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Simple Summary: The diagnosis of several animal diseases is critical when animal health is 
threatened and can cause a serious financial loss, although different diagnostic tools implemented 
are not always affordable or easy to perform. Serological diagnosis is successful in this aspect, 
however, there are not always suitable antigens, or these show low levels of sensitivity and 
specificity. Some studies with peptides applied to serological diagnoses that have been 
implemented in recent years with their respective observations are explored. The use of small 
sequences that can be synthesized and customized is attractive and functional in some diseases from 
domestic animals and wildlife. This review highlights the possibilities and limitations of peptides 
and will help researchers and people interested in implementing a diagnostic system to decide 
between them for several animal diseases. 

Abstract: Peptides constitute an alternative and interesting option to develop treatments, vaccines, 
and diagnostic tools as they demonstrate their scope in several health aspects; as proof of this, 
commercial peptides for humans and animals are available on the market and used daily. This 
review aimed to know the role of peptides in the field of veterinary diagnosis, and include peptide-
based enzyme-linked immunosorbent assay (pELISA), lateral flow devices, and peptide latex 
agglutination tests that have been developed to detect several pathogens including viruses and 
bacteria of health and production relevance in domestic animals. Studies in cattle, small ruminants, 
dogs, cats, poultry, horses, and even aquatic organisms were reviewed. Different studies showed 
good levels of sensitivity and specificity against their target, moreover, comparisons with 
commercial kits and official tests were performed which allowed appraising their performance. 
Chemical synthesis, recombinant DNA technology, and enzymatic synthesis were reviewed as well 
as their advantages and drawbacks. In addition, we discussed the intrinsic limitations such as the 
small size or affinity to polystyrene membrane and mention several strategies to overcome these 
problems. The use of peptides will increase in the coming years and their utility for diagnostic 
purposes in animals must be evaluated. 
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1. Introduction 
The attentiveness to the potential of peptides has boosted their use for several 

applications: vaccine development [1,2], anti-cancer treatment [3], regulation of the 
immune system [4], diagnosis [5], and different treatments [6]; nowadays, several of them 
are marketed for human use, however, peptide-based products for Veterinary Medicine 
are also available. 
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The history of marketed peptides dates back to the 1970s and 1980s and new peptides 
are reviewed by federal agencies such as the Food and Drug Administration (FDA) and 
the European Medicines Agency (EMA); for example, from 2016 to 2020 a total of 17 
peptide-based drugs for human use were approved by the FDA. It is important to note 
that most of these have been produced by chemical synthesis which is the preferred 
process, followed by recombinant technology; both technologies are discussed later in this 
review [7–9].  

Comparably, several peptide-based drugs for Veterinary use are listed in the Green 
Book published by the FDA, some of them share a usage akin to those in humans, while 
others have particular applications in animals, especially hormonal peptides [10,11] (Table 
1). 

Table 1. Some peptides for Veterinary use approved by the Food and Drug Adminstration. 

Drug Name/ 
Active Ingredient 

Indication 

Oxytocin Injection 
Oxytocin Uterus atony, retained placenta, postpartum agalactia 

OvuGel™ 
Triptorelin acetate 

Synchronization of ovulation in weaned sows and gilts 

Ovuplant™ 
Deslorelin acetate 

Control and synchronization of the estrous cycle and ovula-
tion induction in mares 

P.G. 600® 
Chorionic Gonadotropin 

Stimulation of follicles development and their ovulation in 
gilts and sows 

Granulex® V 
Trypsin 

External wounds (wire cuts, lacerations, abrasions), removal 
of dead tissue and debris 

FOLLTROPIN® 
porcine pituitary follitropin 

Induction of superovulation in beef and dairy heifers and 
cows 

ProZinc® 
Insulin Diabetes in dogs and cats 

Posilac™ 
n-methionyl bovine somatotropin 

Increment in milk production in dairy cattle 

Imrestor™ 
Pegbovigrastim, an analog of recombinant endogenous 

bovine granulitecolony 
stimulating factor (bG-CSF) 

