fava beans, sunflower seed meal, and rape-
seed, in the foliage of many trees and shrubs, and many seeds and agro-industrial 
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by-products (Dube et al. 2001) (Table 4.4). Tannins usually affect protein digestion 
by forming reversible and non-reversible tannin-protein complexes between the 
hydroxyl group of tannins and the carbonyl group of proteins, reducing essential 
amino acids (Lampart-Szczapa et  al. 2003; Patra and Saxena 2010; Raes et  al. 
2014). In nature, there are two types of tannins: hydrolyzable (e.g., gallotannins and 
ellagitannins) and condensed (e.g., proanthocyanidins) (Patel et al. 2013) (Fig. 4.3). 
The two types differ in their molecular weight, structure, and nutritional and toxic 
effects on herbivorous animals, especially in ruminants that ingest tannin-rich for-
ages (Fig. 4.3).

Condensed tannins (CT) are the most common type of tannins present in legumes, 
seeds, trees, and stems (Barry and McNabb 1999). They are extensively distributed 
in legume pasture species, several Acacia species, seeds, and other plant species 
(Degan et al. 1995). The CT consists of flavonoid units (flavan-3-ol) linked by car-
bon–carbon bonds, which influence its physical and biological properties 
(Hassanpour et al. 2011). The complexity of CT relies on flavonoid units that vary 

Table 4.4 Distribution of tannins in selected feedstuffs

Feed ingredients Tannin concentration (%)a References

Sorghum grain (white) 0.55 Gowda et al. (1994)
Sorghum grain (yellow) 0.2–2.0 Fuller et al. (1996)
Sorghum grain (red) 1.54–7.44 Medugu et al. (2010)
Sunflower cake 2.36 Jacob et al. (1996)
Sesame seed cake 2.15 Jacob et al. (1996)
Mango seed kernel 5.47 Diarra et al. (2008)
Mango seed kernel 0.08–0.10 Bala et al. (2013)
Soybean meal 2.47 Jacob et al. (1996)
Pigeon pea 4.3–11.4 Jambunathan et al. (1988)
Chick pea 1.9–6.1 Jambunathan et al. (1988)
Mucuna beans 0.80 Akinmutimi (2007)

aDry matter basis

Fig. 4.3 Types of tannins and their primary structures
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between components and within sites to form interflavan bonds. Hydrolyzable tan-
nins (HT) are usually found at lower concentrations in plants than CT, and they are 
further divided into taragallotannins (gallic and quinic acid) and caffetannins (caf-
feic and quinic acid) (Mangan 1988). The HT  are easily hydrolyzed during the 
digestion process by tanninase enzymes that engage in ester-bond hydrolysis. They 
can form compounds such as pyrogallol, which is toxic to ruminants. Poisonous 
compounds from more than 20% HT in the diet can cause kidney damage, proximal 
tubular necrosis, liver necrosis, lesions related to haemorrhagic gastroenteritis, and 
high mortality in sheep and cattle (Reed 1995). Previous studies have shown that 
cattle and sheep are sensitive to these tannins, while goats are resistant (D’Mello 
2000; Bhattarai et al. 2016; Smeriglio et al. 2017). Tannins mainly accumulate on 
the seed coat of legumes; when ingested, they form protein-containing complexes 
that disrupt various digestive enzymes and reduce protein digestion (Joye 2019). In 
non-ruminants, HT can reduce growth rates, protein utilization, cause damage to the 
mucosa of the digestive tract and increase the excretion of protein and amino acids 
(Hassanpour et al. 2011). CT strongly reduces hydrolyzable tannin’s digestibility, 
while HT causes varied toxic manifestations due to hydrolysis in the rumen (Akande 
et al. 2010). Tannins are the most common anti-nutritional factors found in plants. 
Their anti-nutritional effects depend on their chemical structure and concentration. 
They can inhibit trypsin, chymotrypsin, amylase, and lipase activities, reduce 
dietary protein quality, and interfere with dietary iron absorption (Lumen and 
Salamat 1980; Rao and Desothale 1998). Tannins also form insoluble complexes 
with proteins, which may explain the anti-nutritional effects of feeds containing 
tannins (Gemede and Ratta 2014) (Table 4.6). Tannins interfere with digestion by 
displaying anti-amylase activity and forming a complex with vitamin B (Liener 
1980). Other adverse nutritional effects of tannins include intestinal damage and a 
possible carcinogenic effect, depression of feed intake, growth rate, feed efficiency, 
and microbial enzyme activities, including cellulose and intestinal digestion, as well 
as increased endogenous protein excretion, digestive tract malfunctioning, and tox-
icity of absorbed tannins or their metabolites. Tannins may form small digestive 
complexes with the feed antagonistic to arginine, interfere with RNA proteins, bind 
and inhibit endogenous proteins such as digestive enzymes, make proteins partially 
unavailable, and increase faecal nitrogen (Kumar and Singh 1984) (Fig.  4.4). 
Tannin-protein complexes include both hydrogen bonding and hydrophobic interac-
tions. The protein–tannin complex’s precipitation depends on the pH, molecular 
size, and ionic strength of tannins (Fig. 4.5). Both protein precipitation and incorpo-
ration of tannins in the precipitate increase as the tannins’ molecular weight exceeds 
5000 Da, and the tannins become insoluble and lose their ability to precipitate pro-
tein. The degree of polymerization then becomes necessary to assess the role of 
tannins in ruminant nutrition. CTs are responsible for the test-linked trypsin inhibi-
tor activity of fava beans (Helsper et al. 1993).
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Fig. 4.4 Tannins that bind to dietary protein increase the nitrogen flux from the rumen to the small 
intestine

Fig. 4.5 Protection of feed proteins through tannin-protein complexes

4.3.1.4  Non-protein Amino Acids

Mimosine

Mimosine is a non-protein amino acid that is structurally similar to tyrosine. It is 
present in Leucaena leucocephala, in which the leaf mimosine level is approxi-
mately 2–6% and varies depending on season and maturity of leaves and stems. The 
main clinical symptoms of toxicity in non-ruminants include poor growth, 
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reproductive problems, eye cataracts, and alopecia. When L. leucocephala is used 
as a feed meal for poultry, rabbit, or pigs, more than 5–10% of the meal generally 
causes poor growth and reproduction. In ruminants, mimosine toxicity causes poor 
body growth, poor wool development, depressed serum thyroxine levels, goiters, 
alopecia, dullness, swollen and raw coronets above the hooves, lesions in the mouth 
and oesophagus, and lameness (Table 4.6). Symptoms may be due to the mimosine 
metabolite in the rumen or 3,4-dihydroxypyridine.

Additionally, Jones et  al. (1989) observed a diminished calving percentage in 
cows fed L. leucocephala. The problems caused by mimosine can be solved by 
genetically selecting Leucaena species with low mimosine content, but it has been 
noted that the low-mimosine species are unproductive and have low vigor; this 
problem can be solved by producing feed containing Leucaena mixed with other 
forages and concentrates. Hiremat (1981) suggested that the use of Leucaena as 
fodder can be limited to 50% of green forage for goats and 30% for cattle and buf-
falo. This strategy results in better livestock growth and production.

4.3.2  Factors Interfering with Minerals Utilisation 

4.3.2.1  Phytic Acid

Phytic acid, also known as inositol hexakisphosphate, occurs naturally as phytate in 
feedstuffs of plant origin, and it acts as a storage form of phosphorus (Bedford 
2000) (Fig. 4.6). Phytic acid is a phosphorus-containing compound that binds to 

Fig. 4.6 Phytic acid and 
its basic structure
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minerals and inhibits mineral absorption, resulting in decreased bioavailability of 
essential minerals, eventually turning them into insoluble compounds that are less 
readily absorbed and digested in the small intestine (Desphande and Cheryan 1984; 
Lott et  al. 2000; Raboy 2000). Phytic acid is a ubiquitous secondary compound 
ranging from 0.1% to 6.0% among plant species, especially seeds, legumes, and 
cereals (Lolas 1976; Garcı́a-Estepa et  al. 1999;  Lori et  al.  2001; Loewus 2002; 
Margier et  al. 2018). Phytic acid is primarily present as a salt of the mono- and 
divalent cations K+, Mg2+, and Ca2+, and it accumulates in seeds during ripening 
(Maenz 2001).