Promote neutrophil proliferation and reduce mastitis risk in 
dairy cattle 

Improvest® 
gonadotropin factor analog-diphtheria toxoid conjugate 

Immunological castration (temporally suppression of testicu-
lar and ovarian function) of pigs 

Peptide-based drug research is an emerging field with investigations published 
every year and the potential to find useful biomolecules of animals origin (or other 
sources) is almost boundless considering the enormous diversity of animal species that 
can be studied; animal sources of food such as eggs or milk, different tissues, or even 
animal venoms are promising sources of peptides [12–14]. Additionally, peptide studies 
with positive results have been performed in animal models to ensure their safety [15,16]; 
this allows us to speculate that an analog therapy with similar outcomes could be possible 
in domestic animals.  

In Veterinary Medicine, peptides have been investigated and used majorly in the 
field of animal nutrition, therapeutics, reproduction, vaccines, and diagnostic tools [17]. 
One of its most widely known uses is to treat infectious diseases caused by pathogens. 
Bacitracin, polymyxins B and E (colicin), fosfomycin, vancomycin, streptogramins 
(virginiamycin), and others are sundry examples of antimicrobial peptides (AMP) used in 
animals; most of them are obtained from different microorganisms, but also can be 
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semisynthetic [11,18]. In the same way, when the antimicrobial resistance (AMR) 
phenomenon forced the ban of antibiotics as growth promoters in animal feed, the 
necessity to find a substitute allowed AMP to be tested as alternative feed additives [19–
21]. 

2. Peptides in Diagnosis 
A current review showed that the use of peptides in humans is focused mainly on 

three areas: drug development, diagnosis, and vaccines, and the data also revealed that 
the use of peptides in drug development was 1.26 times higher in comparison with 
diagnosis; however, peptides in diagnosis were 13.7 times higher than in vaccines. They 
also observed that the preferred diagnostic system was peptide-based enzyme-linked 
immunosorbent assay (pELISA), followed by microarrays and biosensors [5]. 

Peptides have been used successfully to detect a broad range of diseases in humans: 
diagnosis of cancer [22], heart disease [23], diabetes [24], Alzheimer’s disease [25], 
autoimmune disease [26], diphtheria toxin [27], viral [28], fungal [29] and bacterial 
infections [30], allergies [31], and more recently to even detect SARS-CoV-2 virus [32]. 

2.1. Peptides in Veterinary Diagnosis 
On the other hand, the diagnosis of some human and veterinary diseases can be 

challenging considering the nature of the disease, for example in microbiology, bacterial 
culture is considered the gold standard, but this is difficult to perform in some cases when 
there are no detectable viable cells or when dealing with microorganisms with special 
needs like intracellular bacteria [33]. Another problem is that not all laboratories have 
sufficient economic resources and technology to isolate a pathogen or perform different 
tests to confirm its identity. 

Classic serodiagnosis tests have been an aide in Veterinary Medicine to face, to some 
extent, these problems, and have been broadly used in the field: agar gel immune-
diffusion test, enzyme-linked immunosorbent assay (ELISA), agglutinations tests, etc. are 
among the diverse techniques used, all of them having in common the use of serum as an 
initial sample; the use of some of them are approved by the World Organization of Animal 
Health (OIE) to identify Equine infectious anemia or the zoonotic microorganism 
Leptospira spp. [34,35] The introduction of commercial ELISA helped to accelerate massive 
tests to identify an etiological agent without the need to isolate it reducing the risk of 
working directly with the pathogen.  

Although serodiagnosis continued to be important, at some point, the methodology 
was quickly overtaken by fast and reliable molecular technologies that in some aspects 
give similar or better results in comparison [36,37]. The introduction of short peptides that 
mimic epitopes (mimotopes) in serodiagnosis allows keeping updated these techniques 
by implementing a sophisticated antigen; a small sequence that can replace a total protein 
but retain its antigenic capacity. Peptides have also the plasticity to be adapted to detect 
pathogens with different samples (total blood, tissue, or other body fluids) and not only 
work with serum[38]. 

Currently, the market of veterinary diagnosis is dominated by some well-known 
companies, including Zoetis, IDEXX Laboratories, Inc., and Thermo Fisher Diagnostics 
which offer a broad range of tests to detect pathogens; among them stand out the point-
of-care tests (POCT) which are a trend that is well-received by veterinary professionals: 
they do not require sophisticated equipment, are user-friendly and can help to make fast 
decisions; interestingly, some of these companies use peptides in their POCT [39,40], but 
aptamers or antibodies can also be used. It is important to note that these commercial kits 
have variability in their specificity and sensitivity [41]. 

Epitope mapping constitutes a critical step to obtain adequate peptide sequences. 
Different approaches can be used and include the use of bioinformatics tools (in silico 
prediction), for this purpose software such as immune epitope database and analysis 
resource (IEDB) or HHpred [42,43] are available for free. These platforms are one of the 
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most accessible options, and prediction of linear or conformational epitopes is possible, 
furthermore, other parameters such as secondary structures, antigenic index, 
hydrophilicity, flexibility can be determined [17], however, this methodology is not 
exempt from problems and can fail. Other options that require the use of more complex 
or costly technology are Pepscan, site-directed mutagenesis, mass spectrometry, and 
phage display, while X-ray diffraction is considered the golden standard [44]. 

Several decades have passed since the development of the technology to produce 
peptides and imaginative applications in Veterinary Medicine have been explored. Two 
previous reviews illustrated the scope of peptides in the diagnosis and immunologic 
applications in animals [17,45], however, new articles with alternative peptides that differ 
from the commercial kits have been published since then, and comparisons with 
established diagnostic systems have been performed, moreover, other systems than the 
classic pELISA were developed; therefore, this review aimed to update the use of peptide-
based diagnostic tools in the serodiagnosis of diseases of different domestic animals and 
remark some aspects about their utility. The main characteristics of the diagnostic systems 
for peptides by species that are discussed are summarized in Table 2. 

2.2. Swine 
The porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for 

pneumonia; abortion, and stillbirth; ewes are the major affected group. Until now it 
continues to be a threat in the swine industry worldwide, therefore accurate detection 
systems are necessary. Through the years, several pELISA had been developed with good 
performance, for example, a study showed that two peptides were capable to detect 
antibodies against this pathogen in vaccinated animals, especially one of them has a 
sensitivity and specificity of 97.60% and 100% relative to indirect immunofluorescence 
assay (IFA), moreover, the pELISA was compared with a commercial kit (IDEXX PRRSV 
X3 Ab ELISA kit, IDEXX, Westbrook, ME, USA), and virus neutralization test (VN). The 
commercial kit was able to detect more antibodies than pELISA in the first 2 weeks post-
vaccination, the detection rate was similar in field serum samples, despite this, the pELISA 
had a good agreement with the VN test and give an economical alternative suitable for 
serodiagnosis [46].  

A study carried out to detect the foot-and-mouth disease virus was performed with 
a peptide-based immunochromatographic test strip (lateral flow device) using colloidal 
gold-labeled with the peptide as the detector. The test was also compared with two ELISA 
probes: Ceditest® (Cedi-Diagnostics BV, The Netherlands) and UBI® (United Biomedical 
Inc., USA) for which it had an agreement greater than 90%. Interestingly, the test was able 
to react strongly in infected animals but not with serum samples of healthy vaccinated 
pigs; according to the results, the specificity and sensitivity were 100% and 95%, 
respectively, albeit, only serotype O was challenged, therefore further experiments with 
other viral strains are necessary to evaluate its usefulness [47]. 

Hepatitis E virus is a potential zoonotic disease that pigs carry and can be transmitted 
to humans on pig farms. In China, a study with synthetic peptides was compared with 
two commercial kits for humans, although the results can be different due to target 
species, the authors found that their pELISA had similar results to the recombinant 
protein-based kits and could be used for serodiagnosis of this disease [48]. 