Phytic acid is generally a negatively charged structure that binds to positively 
charged metal ions such as zinc, calcium, magnesium, and iron to form complexes 
and reduce these ions’ bioavailability through lowered absorption rates. Phytic acid 
is one of the most effective anti-nutrients in animal feeds due to its chelating prop-
erty. Its presence causes mineral ion deficiency in animal and human nutrition 
(Walter et al. 2002; Bora 2014; Grace et al. 2017) (Table 4.6). Since phytic acid, one 
of the strongest ANFs in plant feedstuffs, accumulates in seed storage sites, behaves 
as a chelating ligand with minerals and forms complex salt phytates; and can act as 
potent chelators that form protein and mineral-phytic acid complexes in a reduced 
bioavailability of protein and minerals (Erdman 1979). Most of the phosphorus con-
tained within phytic acid is unavailable mainly to non-ruminants due to the absence 
of phytase in these animals’ gastrointestinal tract (GIT). In chickens, there is a sig-
nificant inverse relationship between phytic acid availability and the availability of 
phosphorus, magnesium, zinc, and calcium in feedstuffs, such as rapeseed, palm 
kernel seed, soybean meal, and cottonseed meal. Phytic acid, a highly negatively 
charged ion, works in a broad pH range and binds nutritionally important divalent 
cations in the diet such as iron, zinc, copper, magnesium, calcium, and molybdenum 
and endogenous GIT secretions such as digestive enzymes and mucins. This bind-
ing leads to the formation of insoluble complexes that are not readily absorbed by 
the GIT and increase the endogenous secretion of nutrients (Frontela et al. 2008; 
Woyengo and Nyachoti 2013) (Fig. 4.7). It also inhibits the action of GI tyrosinase, 
trypsin, pepsin, lipase, and amylase. Phytic acid is poorly hydrolyzed by non- 
ruminants (Woyengo and Nyachoti 2011, 2013). Most poultry does not have endog-
enous enzymes to break down phytate and release nutrients; thus, phytate transits 
undigested through the GIT (Fig. 4.8). This is also why high proportions of valuable 
nutrients from plant sources are not utilized by non-ruminants and are wasted in the 
excreta (Mueller 2001). Phosphorus bound to phytate is not bioavailable to non-
ruminants. Ruminants, such as sheep and cows, chew, swallow, and then regurgitate 
their food; this regurgitated food is known as cud and is chewed a second time. Due 
to the phytase activity of rumen microorganisms, these animals can separate and 
process phosphorus into phytates (Haese 2017).
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Fig. 4.7 Phytate life cycle

4.3.2.2  Gossypol

Gossypol is a phenolic compound with a yellow pigment, which is a complex of 
esters and ethers of various carbohydrates found in the pigment glands of plants of 
the genus Gossypium, family Malvaceae. It is present in two forms: free gossypol 
or bound form (Abbas 2020). Free gossypol contains aldehyde and phenolic groups, 
making it more reactive and toxic (Leeson and Summer 2001) (Fig. 4.9). Bound 
gossypol (BG) is not absorbed and is non-toxic. Gossypol is found in higher con-
centrations in cotton seeds (0.4–2.4%), and the average content of free gossypol in 
cottonseed meal is 0.01% (Liener 1980). Whole cotton seeds contain the highest 
amount of free gossypol. Cottonseed meal is a by-product of extracting cottonseed 
oil from whole seeds. Different extraction techniques significantly impact on the 
amount of free gossypol contained in cottonseed meal. The screw-press method 
uses heat that increases protein binding, thus converting more free gossypol (toxic 
form) into BG (non-toxic). Solvent extraction is widely used because more oil can 
be extracted. However, because heat is not used in solvent extraction, the amount of 
free gossypol content in cottonseed meal is approximately ten times higher than that 
in cottonseed meal processed by the screw-press method. This can be a considerable 
difference if there is much gossypol in the seed. This switch to solvent extraction 
explains the increase in gossypol toxicity in the past decades (Morgan 1989). Free 
gossypol is the most common anti-nutritional factor in cottonseed meal, primarily 
affecting the heart, liver, reproductive tract, and kidneys (Nagalakshmi et al. 2007). 
During cotton seed oil extraction, free gossypol binds to the epsilon amino group of 
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Fig. 4.8 Phytate with/without phytase in vivo

Fig. 4.9 Gossypol and its 
basic structure

lysine, resulting in BG, which reduces lysine availability to animals. The amount of 
free gossypol in cottonseed meal can be variable. Many factors influence its content, 
such as cotton plant species, climatic and soil conditions, oil extraction methods, 
kernel to husk ratio, and seed coat (Nagalakshmi et al. 2007). This makes it impos-
sible to know how much free gossypol the cottonseed meal contains without testing 
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it. Hence, the quality of cottonseed meal is restricted by the free gossypol, its unbal-
anced digestible amino acid, and its high fluctuation in free gossypol concentration. 
Moreover, methionine, lysine, threonine, and valine deficiency in cottonseed meal 
protein causes a decrease in its digestibility, probably due to high cell wall compo-
nents, which provokes a faster digestion passage rate due to gossypol binding to the 
soluble protein (Nagalakshmi et  al. 2007). Gossypol makes an insoluble chelate 
with many essential elements such as iron and amino acids, hence reducing these 
nutrients’ availability (Church 1991; Robinson 1991). Gossypol may reduce protein 
digestibility by binding to the free epsilon amino group of lysine during heat treat-
ment, and the gossypol protein complex formed in cottonseed meal may render the 
adjacent peptides unavailable for proteolytic action. Gossypol inhibits the activity 
of important enzymes by binding to their free epsilon amino groups (Sharma et al. 
1978). Non-ruminants have long been known to be susceptible to gossypol toxicity. 
Ruminants such as cattle and sheep can tolerate higher free gossypol levels because 
gossypol binds to proteins in the rumen. However, young calves and lambs are pretty 
susceptible to gossypol toxicosis. Although they are ruminants, their rumen is not 
fully functional and cannot bind as much free gossypol as the rumen of adult ani-
mals. General signs of gossypol toxicity are reduced appetite and the productive 
performance of animals, and causes contraception and infertility in animals (Leeson 
and Summer 2001), inhibition of haemoglobin synthesis by iron-binding, inhibition 
of respiratory enzymes resulting in difficulty breathing and cardiac arrhythmias 
(Ferguson et  al. 1959; Skutches et  al. 1973), reduction in the oxygen-carrying 
capacity of hemoglobin, and a decrease in the ratio of hemoglobin to red blood cells 
and decreased serum protein concentration. Dietary gossypol may also cause diar-
rhea, oedema of the body cavities, liver discoloration, and degeneration of myocar-
dium, liver, and spleen (Church 1991; Olomu 1995). In poultry, free gossypol 
reduces production performance and causes leg weakness (Lordelo et al. 2007) and 
egg yolk mottling (i.e., olive green discoloration of yolk) (Davis et al. 2002) due to 
the interaction between gossypol and yolk iron, and may also harm blood biochem-
istry variables (Adeyemo 2008) (Table 4.6). Cotton seeds are rich in gossypol and 
can thus produce severe toxicity to farm animals; however, the cumulative effects of 
dietary gossypol and toxicity can occur after an ingestion period of 1–3 months 
(Patton et al. 1985; Kerr 1989; Soto-Blanco 2008; Gadelha et al. 2011). Gossypol 
toxicity has been reported in many species, including broiler chicks (Henry et al. 
2001), pigs (Haschek et al. 1989), goats (East et al. 1994), and sheep (Morgan et al. 
1988). Non-ruminants are more susceptible to gossypol toxicity than ruminants 
(Alexander et  al. 2008; Kenar 2006; Randel et  al. 1992; Zhang et  al. 2007). 
Moreover, young ruminants are more sensitive to gossypol than adult ruminants 
(Soto-Blanco 2008) because gossypol is not bound during rumen fermentation, as it 
is in animals with fully functional rumen. However, if gossypol intake overwhelms 
the rumen’s detoxification capacity, free gossypol may be absorbed  in hazardous 
concentrations even in adult ruminants (Willard et al. 1995). The rate of gossypol 
absorption is inversely proportional to the amount of iron in the diet (Haschek et al. 
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1989); thus, dietary supplementation with ferrous sulfate inhibits free gossypol 
(Barraza et  al. 1991). In ruminants, microbial fermentation in the rumen binds 
dietary free gossypol with proteins (Schneider et al. 2002). However, it is unknown 
whether the intestine can absorb the BG form or if microorganisms can release free 
gossypol from the bound form, as absorbed gossypol accumulates in the liver 
(Lindsey et al. 1980) and kidneys (Kim et al. 1996). The primary route of gossypol 
excretion is through the bile; it is then eliminated through faeces after conjugation 
with glucuronides and sulfates (Abou-Donia et al. 1989). Small amounts of gossy-
pol are also excreted in expired air (Soto-Blanco 2008), and some gossypol is 
excreted in the milk (Lindsey et al. 1980).