2.3. Cattle 
A study in Mexico developed a pELISA to detect Anaplasma marginale, the etiologic 

agent of anaplasmosis, a rickettsial pathogen. Fever, anemia, jaundice, abortion, or even 
death is noticeable. The use of synthetic peptides was proposed as an alternative to the 
crude antigen that is the actual standard. The sensitivity of the assay using a mixture of 
two peptides was 100% while the confidence for specificity was 95%. While it was not 
possible to perform a comparison to confirm no cross-reaction with serum from animals 
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infected with Anaplasma centrale, an exotic microorganism in the country, there are high 
possibilities that the test can differentiate them [49].  

Another tick-borne pathogen, Babesia bovis, was also subjected to pELISA in Mexico 
using the membrane antigen apical 1 (AMA-1); this protein is essential for parasite 
invasion of target cells, moreover it is conserved among Babesia isolates, which makes it 
an ideal candidate for diagnosis. Two peptides from this protein were found to be 
immunogenic in cattle (Table 2); additionally, the test was compared with IFA, and a 
concordance of 91.2% and 61.1% to each peptide, respectively, was observed. High 
sensitivity for one peptide (94.56%) but with moderate specificity (76.19%) was obtained; 
the second peptide had lower percentages. Nevertheless, reactivity against serum from 
animals in different regions of the country was noted. Modifications such as the use of 
several peptides from one or more proteins or changing the format of ELISA assays were 
suggested to upgrade the diagnosis system [50].  

Coxiella burnetti (Q fever) is an intracellular microorganism that infects ruminants and 
causes sub-clinical diseases such as abortions, stillbirths, and reproductive disorders. The 
disease is widespread around the world and serological tests such as ELISA, IFA and 
complement fixation test (CFT) are available to detect it, however, the need of expertise 
and the difficulty and risk to isolate the microorganism limit their use, therefore an 
investigation devised a peptide-based latex agglutination test (LAT) that was further 
evaluated comparing with a commercial ELISA test (Biox Diagnostics, Belgium) [51].  

While the commercial ELISA had sensitivity and specificity of 100% and 99.49%, 
respectively, the sensitivity of LAT was 76.19% and the relative diagnostic specificity was 
75.39%; although the performance was moderate in comparison with the ELISA, the test 
was cheaper, fast and with potential to be worked out in field conditions. The authors 
considered that further research could improve the sensitivity and specificity of the 
developed assay, either by the selection of another peptide of the same protein or a 
different protein with immunogenic properties [51].  

2.4. Small Ruminants (Sheep/Goat) 
One pELISA was applied to detect both sheep and goat pox virus. The reason for 

developing this test was that low virulence strains and similarities with other diseases can 
be challenging, besides, the actual tests available are difficult to perform 
(immunofluorescence and VN test) and not readily available in different countries. The 
selected antigen was the structural protein P32 which is a major antigenic determinant in 
capripoxvirus; they established a cut-off value of 0.3 for positive samples with a specificity 
of 100% and a sensitivity of 95%. The authors considered that the tool developed is easier 
to produce and less expensive when working with herds [52]. 

The bacterial pathogen Chlamydia abortus is implicated in abortion and reproductive 
failure, is widely spread and is difficult to isolate, therefore, other indirect diagnosis 
systems are implemented including commercial and recombinant protein-based ELISA 
[53,54]. A study performed in Ireland contrasted three different ELISA tests (MVD-Enfer 
kit, UK; LSI kit, France; and a pELISA, IDvet kit, France) in ewes that received a 
recombinant vaccine followed by a challenge with this microorganism; the authors 
observed that the commercial pELISA had the lowest sensitivity between them (73.68%), 
a possible explanation is that the selected antigen (major outer membrane protein) could 
not be adequate due to the low persistence of antibodies [55]. 

On the other hand, an Australian study compared the same commercial pELISA 
(IDvet kit, France) with another kit (IDEXX, Australia), whole-cell antigen CFT, and qPCR; 
the research included sheep and cattle herds previously exposed to C. abortus and 
Chlamydia pecorum. The authors found low seropositivity of C. abortus with pELISA in 
contrast with the other tests; the results suggested false positivity due to cross-reactivity 
with C. pecorum which is endemic in Australia and low specificity in the other assays. They 
found that pELISA and qPCR had greater species-specificity [56]; however, more studies 
and a wider sample size are necessary to elucidate these disparities. 
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2.5. Equids 
Equine infectious anemia (EIA) is one of the most important diseases which lack a 

vaccine or an effective treatment, the diagnosis is based on agar gel immunodiffusion 
(AGID) as the approved test, however, it is prone to false negatives and subjective 
readings can lead to error; this situation has been explored with other alternatives, 
especially ELISA [57]. For example, an investigation with pELISA reported a sensitivity 
of 98.6% and specificity of 95.6% when compared to AGID test and was used successfully 
with different equid species: horses (Equus caballus), donkeys (Equus asinus), and mules 
(Equus caballus × Equus asinus) [58]. Likewise, a commercial pELISA designed against the 
same disease (AGID-AIE Kit, LABIOFAM, Cuba) was evaluated in Mexico and similar 
results were obtained with a sensitivity of 100% and a specificity of 97.6%. Therefore these 
results in different countries suggest that pELISA is an excellent alternative to detect EIA 
in equid populations [57]. 

Another disease, the equine arteritis virus is responsible for vascular lesions, 
respiratory disease in adults and foals, and abortion; the pELISA was designed with two 
peptides of different proteins but in the end, one of them showed better discrimination 
capacity between positive and negative serum, additionally, the samples were 
characterized previously with a virus neutralization test. The study revealed a sensitivity 
of 95.65% and a specificity of 80.43% [59]. This pELISA and the other described in the 
previous paragraph were developed in Argentina. 

Equine herpesvirus types 1 and 4 infect the respiratory tract and can be sub-clinical 
or severe are responsible for fever, lethargy, and anorexia, but type 1 is also responsible 
for major outbreaks with neurological disease, abortions, and perinatal foal mortality; 
these viruses circulate in many countries with horse populations where they can be 
considered endemic; additionally, due to their close genetic similarity, cross-reaction is 
frequent between these two types, therefore a study performed in Germany aimed to 
differentiate them with a pELISA; they found seroprevalences as high as 82% for type 1 
and 95% for type 4 in field samples with this method; when compared with serum 
neutralization test, only a small percentage of samples showed discordance due to cross-
reactivity [60]. 

2.6. Dogs 
Ehrlichiosis is a chronic tick-borne disease in dogs whose etiologic agent is Ehrlichia 

canis and is distributed worldwide with several genotypes circulating in dog populations. 
A Brazilian study used synthetic peptides to detect two different genotypes in naturally 
and experimentally infected dogs and found 100% specificity in the ELISA, moreover, the 
IFA-negative dogs (negative controls) results were in agreement with the serological test. 
The authors concluded that the developed test was able to determine the seroprevalence 
of this pathogen and distinguish the genotypes even when co-infections were present in 
the same animal [61]. 

Leishmaniasis is a neglected zoonotic disease that is transmitted through a mosquito 
vector and is disseminated majorly in Africa, Asia, and America; in some countries, dogs 
are the main source of infection in urban areas, therefore, constant monitoring is 
necessary. A Brazilian study used a pELISA based on epitopes from A2, a stress response 
protein expressed during infection. The study included a commercial kit (EIE-LVC kit, 
Brazil) for comparison performance. The pELISA showed a better diagnostic ability with 
a sensitivity of 98% and specificity of 99%, while the EIE-LVC kit had a sensitivity and 
specificity of 90%. Another highlight was the capacity to discriminate between Leishmania 
and Tripanosoma cruzi-infected animals; in this aspect, the pELISA anew outperformed the 
kit [62]. 

The use of pELISA to detect this disease is particularly diverse and other 
serodiagnostic tests with this technology and recombinant proteins have been published 
through the years, which reflect the public health attention to this disease; for example, 
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another pELISA was designed to be used in both humans and dogs, which increases its 
utility [63] (Table 2). 