4.3.2.3  Oxalates

Oxalate (oxalic acid) is a substance that can form insoluble salts with minerals such 
as Ca, K, Na, Mg, and Fe. These compounds are found in small amounts in both 
plants and mammals (Petroski and Minich 2020). Under normal conditions, oxalate 
is confined to separate compartments, but when it is processed and or digested, it 
comes into contact with the nutrients in the digestive system (Noonan and Savage 
1999). When released, it binds with nutrients, rendering them unavailable to the 
body. If feed with excessive amounts of oxalic acid is consumed regularly, a nutri-
tional deficiency is likely  and severe irritation of the gut lining (Liebman and 
Al-Wahsh 2011). Strong bonds are formed between oxalic acid and many other 
minerals, such as Ca, K, Na, and Mg (Fig. 4.10). These chemical combinations lead 
to the formation of oxalate salts found in plants’ soluble and insoluble forms. 
Soluble salts are formed when oxalate binds to Mg, Na, and K, while insoluble salts 
are produced when oxalate binds to Fe and Ca. Oxalate affects Ca and Mg metabo-
lism and interacts with proteins to form complexes that inhibit digestion. The high 
content of soluble oxalate content prevents the absorption of soluble Ca ions, as 
oxalate binds to Ca ions to form insoluble Ca-oxalate complexes (Hamid et  al. 
2017). This renders Ca unavailable for maintaining healthy bones, as a cofactor in 
enzymatic reactions, the transmission of nerve impulses, and as a clotting factor in 
the blood (Table 4.6). Ca loss leads to bone deterioration, impaired blood clotting, 
and a disturbance in the absorbed Ca:P ratio, which leads to bone mineral mobiliza-
tion to alleviate hypocalcemia; therefore, prolonged mobilization of bone minerals 

Fig. 4.10 Show the different chemical structure between oxalate, oxalic acid and calcium oxalate
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leads to osteodystrophy fibrosa or hyperparathyroidism (Rahman and Kawamura 
2011). In ruminants, oxalate is marginally significant as ANF because rumen micro-
flora  efficiently metabolize soluble oxalates (Gemede and Ratta 2014) and, to a 
lesser extent, even insoluble Ca-oxalate. If large quantities of oxalate-rich plants are 
ingested, the rumen is overwhelmed and cannot metabolize oxalates, poisoning the 
animal. A soluble oxalate level of 2% or more in forage grasses may cause severe 
poisoning in ruminants, but in non-ruminants, a level <0.5% is safe. However, these 
proposed safe levels of soluble oxalate should be considered preliminary (Rahman 
et al. 2013). Various tropical grasses, including pangola and buffel grasses, kikuyu-
grass, and Setaria grasses, contain soluble oxalates in sufficient concentrations to 
induce Ca deficiency in grazing animals. Young plants contain more oxalate than 
older ones (Jones and Ford 1972). There is a rapid rise in oxalate content during the 
early stages of growth, followed by a decrease as the plant matures (Davis 1981). 
The highest oxalate content in grasses occurs during rapid growth, reaching concen-
trations up to 6% of the dry weight (Cheeke 1996). Additionally, oxalate content can 
be manipulated by varying the harvesting interval, decreasing with an increased 
harvest interval (Rahman et al. 2009; Patel et al. 2013).

4.3.3  Anti-vitamins

Some anti-vitamin factors are found in plants, especially leguminous plants. Anti- 
vitamins are organic compounds that destroy specific vitamins, combine and form 
non-absorbable complexes, or interfere with digestive and/or metabolic functions 
(Ramteke et al. 2019) (Table 4.6). Antivitamin A in raw soybeans contains lipoxy-
genase enzymes that oxidize carotene, a precursor of vitamin A. Heating soybeans 
can destroy it for 5 min at atmospheric pressure. Antivitamin D is a rachitogenic 
factor in isolated soy protein (unheated). It interferes with the absorption of Ca and 
P in pigs and chicks, and it is destroyed by autoclaving. Antivitamin E is present in 
soybeans and alfalfa, and it causes muscle dystrophy and liver necrosis in lambs and 
chicks by reducing plasma vitamin E.  It is similarly destroyed by autoclaving. 
Antivitamin K in sweet clover causes a fatal haemorrhagic condition in cattle known 
as sweet clover disease. Dicoumarol reduces the levels of prothrombin in the blood 
and affects blood clotting. Other anti-vitamins include anti-thiamine, also called 
thiaminase, which is found in cotton seeds, linseed, mustard seed, and mung bean, 
and anti-niacin, which is found in sorghum, maize, and wheat bran and causes pero-
sis (chondrodystrophy) and growth depression. Additionally, anti-pyridoxine, also 
called linatine, has been identified as 1-amino-D-proline, and is naturally occurring 
with glutamic acid as a peptide, and can be destroyed after water treatment and 
autoclaving. Finally, anti-vitamin B12 is found in raw soybeans (Ramteke 
et al. 2019).
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4.3.4  Miscellaneous 

4.3.4.1  Cyanogens

When consumed, several plant species produce hydrogen cyanide from cyanogenic 
glycosides, which are sugar glycosides or polysaccharides that combine with cya-
nide and contain aglycone (Fig.  4.11). More than 2500 plant species have been 
reported to contain cyanogenic glucosides, including important staple foods such as 
sorghum, cassava, white clover, and linseed (Rosling 1987; Vennesland et al. 1982). 
Cyanogenic glucosides, or cyanoglycosides, represent approximately 90% of the 
broadest group of plant toxins known as cyanogens. The main feature of these tox-
ins is cyanogenes, the formation of free hydrogen cyanide, which binds to cyanohy-
drins that have been stabilized by glycosylation (binding of polysaccharides) to 
form cyanogenic glycosides. In addition, cyanogenic glucosides are classified as 
phytoanticipins. Their function in plants depends on activation by glucosidases to 
release toxic volatile hydrogen cyanide and aldehydes or ketones to repel herbivory 
and pathogens (Zagrobelny et al. 2004). Hydrogen cyanide inhibits the cytochrome 
oxidase enzyme in the mitochondria of cells by binding to the Fe3+/Fe2+ present in 
the enzyme, resulting in decreased tissue O2 utilization, causing increased levels of 
blood glucose and lactic acid, and reducing the ATP/ADP ratio, indicating a shift 
from aerobic to anaerobic metabolism.