2.7. Cats 
Feline coronavirus is a common agent in cats worldwide, infected animals suffer 

from self-limited enteritis, however, a small number of animals develop a more severe 
systemic disease known as feline infectious peritonitis (FIP) for which no effective 
treatment is available; one of the major problems is that ante-mortem diagnosis of FIP is 
challenging. The authors developed a pELISA based on epitopes from a non-structural 
protein with possibilities to differentiate FIP-affected animals. Two peptides were the 
more promising, nevertheless, a considerable variation among sera of individual cats was 
observed, and only one peptide was able to detect preferentially cats affected by FIP; in 
this case, the sensitivity was 57%, in contrast, the specificity was higher (90%). The study 
is the first description of a serological test that has some discriminatory power between 
feline coronavirus-infected cats that remain healthy and those that develop FIP [64] 

2.8. Poultry 
Previous outbreaks with H5N1 influenza virus caused serious consequences in the 

poultry industry and also have a high mortality rate among infected humans. The current 
serologic test suffers from drawbacks such as low sensitivity and cross-reactivity, thus 
limiting its utility; the use of a pELISA using a conserved epitope in the H5 hemagglutinin 
was worked out with samples of experimental animals and humans with confirmed 
infection; the specificity was also assessed with chicken antisera against multiples clades 
of H5N1 viruses, although the sample size was relatively small, the test showed no cross-
reactivity and was 100% specific in the detection of H5 antibodies. The test has potential 
to be employed in surveillance programs in both humans and poultry [65]. 

Another viral pathogen that is relevant is the avian leukosis virus, animals infected 
show vascular and visceral neoplasms, and there is a decrease in egg production, low 
development, and mortality. [66] developed a pELISA to detect the avian leukosis virus, 
specifically subgroup J (ALV-J) which is widespread in China poultry farms, moreover 
they compared their in-house ELISA and a commercial kit (IDEXX ALV-J, Beijing, China) 
with an indirect immunofluorescence assay (IFA) as a golden standard for both tests; they 
found that the sensitivity of peptide-ELISA and IDEXX ELISA was 85.96% and 19.30%. 
The specificity of the two methods was 95.63% (175/183) and 100% (183/183), respectively. 
The pELISA proved to be more sensitive than the commercial kit when using sera samples 
[66]. 

Furthermore, pELISA has been evaluated as a possible alternative to the 
neutralization test when evaluating the immune response to the infectious bronchitis 
virus vaccine. The pathogen is included in the Coronaviridae family and is related to the 
recently emerged coronavirus SARS-CoV2. Respiratory and renal problems are observed 
in broiler and laying hens which generate economic losses in the poultry industry; 
although there are available vaccines, the immunization level should be evaluated, the 
pELISA showed that no cross-reactivity in immune sera against other viruses was 
detected, likewise, when compared with IFA the pELISA showed 98.15% sensitivity and 
93.1% specificity. A positive correlation between the pELISA titers and neutralization 
titers suggests that this technique has the potential to replace neutralization assays when 
evaluating vaccines [67]. 

2.9. Other Species 
A less common species of farm animal is the mink that is part of the fur industry; 

these mammals are prone to the Aleutian disease with symptoms such as reproductive 
failure, cachexia, anemia, nephritis, and even death. The disease is difficult to control; 
hence, rapid detection is preferable, the serological gold standard is 
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counterimmunoelectrophoresis (CIEP) and other ELISA tests; however, drawbacks such 
as poor sensitivity and time-consuming are enough motives to develop an alternative with 
synthetic peptides. In this research, one peptide was selected as antigen and obtained 
sensitivity and specificity of 98% and 97.5%, respectively, the pELISA was easier to 
perform in comparison with CIEP and has better sensitivity that allowed it to detect the 
early-stage of infection [68]. 

Wildlife is no exception to the application of diagnostic peptides as can be seen in a 
study developed to detect the elephant endotheliotropic herpesvirus that severely affects 
young elephants, while adult specimens are carriers and spread the virus. The pELISA 
was compared with PCR and found that the latter was better to detect the virus in the 
post-mortem, sick and young animals, while the serological test surpassed the PCR to 
detect adult carriers. With this test, as many as 48.4% of healthy animals were positive for 
this pathogen [69]. The use of these innovative peptides-based tools in wildlife could help 
to preserve endangered species. 