Moreover, many enzyme systems inhibit growth by interfering with certain 
essential amino acids and  utilizing associated nutrients (Table  4.6) and causing 
severe poisoning, neuropathy, and death (Osuntokun 1972). Cyanide activates the 
glycogenolysis process and converts glucose in the pentose phosphate pathway, 
which reduces the rate of glycolysis and inhibits the tricarboxylic acid cycle. 
Cyanide then reduces the energy availability in all cells, but its effect is immediate 
on the respiratory system and heart. Since cyanide is highly toxic, it inhibits cyto-
chrome oxidase, which is the last step in electron transport, thus inhibiting ATP 
synthesis. The most obvious symptom is death, but before dying, symptoms include 
faster and deeper respiration, a faster irregular and weaker pulse, salivation and 
frothing mouth, muscular spasms, dilation of the pupils, and bright red mucous 
membranes. The potential toxicity of cyanogen depends mainly on the potential 
concentration of hydrogen cyanide that may be released upon consumption. When 

Fig. 4.11 Cyanogens 
and their basic structure
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a cyanogenic plant is consumed, β-glycosidase is released during digestion and fol-
lows the known cyanide metabolic pathways and toxicokinetic processes in animals 
and humans (Oke 1979, 1980); it remains active until inactivated by a low gastric 
pH. After the catabolic intracellular enzyme β-glucosidase is released upon contact 
with glycosides, this enzyme breaks down cyanogenic glycosides releasing hydro-
gen cyanide, glucose, ketones, or benzaldehydes (Gonzales and Sabatini 1989; 
Rosling 1987; WHO 2010). The hydrolytic reaction can occur in the rumen by 
microbial activity. Hence, ruminants are more susceptible to cyanide toxicity than 
non-ruminants (Patel et al. 2013). After its absorption, cyanide is rapidly distributed 
in the animal body through the blood. It is known to combine with Fe in both met-
hemoglobin and haemoglobin found in red blood cells, leading to an increased cya-
nide concentration in red blood cells compared with that of plasma. Cyanide is 
detoxified in the liver by the enzyme rhodanese, forming thiocyanate, which is 
excreted in the urine (Oke 1979, 1980). There is a range for the lethal dose of hydro-
gen cyanide in animals for various species (0.66–15 mg/kg body weight). For cattle 
and sheep, the range is 2.0–4.0 mg/kg body weight (Robson 2007).

Furthermore, a level greater than 50 mg/kg is harmful to poultry (Udedibie et al. 
2004). Decreased growth and egg production rates have been observed in hens 
offered fed containing cyanide (Okafor and Okorie 2006), and the acute toxicity of 
hydrogen cyanide in rabbits occurs at 0.66 mg/kg body weight (EPA 1990). The 
presence of cyanogens in feed can also deplete sulfur-containing amino acids in 
birds, resulting in reduced protein synthesis and growth since an adequate amount 
of amino acids is one of the basic requirements for protein synthesis. The need to 
supplement cassava feed with methionine and cysteine (sulfur-containing amino 
acids) has been demonstrated for non-ruminant species (Maner and Gomez 1973).

4.3.4.2  Saponins

Saponins are a heterogeneous group of foam-producing triterpenes or steroidal gly-
cosides that are widely distributed in nature, occurring primarily in the plant king-
dom, including in pulses (chickpeas, beans, lentils, among others), oilseeds, 
groundnuts, lupin beans, sunflower, and alfalfa, with minor levels in other legumes 
such as soybeans, rapeseed, and various varieties of peas. The name ‘saponin’ is 
derived from the Latin word sapo, meaning ‘soap’ because saponin molecules form 
soap-like foams when shaken in water (Fig. 4.12). Saponins consist of non-polar 
aglycones coupled with one or more monosaccharide moieties (Oleszek 2002). This 
combination of polar and non-polar structural elements in their molecules explains 
their soap-like behavior in aqueous solutions. The structural complexity of saponins 
results in physical, chemical, and biological properties such as sweetness and bitter-
ness, foaming and emulsifying, pharmacological and medicinal, hemolytic, antimi-
crobial, insecticidal and molluscicidal activities (Sparg et  al. 2004; Gemede and 
Ratta 2014). Saponins have been recognized as ANF constituents because of their 

S. H. Abu Hafsa et al.



151

Fig. 4.12 Pathways of saponins synthesis

adverse health effects, including impaired growth and reduced feed intake owing to 
bitterness and throat irritation that they cause (Shi et al. 2004). Dietary saponins are 
poorly absorbed because they can form complexes with sterols, leading to harmful 
biological effects in the digestive system (Cheeke 1996). Saponins increase the per-
meability of intestinal mucosal cells, prevent active mucosal transport, and facilitate 
the uptake of substances that are not customarily absorbed (Johnson et al. 1986). In 
addition, they reduce the bioavailability of nutrients, decrease enzyme activity, and 
affect protein digestibility by inhibiting various digestive enzymes such as trypsin 
and chymotrypsin (Simee 2011). Saponins reduce the absorption of certain nutri-
ents, including glucose and cholesterol, in the gut through an intra-lumenal physi-
cochemical interaction (Table 4.6); hence, the effects of hypocholesterolaemia have 
been reported (Umaru et al. 2007). Additionally, saponins can form complexes with 
dietary Fe, rendering it unavailable for absorption (Southon et al. 1988). In fact, 
saponins have lytic action (the specific ability to form pores in membranes) on 
erythrocyte membranes, causing hemolysis in red blood cells (Seeman 1974). Since 
they reduce the surface tension of blood in cold-blooded animals, saponins have a 
highly toxic effect. They reduce growth performance in both poultry and swine. In 
chickens, saponins reduce growth and feed efficiency and interfere with the absorp-
tion of dietary lipids, vitamin A, and vitamin E (Jenkins and Atwal 1994). Compared 
with non-ruminants, poultry is more sensitive to saponins. Saponins increase the 
digestibility of carbohydrate-rich foods through a detergent-like activity that reduces 
viscosity, preventing the regular blocking action of such foods in the intestine. In 
general, saponins are of minor concern in non-ruminants because they are only 
present at low levels in common feedstuffs (Dublecz 2011).
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4.3.4.3  Nitrates

Nitrates are ANF whose toxicity is associated with consumption of plants with high 
levels of nitrates, which causes health problems similar to bloating, sweet clover 
poisoning, or grass/winter tetany. Nitrate accumulates in plants damaged by frost, 
hail, drought, or even sudden cold and cloudy weather conditions. Also, high nitrates 
occur in forages subjected to excessive fertilization (Basso and Ritchie 2005). 
Affected plants must be grazed or harvested to avoid an adverse effect on livestock, 
especially ruminants. Nitrate toxicity is caused by excess nitrates in feeds, leading 
to a dangerous condition in ruminants due to a lack of O2 in the bloodstream; death 
may result if not treated immediately. It is possible to treat nitrate toxicity, but it 
is challenging to identify animals with symptoms of this condition. Some forages 
such as Sudan grass, pearl millet (Andrews and Kumar 1992), and oats can accumu-
late nitrates at potentially toxic levels. Most nitrate is accumulated in the stem, fol-
lowed by leaves, and very little in grains (Singh et al. 2000). Nitrate toxicity occurs 
mainly in ruminants when animals consume feed containing excess nitrate (NO3

−), 
which is converted into nitrite (NO2

−) by rumen bacteria (Fig. 4.13). Then, NO2
− 

crosses the rumen wall and enters the bloodstream, where it combines with hemo-
globin to form methemoglobin, which hampers the ability of red blood cells to carry 
O2 into body tissues. NO3

− at low levels in forages is converted into ammonia by 
bacteria in the rumen (Lee and Beauchemin 2014). This process is one of detoxifica-
tion because NO2

− is ten times more toxic than NO3
−. This detoxification process 

occurs more slowly than the conversion of NO3
− into NO2

−. When microbes that 
convert NO2

− to ammonia are overwhelmed by high NO2
− levels in the rumen, tox-

icity will occur. NO3
− and NO2

− pass through the rumen wall and interfere with Fe 
ions in the red blood cells, and the ferrous Fe of hemoglobin turns into the ferric 
form; thus, forming methemoglobin. This metalloprotein, in which the iron in the 
heme group is in the Fe3+ (ferric) state, not the Fe2+ (ferrous), does not have the same 
O2 carrying capacity as hemoglobin. So the tissues do not get enough O2 and, thus, 
suffer from O2 deprivation (Fig. 4.14). The blood turns to bluish chocolate-brown 
color rather than the usual bright red. An animal that dies from NO3

− (NO2
−) poison-

ing actually dies from a lack of O2 (asphyxiation) (Benjamin 2006) (Table  4.6). 
When forages contain an unusually high level of nitrate, animals cannot complete 
the conversion process, consequently accumulating the nitrite (Table 4.5). A posi-
tive feedback loop occurs if the animals consistently have access to a high-nitrate 

Fig. 4.13 Show the 
different chemical 
structures between nitrate 
and nitrite
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Fig. 4.14 Mechanism of nitrate toxicity

Table 4.5 Level of nitrate in forage (as DM basis) and potential effects on animals

Nitrate 
content (ppm) Effect on animals

0–1000 This level is considered safe to feed under all conditions
1000–1500 This level should be safe to feed to non-pregnant animals under all conditions. It 

may be best to limit its use to pregnant animals to 50% of the total ration
1500–2000 Feeds are fed safely if limited to 50% of the ration
2000–3500 Feeds should be limited to 35–40% of the ration. Feeds containing over 

2000 ppm nitrate- nitrogen should not be used for pregnant animals
3500–4000 Feeds should be limited to 25% of the ration. Do not use it for pregnant animals
> 4000 Feeds containing over 4000 ppm are potentially toxic. Do not feed

Adapted from Andrae (2008)

feed. While NO3
− in the bloodstream, which does not initially cause toxicity prob-

lems, can be recycled back into the rumen via saliva or intestinal secretions and 
converted into NO2

−. High-nitrate feed exacerbates the problems because NO3
− is 

constantly being flooded into the system and either rapidly turns into NO2
− in the 

rumen or enters the bloodstream to be recycled back into the rumen and reabsorbed 
into the blood as NO2

−. The rate and quantity of forage consumption, type of forage, 
energy level, or diet adequacy are the factors that affect the severity of nitrate poi-
soning. Sheep, goats, and other ruminants are likely to suffer from NO3

− toxicity as 
cattle. Sheep are the least sensitive to NO3

− toxicity compared with cattle, which are 
the most sensitive. Sheep convert methemoglobin to hemoglobin and NO2

− to 
ammonia more efficiently than cattle; therefore they can be safely fed feeds with a 
higher NO3

− content (Benjamin 2006). Non-ruminants are unlikely to be affected by 
nitrate poisoning because NO3

− is primarily converted into NO2
− in the intestine, 
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Table 4.6 Deleterious and beneficial effects of some anti-nutrients on livestock

Anti-nutritional 
factors Deleterious effects Beneficial effects

Enzyme’s inhibitors Reduce protein digestion and absorption
Disturb digestive functions
Reduce bioavailability of minerals
Decrease the growth
Cause diarrhea or excessive gas
Pancreatic hypertrophy
Animal growth depression

Decrease the incidences of 
pancreatic cancer
Act as anti-carcinogenic 
agents

Lectins 
(Haemagglutinins)

Impair animal growth
Caused damage to the epithelium of the 
small intestine
Reduced nutrient absorption
Cause damage to the gastrointestinal tract
Cause endogenous loss of nitrogen and 
protein utilization
Increased protein catabolism,
Breakdown of stored fats and glycogen
Disturbance in mineral metabolism
Stimulate hypertrophy and hyperplasia of 
the pancreas
Cause hemagglutination and anemia
Allow bacteria and their endotoxins to enter 
the bloodstream and cause a toxic response

Tannins Decreased growth rate
Decrease bioavailability of amino acids
Reduce protein digestibility
Decreased palatability and feed intake
A less digestible complex with dietary 
proteins
Inhibit the endogenous protein such as 
digestive enzymes
Interfere with dietary iron absorption
Have the ability to complex with vitamin B

Show antioxidant, 
antibacterial, anti-diarrhea, 
free-radical scavenging, 
anti-proliferative activity
Reduce protein degradation 
during ensilage
Increase protein utilization 
efficiency
Reduce parasite burden on 
gastrointestinal tract
Prevent bloating
Reduce N emissions into the 
environment
Reduce methane emissions
Increase animal product 
quality
Improve live weight gain, 
reproductive efficiency, and 
wool production in sheep
Increase amino acids 
absorption in the small 
intestine

(continued)
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Table 4.6 (continued)

Anti-nutritional 
factors Deleterious effects Beneficial effects

Mimosine Act as an amino acid
Lead to inactivation of the catalytic, 
transaminases,
Complicated with metal such as zinc
Cause poor body growth, poor wool 
development
Depress serum thyroxine level and goiter 
alopecia, dullness, swollen and raw coronets 
above the hooves, lesions of the mouth and 
esophagus, and lameness

Phytic acid Chelating of mineral cofactors or interacting 
with a protein
Reduce mineral bioavailability and inhibit 
their absorption
Inhibit the action of gastrointestinal 
tyrosinase, pepsin, trypsin, amylase, and 
lipase

A powerful natural 
antioxidant
Reducing lipid peroxidation
Reduce cholesterol
Protect against cancer
Against foodborne pathogen
Coronary heart disease

Gossypol Reduce protein digestion
Reduce the availability of lysine to the 
non-ruminants
Decreased appetite, weight gain, leg 
weakness, egg production, and egg size, 
decreased egg hatchability, caused egg yolk 
mottling, olive-green discoloration of egg 
yolk in poultry
Decrease hemoglobin, total red blood cell 
count, protein and albumin to globulin ratio 
in blood serum

Oxalates Form insoluble calcium oxalate
Negatively affect the absorption and 
utilization of calcium in the animal body
Cause severe irritation to the lining of the 
gut

Cyanogens Depress growth
Interfering with essential amino acids and 
utilization of nutrients
Inhibit many enzyme systems
Cause severe toxicity, neuropathy, and death
Reduce energy availability in all cells
Inhibit cytochrome oxidase
Depression in birds growth and small eggs 
production
Deplete the sulfur-containing amino acids 
for birds resulting in reduced protein 
synthesis
Respiratory inhibitors

(continued)
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Table 4.6 (continued)

Anti-nutritional 
factors Deleterious effects Beneficial effects

Saponins Reduce growth rate, bloat (ruminants)
Reduce the absorption of nutrients 
(monosaccharide, glucose, and lipids)
Hemolysis in erythrocytes
Low blood and liver cholesterol
Inhibition of smooth muscle activity
Alter the integrity of intestinal epithelial 
cells
Inhibit microbial fermentation and synthesis 
in the rumen

Antibacterial and 
antiprotozoal, antioxidants, 
antitumor property
Lowering cholesterol
Immune potentiating
Bind ammonia and 
hydrogen sulfide, thus 
improving air quality in 
poultry houses
Reduced risk of coronary 
heart diseases
Form of first collagen that 
has a role in the wound- 
healing process 
(hydrocarbon ointment)

Nitrate Nitrite poisoning
Convert haemoglobin in the blood to 
methaemoglobin (blood turns to a chocolate 
brown color)
Animal death from asphyxiation

Alkaloids Cause gastrointestinal and neurological 
disorders
Cause infertility

Anti-vitamins From non-absorbable complexes
Interfere with digestive and/or metabolic 
functions
Anti-vitamin A
Anti-vitamin D interferes with the 
absorption of calcium and phosphorous in 
chicks and pigs,
Anti-vitamin E causing liver necrosis and 
muscle dystrophy in chicks and lambs
Anti-vitamin K causes a fatal haemorrhagic 
condition in cattle (known as sweet clover 
disease)
Anti-niacin causes Perosis and growth 
depression

closer to the end of the digestive system, thus reducing the chance for NO2
− being 

absorbed into the bloodstream. However, NO3
− poisoning in non-ruminants is still 

possible, but it is not as severe as in ruminants (Okafor and Okorie 2006). In rumi-
nants, NO3

− toxicity is most commonly reported in ruminants grazing fresh herb-
age. Due to insufficient data on nitrite levels in the most common livestock diet 
feeds, reliable exposure estimates can be calculated. The highest estimated dietary 
exposure of cattle to NO3

− from feed was for beef cattle fed a grass silage-based diet 
(53 mg/kg body weight/day). For sheep and goats, the categories ‘lactating sheep’ 
and ‘goats for fattening’ had the highest estimates of exposure to NO3