Interestingly, the application of peptides-based systems is not limited to just 
mammals and birds; their use in aquaculture species is now emerging. Kulabhusan et al., 
2017 developed a peptide-based lateral flow device to detect the white spot disease in 
shrimp and prawns, the assay employed gold nanoparticles and was able to detect up to 
12.5 µg/mL of virus protein, the sensitivity, and specificity of LFA were 100% and 97.96% 
96.77%, respectively [38]. 

Table 2. Some studies using peptides to detect diseases in different animal species. 

Domestic  
Species Disease or Pathogen Peptide Sequence ‡ Diagnostic 

System 
Sensitivity/Speci-

ficity Bibliography 

Swine 

Porcine reproductive and 
respiratory syndrome  

LAPAHHVESAAGFHPITASD, 
VPGLKSLVLGGRRAV-
KRGVVNLVKYVK 

pELISA Φ 97.60%/100% [46] 

Foot-and-mouth disease GPYAGPMERQKPLK Lateral flow 95%/100% [47] 

Hepatitis E LGATSPSAP-
PLPPVVDLPQLGLRR 

pELISA § [48] 

Cattle 

Anaplasmosis VGDKKPSDGDID, ERS-
RELSRARQEDQQ 

pELISA 100%/95% [49] 

Babesia bovis 

QEYANSTEDCAAIL-
FDNSATDL, TAIGSPLEY-
DAVNY-
PCHIDTNGYVEPRAK 

pELISA 94.56%/76.19% [50] 

Coxiella burnetii 
QALQKKTEAQQEE-
HAQQAIKENAKK p-LAT † 76.19%/75.39% [51] 

Sheep/Goat Sheep pox 
Goat pox 

EAKSSIAKHFSLWKSYADAD-
IKNSENK, 
FHNSNSRILFNQENNNFMYS 

pELISA 95%/100% [52] 

Sheep 
Chlamydia abortus ID Screen® Chlamydophila 

abortus indirect Multi-species * 
Commercial 

pELISA 
73.68%/ § [55] 

Sheep/Cattle § [56] 
Horse/Don-
key/Mule 

Equine infectious anemia 
KERQQVEETFNLIGCIERTH pELISA 98.6%/95.6% [58] 

Horse ELISA AIE-LAB® kit Commercial 
pELISA 

100%/97.6% [57] 

Horse Equine arteritis virus 

VFLDDQIITFGTGCNDTHSVP
VST, 
AVGNKLVDGVKTITSAGRLF-
SKRAAATAYKLQ 

pELISA 95.65%/80.43% [59] 
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Equine herpes virus 
type 1 and 4 

KQPQPRLRVKTPPPVTVP, 
TEGMKNNPVYSESLMLNV 

pELISA § [60] 

Dog 
Ehrlichiosis  

TEDSVSAPATEDSVSAPA, 
ASVVPEAEASVVPE-
AEASVVPEAE, 
HFTGPTFSEVNLSEEEKMEL-
QEVS 

pELISA §/100% [61] 

Leishmaniasis 
MKIRSVRPLVVLLVC, 
PLSVGPQAVGLSVG pELISA 98%/99% [62] 

Dog/Human Leishmaniasis 

TPAVQKRVKEVGTKP, 
TTVVGNQTLEKVT, 
VVSTSRDGTAISWK, 
ESTTAAKMSAEQDRES-
TRATLE, 
VGPQSVGPLSVGPQSVGPLS 

pELISA 
Variable (close to 

100%) [63] 

Cat Feline infectious perito-
nitis 

PTWKFPGVKGLW, TSAK-
NDPWAAAV 

pELISA 57%/90% [64] 

Poultry/Hu-
man 

Avian influenza CNTQCNTPMGAINSS pELISA 100%/100% [65] 

Poultry 
Infectious bronchitis  SCPYVSYGRFCIQPDGSIKQ pELISA 98.15%/93.1% [67] 
Avian leukosis QALNTTLPWDPQELDILGSQ pELISA 85.96%/95.63% [66] 