− from the 
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silage-based diet, at 46 and 60  mg/kg body weight/day, respectively. In non- 
ruminants, exposure estimates are low (from the average upper limit 5.6  mg/kg 
body weight/day in laying hens). However, this may be underestimated due to the 
lack of data on key ingredients in their diets (EFSA 2020). Risks of nitrate poison-
ing exist, mainly when animals are not accustomed to consuming nitrate-containing 
feeds. When animals are introduced to these feeds slowly over time, they can slowly 
adapt to a feed intake with at least 1% nitrates; it is important to note that this intro-
duction must be prolonged for feeds high in nitrates. Acute toxicity signs and symp-
toms include a rapid and weak heartbeat, an abnormal body temperature, muscle 
tremors, weakness, and ataxia. Additionally, brown/bluish-grey mucous mem-
branes, excessive salivation, lacrimation, labored and rapid breathing, frequent uri-
nation, vomiting (more common in non-ruminants), diarrhea or scouring, and an 
inability to get back up from laying down are all common symptoms. Death follows 
within a few hours of feeding cattle with a nitrate-rich forage. Animals die from 
asphyxiation due to a lack of O2 in the body tissues. Subacute nitrate poisoning 
often corresponds to decreased weight, decreased feed intake, decreased milk pro-
duction, increased susceptibility to infections and diseases, and reproductive prob-
lems such as silent heats and reduced fertility (Lee and Beauchemin 2014).

4.3.4.4  Alkaloids

Alkaloids are common groups of chemical compounds synthesised by plants from 
amino acids. They are generally found as salts such as malic, oxalic, citric, or tar-
taric acids (Yilkal 2015), which are small organic molecules found in 15–20% of all 
plants. Usually, alkaloids consist of several carbon rings with side chains replaced 
by one or more carbon or nitrogen atoms. Decarboxylation of amino acids produces 
amines that react with amine oxides to form aldehydes. The distinctive heterocyclic 
ring in alkaloids undergoes Mannich-type condensation of aldehyde and amine 
groups (Felix and Mello 2000; Yilkal 2015). The chemical type of their nitrogen 
ring provides how the alkaloids are sub-classified; for example, glycoalkaloids 
(aglycone fraction) glycosylated with a carbohydrate moiety are formed as meta-
bolic by-products. Plants repel insects and herbivores with alkaloids due to their 
potential toxicity and bitter taste (Fereidoon 2012, 2014; Yilkal 2015). Lupins con-
tain high alkaloids, specifically quinolizidine alkaloids, while soybeans and linseed 
may be contaminated by Datura stramonium. Linseed also contains scopolamine 
and hyoscyamine alkaloids (Dublecz 2011).

Potato tubers naturally contain the two toxic and bitter glycoalkaloids, a- solanine, 
and a-chaconine. The levels are usually low and have no adverse effects on food 
safety or culinary quality. However, consumption of potato tubers that are unusually 
high in glycoalkaloids has sometimes been associated with severe toxicity, includ-
ing gastrointestinal and neurological disturbances, and the disruption or inappropri-
ate augmentation of electrochemical transmission (Fernando et al. 2012). In tubers, 
glycoalkaloid levels are inheritable and vary significantly between different species. 
Environmental factors to which tubers are exposed during germination, growth, 
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harvest, and storage may further affect glycoalkaloid levels (Jadhav et al. 2009). 
Indeed, the physiological effects of alkaloids on humans and animals are quite evi-
dent (Gemede and Ratta 2014). Consuming a high dose of tropane alkaloids accel-
erates the heartbeat, causes paralysis and fatality. Ingesting a high dose of tryptamine 
alkaloids causes a staggering gait and death (Fernando et  al. 2012; Gemede and 
Ratta 2014). Alkaloids are oxidized in the liver to produce metabolites, such as 
dehydrosparteine, responsible for the observed toxicity. The level of toxicity is 
affected by the alkaloid composition. There is a high degree of variation in the abil-
ity of different animal species to deal with these compounds. Toxicity by alkaloids 
and their metabolites is mainly mediated through the nervous system, although they 
also stimulate the liver cells to absorb copper, resulting in copper toxicity. Pigs 
appear to be more sensitive to alkaloids than poultry. Glycoalkaloids significantly 
inhibit cholinesterase, and this also causes symptoms of neurological disorders. 
Alkaloids cause gastro intestinal and neurological disorders (Aletor 1993; 
Stegelmeier et al. 2020). Coumarins, which are feed components, have been associ-
ated with hemorrhagic disease in cattle that consume spoiled sweet clover. Alkaline 
pH conditions generally improve glycoalkaloid absorption, as binding to sterols in 
cell membranes leads to extra disruption. Nicotine (tobacco), cocaine (leaves of 
coca plant), caffeine, quinine (cinchona bark), morphine (dried latex of opium 
poppy), and solanine (unripe potatoes and potato sprouts), and strychnine are well-
known examples of alkaloids. Pyrrolizidine alkaloid toxicity causes liver damage in 
chickens that initially might not show any clinical signs. The symptoms may appear 
very vague and are often confused with other diseases. Toxicity occurs in chickens 
of all ages and breeds, but not all flock members show signs of liver damage. 
Clinical symptoms of pyrrolizidine alkaloid poisoning include loss of appetite, leth-
argy, neurobehavioral abnormalities, and excessive drinking.

4.4  Mechanism of ANFs Toxicity

Protease inhibitors reduce protein digestion, so when legumes are eaten either raw 
or without being properly cooked, they disturb digestive functions and cause diar-
rhea or excessive gas (Thakur et al. 2019). Feeding animals with raw soybean or 
isolated soybean inhibitors causes a pancreatic enlargement in susceptible animals, 
which can be characterized histologically as hypertrophy (i.e., an increase in the 
size of pancreatic acinar cells) (Friedman and Brandon 2001); this is accompanied 
by an increase in the secretion of digestive enzymes including trypsin, chymotryp-
sin, and elastase. This supports the hypothesis that the growth inhibition caused by 
trypsin inhibitors results from an endogenous loss of amino acids in the form of 
enzymes secreted by a hyperactive pancreas. Pancreatic enzymes, such as trypsin 
and chymotrypsin, are particularly rich in sulfur-containing amino acids. Hence, the 
outcome of pancreatic hyperactivity is converting these amino acids from body tis-
sue protein synthesis to the synthesis of these enzymes, which are subsequently lost 
in feces (Friedman and Brandon 2001). Trypsin inhibitor-induced pancreatic 
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hypertrophy/hyperplasia observed in susceptible animal species has been explained 
by an adverse reaction mechanism where enzyme secretion is inversely related to 
the level of trypsin present in the small intestine (Liener 1994). Therefore, when the 
level of active trypsin in the gut is reduced due to the inhibitor’s presence, the pan-
creas compensates by producing more enzymes. Mimosine’s function is unclear, but 
it may act as an amino acid, lead to inactivation of the catalyst (transaminase), or 
bind to a mineral such as zinc (Hiremat 1981). To overcome the mimosine problem, 
Leucaena leucocephala should be restricted to 50% green forage for goats and 30% 
for cattle and buffalo (Hegarty 1987). The effects of tannins come from their ability 
to form strong H-bonds with nutrients, resulting in the inhibition of digestive 
enzymes and microbial activity in the rumen (Kumar and Singh 1984). These effects 
can be significantly increased with an increase in tannin molecules. It is well known 
that tannins are potential protein precipitants (Ahmed et al. 1991) and reduce animal 
protein digestibility (Salunkhe et al. 1990; Jansman 1993). The increase in faecal 
nitrogen associated with the ingestion of tannin-containing feed is largely due to 
interactions between tannin and dietary proteins or tannin and digestive enzymes, or 
both (Jansman 1993; Kelln et al. 2021). In a study by Ahmed et al. (1991), diets 
containing tannins, mostly hydrolyzable gallotannins, were fed to broilers at 13.5, 
25, and 50 g/kg to verify their effects on enzymes in the pancreas, intestinal lumen, 
and intestinal mucosa. Pancreatic weight showed a significant increase with an 
increased dietary tannin level. The activities of trypsin and α-amylase in the pan-
creas of birds fed the highest level of tannins were more than double those of birds 
fed a tannin- free diet. In the intestinal lumen, the inhibition of trypsin activity 
increases with an increase in dietary tannin level. Likewise, dipeptidase and sucrose 
α-glucosidase were inhibited by tannins in the intestinal mucosa. Protein digestion 
and bird growth were negatively affected by tannin-containing diets. Similarly, 
feeding pigs with fava bean hulls high in tannins significantly reduced aminopepti-
dase activity in the jejunal mucosal homogenates in young piglets (Van Leeuwen 
et  al. 1995). Low aminopeptidase activity was associated with decreased protein 
digestibility. Pancreatic enlargement caused by diets containing tannins may be 
mediated by hormones transported in the blood (Ahmed et al. 1991). The pancreatic 
enlargement caused by dietary tannins has also been reported in response to dietary 
trypsin inhibitors (Liener 1994). This might indicate a common mode of action for 
these ANFs, at least on the cellular level. The consumption of tannin-rich sorghum, 
CT, which has been isolated and purified from sorghum, or tannic acid, increase the 
size of the parotid glands, synthesis and secretion of proline-rich proteins (Mehansho 
et al. 1992), and the synthesis of proline-rich proteins secreted with saliva and asso-
ciated with dietary tannins in the oral cavity to protect dietary protein. The associa-
tion of tannins with dietary and endogenous proteins, such as digestive enzymes and 
proteins located on the luminal side of the intestine, has been used to explain the 
reduced digestion of protein in diets containing tannins (Jansman et al. 1994). There 
is no clear evidence for systemic effects in animals after they have been intensively 
fed with CT. It is hypothesized that CTs are resistant to intestinal degradation and 
are poorly absorbed due to forming a less digestible compound with dietary pro-
teins. They may bind and inhibit endogenous proteins, including digestive enzymes. 
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These compounds are astringent and negatively affect animal feed intake (Patel 
et al. 2013). CT concentration above 4% of diet is toxic to ruminants because they 
are resistant to microbial attack and are harmful to various microorganisms 
(Waghorn 2008), resulting in reduced palatability, feed intake, growth rate, utiliza-
tion, and iron absorption (Roeder 1995). Phytate can adversely affect digestive 
enzyme activity by chelating mineral cofactors or interacting with proteins at an 
acidic or alkaline pH (Ryden and Selvendran 1993; Khare 2000). For full activity, 
some digestive enzymes require metal cofactors, such as calcium, zinc, copper, 
magnesium, iron, and molybdenum. For example, these enzymes include α-amylase, 
carboxypeptidases, aminopeptidases, and alkaline phosphatase. Phytate binding to 
proteins may directly form phytate-protein complexes or indirectly form phytate- 
cation- protein complexes. These processes may differ according to pH, time, and 
relative concentrations (Ryden and Selvendran 1993). At the low pH in the stomach, 
the positively charged side-groups of protein essential amino acids can bind to the 
negatively charged phytate due to strong electrostatic interactions (Cheryan 1980; 
Deshpande and Cheryan 1984). Above its isoelectric point, the protein carries a net 
negative charge. A multivalent cation bridge (which includes calcium) appears to be 
involved in the complex formation between phytate and proteins. Phytate–cation–
protein interactions are expected to be predominant at high pH in the small intestine 
(Selle et al. 2000). Another indirect mechanism for phytate inhibition of digestive 
enzyme activity measured in vitro has been proposed to include complex interac-
tions between phytate, digestive enzymes, and other proteins present in solution (Li 
et al. 1993). These interactions also inhibit the action of gastrointestinal tyrosinase, 
pepsin, trypsin, amylase, and lipase (Khare 2000). Oxalic acid binds with calcium 
to form insoluble calcium oxalate, which negatively affects the absorption and uti-
lization of calcium in the bodies of animals (Akande et al. 2010). Gossypol binds to 
proteins and/or to a group of free essential amino acids. In particular, gossypol 
binds to lysine in cottonseed meal, resulting in BG, which is less toxic to non- 
ruminants than is free gossypol. The free and BG content in the meal varies with the 
cultivar and the type of treatment. Gossypol reduces protein digestion in two ways. 
First, by binding to free epsilon amino group of lysine during heat treatment and the 
gossypol-protein complex formed in the meal makes the adjacent peptides unavail-
able for proteolytic action. Second, gossypol may directly affect certain enzymes in 
the gastrointestinal tract, such as pepsinogen, pepsin, and trypsin, by binding to the 
free epsilon amino groups (Sharma et al. 1978). Gossypol toxicity in poultry results 
in decreased appetite, weight loss, leg weakness, reduced egg production, and egg 
size, egg yolk discoloration, and decreased egg hatchability, hemoglobin, total red 
blood cell count, protein, and albumin-to-globulin ratio in blood serum (Waldroup 
and Goodner 1973; Suryawanshi et al. 1993). Saponins decrease the absorption of 
certain nutrients, including monosaccharides, glucose, and cholesterol in the gut 
through intraluminal physical and chemical interactions; thus, they have been 
reported to have hypocholesterolemic effects (Umaru et  al. 2007). Additionally, 
saponins have distinctive foaming properties, as observed in white clover and 
alfalfa. Saponins can negatively affect animal performance and metabolism in sev-
eral ways: hemolysis in erythrocytes, low blood and liver cholesterol, reduced 
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growth rate and bloat in ruminants, inhibition of enzyme and smooth muscle activ-
ity, reduced absorption of nutrients, and inhibition of microbial fermentation and 
synthesis in the rumen (Akande et al. 2010). However, saponins have diverse bio-
logical effects due to structural differences in sapogenin fractions. Finally, some 
plant alkaloids have been reported to cause digestive and nervous disorders and 
infertility (Aletor 1993; Olayemi 2010), while glycoalkaloids (solanine and chaco-
nine), found in potatoes and Solanum spp. (Saito et al. 1990; Aletor and Adeogun 
1995) are toxic to humans (Table 4.6).

4.5  Methods of Reducing the Deleterious Effects of ANFs

The abundance of ANFs and consequent toxic effects in the plant-based diets of 
animals is a cause for concern, and ways to reduce their levels should be explored 
(Soetan and Oyewole 2009). Removing undesirable components is essential for 
improving a plant-based diet‘s nutritional quality and effectively utilizing its full 
potential as a feed source for livestock. It is widely accepted that simple and inex-
pensive processing techniques effectively achieve desirable changes in feed ingredi-
ent composition (Akande and Fabiyi 2010). Uhegbu et al. (2009) reported the effects 
of several methods tested to overcome ANFs and their harmful effects in various 
browses, grains, seeds, and agro-industrial by-products. These methods include 
mechanical or physical techniques (e.g., processing, wilting, and ensiling) and bio-
logical or chemical techniques (e.g., treatment with alkalis, organic solvents, and 
precipitants). In general, of the different processing methods that are used to reduce 
levels of various ANFs (soaking, boiling, and toasting) (Balogun 2013), soaking is 
one of the most common methods to lower trypsin inhibitors (from 13.8 to 9.4 
TIU/100 g), phytates (from 0.18% to 0.09%), tannins (from 0.23% to 0.09%), sapo-
nins (from 0.42% to 0.24%), hydrogen cyanide (from 8.6% to 5.7%), and alkaloids 
(from 0.34% to 0.28%) -(Nwosu 2010). Boiling, simmering, and blanching reduce 
the cyanide content in Moringa oleifera leaves by 88%, 81%, and 62%, respectively 
(Sallau et al. 2012). Owing to the water solubility of oxalates, wet treatment meth-
ods such as boiling and steaming produce the highest oxalate reduction (Mada et al. 
2012; Petroski and Minich 2020). Autoclaving seeds for 20 min reduce phytic acid 
by 24.7%, while roasting can reduce phytic acid content by 23.1–28.6% (Embaby 
2011). Amaefule and Onwudike (2000) and Kankuka et  al. (2000) reported that 
cooking legumes improve their nutritional value by destroying most ANFs and 
improving protein and energy availability. Autoclave treatment or boiling also 
reduces the content of protease inhibitors. Ramteke et al. (2019) reported that the 
trypsin inhibitor activity of soybean meal was destroyed by autoclaving under spe-
cific conditions (i.e., 5, 10, and 15 psi for 45, 30, and 20 min, respectively) or by 
exposure to steam for 60 min. Likewise, a longer boiling time (40 min), autoclaving 
(20 min), and microwaving (12 min) cause complete disruption of trypsin inhibitor 
activities (Sallau et al. 2012). Although lectins are usually degradable, their stability 
varies among plant species, as many lectins are resistant to dry heat inhibition and 
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require moisture for destruction (Boehm and Huck 2009; Ramteke et al. 2019) or 
can quickly disintegrate by hydrothermal treatment (100 °C for 10 min) or autoclav-
ing (Grant 1991). Physical treatments such as heat and chemical treatments or sup-
plementation with amino acids or mineral ions such as Zn, Fe, and Al reduce 
mimosine’s toxicity (Hiremat 1981). Other processing methods, like germination 
followed by dehulling, reduce tannins by 43–52% and phytic acid by 47–52% 
(Ghavidel and Prakash 2006). Polyethylene glycol is the most frequently used 
reagent to neutralize the secondary compounds in tannin-rich diets for animals. It 
can be used in various ways, such as applied in concentrate or feed blocks, sprayed 
on feed, or dissolved in water. Additionally, polyethylene glycol is an effective sup-
plement for increasing feed intake, digestion, daily weight gain, and the synchro-
nized, fractionated, and balanced supply of essential nutrients for rumen microflora 
and host animals fed on diets rich in tannins (Mueller 2001; Patel et  al. 2013). 
Fermentation can reduce some anti-nutrients in feed, such as phytic acid and tannins 
(Sarangthem and Singh 2013; Singh et al. 2017). This method could also improve 
the nutritional value of cottonseed meal and increase the lysine and methionine 
content of cottonseed meal when fermented with Aspergillus oryzae NRRL 506 
Aspergillus Janus NRRL 1935 for 48 h (Nagalakshmi et al. 2007). One of the recent 
trends in reducing free gossypol content in cottonseed meal is to produce varieties 
of cotton plants through genetic modification; however, other cotton seed process-
ing methods such as pelleting, extrusion, cooking, and Ca(OH)2 can be used to 
improve the nutritional value of cottonseed meal for poultry (Nagalakshmi et al. 
2007). Treatment with iron 1: 1 ratio can remove 80–99% of gossypol; moreover, 
high protein content in the meal is also helpful in reducing the effect of gossypol 
(Leeson and Summer 2001). Moreover, using exogenous phytases to enhance phos-
phorous digestibility is now common practice where animal agriculture’s contribu-
tion to environmental pollution is of concern. The phytase enzyme releases 
phosphorus, bound minerals, and amino acids from phytate, increasing nutrient uti-
lization. Evidence indicates that phytases enhance ileal amino acids, which increase 
the body’s nitrogen, calcium, and phosphorus retention and increase fecal energy 
digestibility in poultry (Woyengo and Nyachoti 2011). The use of gamma irradia-
tion to reduce anti-nutrients in canola meal causes a significant increase in its nutri-
tional value for broilers (Gharaghani et al. 2008). Finally, the use of the electron 
beam radiation method reduces hydrocyanic, phytic, and tannic acids.

4.6  Beneficial Effects of Anti-nutritional Factors

The potential beneficial effects of protease inhibitors remain unclear. However, a 
decrease in the incidence of pancreatic cancer has been observed in a population 
where the consumption of soybean and its products was high (Giri and Kachole 
1998) (Table 4.6). Additionally, protease inhibitors have been associated with pan-
creatic cancer in animal studies, and they may act as anti-carcinogenic agents 
(Chunmei et al. 2010). It is not necessary to completely eliminate anti-nutritional 
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factors from plant-based diets such as that of Moringa oleifera leaves because low 
amounts of ANFs, such as tannins and hydrolyzable phenols, may act as antioxi-
dants in animal feed and may not only help improve meat quality but also reduce 
methane emissions (Su and Chen 2020) and gastrointestinal nematodes (Naumann 
et  al. 2017) from ruminants. The benefits of tannins in animal feed and health 
include increased protein utilization efficiency, amino acid absorption (Hervás et al. 
2003), antioxidants, antibacterial and anti-diarrhoeal effects, free-radical scaveng-
ing, and anti-proliferative activity (Corder 2006). Also, tannins reduce the impact of 
gastrointestinal parasitism, protein degradation during ensilage (Reed et al. 1990), 
prevent bloating, increase animal product quality, reduce N emission to the environ-
ment and promote rumen defaunation as a CH4 mitigation strategy (Animut et al. 
2008; Boadi et al. 2004), and reduce methane emissions from rumen fermentation 
(Waghorn 2008) (Table 4.6). CTs help to improve weight gain, reproductive effi-
ciency, and wool production in sheep, reduces the effect of gastrointestinal parasit-
ism, and lessens methane emissions from rumen fermentation (Waghorn 2008), 
allows dietary protein to bypass the rumen for digestion in the lower gastrointestinal 
tract (Hassanpour et  al. 2011), and shows a bacteriostatic effect on Salmonella 
enteritidis infection in broiler chickens and can reduce excretion of these bacteria 
(Redondo et  al. 2013a). Both HT and CT have antimicrobial activity against 
Campylobacter jejuni (Anderson et al. 2012; Gutierrez-Banuelos et al. 2011). The 
in vivo effects of tannins in the necrotic enteritis model reduce the incidence and 
severity of gross lesions and improve broilers’ productive performance (Redondo 
et al. 2013b). Tannic acid can treat diarrhea because it causes constipation with-
out inflammation (Phytolab 2007).

Phytic acid has been suggested as a store of cations, high-energy phosphoryl 
groups, and free iron chelates, making phytic acid a potent natural antioxidant 
(Mueller 2001). In addition, phytic acid can reduce cholesterol and protect against 
iron-induced intestinal cancer. Furthermore, phytic acid exhibits natural antioxidant 
properties, providing other benefits such as reducing lipid peroxidation (Table 4.6). 
Of the many plant compounds, saponins have beneficial biological effects, includ-
ing antibacterial, antiprotozoal (Avato et  al. 2006), antioxidant, antitumor, 
cholesterol- lowering, immune-potentiating, and anticancer (Blumert and Liu 2003) 
effects. Furthermore, saponins reduce the risk of coronary heart diseases (Ferri 
2009) and the probability of forming collagen, a protein with a role in wound heal-
ing that can also be used as a hydrocarbon ointment. Saponins attract considerable 
interest due to their beneficial effects in the poultry industry; they can bind ammo-
nia and hydrogen sulfide, thus improving air quality in poultry houses (Table 4.6).

4.7  Conclusions

Anti-nutritional factors (ANFs) in plant-based protein diets for livestock may reduce 
their full utilization. Thus, to justify the nutritional value of any plant-based protein 
source, it is imperative to appropriately assess the nature, type, and concentration of 
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the ANFs present in the diet and the bioavailability of the required nutrients. Basic 
information about the most common factors found in plants used for animal feed 
includes protease inhibitors, amylase inhibitors, lectins, tannins, mimosine, phytic 
acid, gossypol oxalates, cyanogens, saponins, nitrates, alkaloids, and anti-vitamin 
agents. These ANFs interfere with the nutritional value of feed by reducing diges-
tion, absorption, and utilization of proteins and minerals that cause toxicity and lead 
to undesirable effects on animal health if their consumption is excessive. However, 
these ANFs may have beneficial health effects if they are present in low amounts. 
Risk factors associated with ANFs include a lack of knowledge on tolerance levels 
of these compounds in livestock, limited information on the degree of variability of 
individual risk, and lack of knowledge regarding the influence of environmental fac-
tors on the detoxification capacity of livestock feed. Thus, using appropriate and 
effective techniques and methods alone or in combinations can help eliminate or 
reduce the harmful effects of these ANFs in plant-based diets and, therefore, 
improve their nutritional value. Several strategies are used to counteract the effects 
of ANFs, including physical and chemical treatments, supplementation with 
enzymes, amino acids or mineral ions, germination, fermentation, and genetic 
modification.
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