Other spe-
cies      

Mink Aleutian disease Sequence from VP2 protein * pELISA 98.0%/97.5% [68] 

Elephant Elephant endothelio-
tropic herpesvirus 

GDNDKKFSETY-
TKFKVYNEYERLE, 
ANMTKHRRKRETSSSASSK, 
QQHVGDPP-
SYDESIGSSHTYSK 

pELISA §/100% [69] 

Shrimp/Pra
wn White spot syndrome TFQAFDLSPFPS Lateral flow 100%/97.96% [38] 

‡ Specific modifications are not included in the list, review the corresponding bibliography. Φ 
Peptide-based enzyme-linked immunosorbent assay. † Peptide-based latex agglutination test. * 
Peptide sequence not available in the article. § Data not available. 

3. General Observations 
It was evident that viral and bacterial diseases that are detrimental to the livestock 

industry or whose current diagnostic systems are inefficient, for example, methods that 
are difficult to perform or require costly equipment (culture cell, immunofluorescence), 
and methods that are prone to errors, were the main target of peptide-based tests to offer 
an alternative. 

Many studies with peptides that were reviewed included commercial kits or 
officially approved tests by federal governments and international organizations such as 
the World Organization for Animal Health (OIE) [70] to know their performance in 
comparison with these well-established systems; the results show that most of them have 
similar performance, some even outperformed them and others were less efficient than 
their counterparts. If the peptide test is good enough it could substitute some more 
expensive kits. 

Almost all the diseases listed in Table 2 have commercial kits that can include POCT, 
ELISA (recombinant proteins), or real-time PCR, however, not all of them are available in 
different countries or are relatively expensive, therefore, the investigations that were 
reviewed allow the use of in-house tests when there are limitations to acquire a 
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commercial product. Moreover, there are a large number of investigations about epitope 
mapping of more diseases that disclose potential peptides to be used as diagnostic tools 
or vaccines [71,72], albeit, they are not being put in practice with field samples; a possible 
explanation is that the early use of recombinant proteins and commercial kits has 
generated a habit, e.g., IDEEX has been in the market since 1987 [40]; furthermore, the use 
of a trademark generates trust in the researcher or clinical veterinarian and they are user-
friendly which makes them more attractive. These traits should be incorporated into new 
peptides to offer a flashier alternative, especially exploring the possibility of being 
adapted in POCT which is nowadays the state-of-the-art in fast diagnosis. 

The peptide-based systems reviewed in this study showed their capacity and 
flexibility to expand or reduce their target according to what the researcher is looking for: 
the tests could be applied in one or more species, while others are able to detect a specific 
variant or genotype, furthermore, a few of them could differentiate between vaccinated 
and natural-infected animals, and they can also be suited to evaluate the performance of 
vaccines post-inoculation, in order to know an approximate time when antibodies are 
detected. 

Although their use in diagnosis has expanded considerably, the application of other 
devices different from pELISA such as microarrays and lateral flow devices are relatively 
less common, possibly due to the ease and practicality of ELISA. Additionally, more 
comparisons in different circumstances are needed to assess their utility, and finally, the 
marketing of diagnostic devices remains relatively unexplored and is an interesting field 
to be covered. 

4. Peptide Synthesis Approaches 
Peptide synthesis can be achieved by three different approaches: (a) chemical 

synthesis; (b) recombinant DNA technology and (c) enzymatic synthesis [73]. 
Chemical synthesis which is the most popular method has two procedures to obtain 

peptides; one involves the use of solution-phase synthesis (SPS), however, this method is 
tedious and time-consuming since isolation and characterization should be performed 
after each step, therefore, solid-phase peptide synthesis (SPSS) has been preferred since 
its creation, however, SPS continues to be used for short peptide chains (typically less than 
10 amino acids) and is used in large-scale production; even now technique improvements 
are being made. It must be noted that both methods can be combined [9,74–76]. 

Regarding the history of SPSS, it is attributed to Robert Bruce Merrifield who first 
developed the methodology in 1963 [77]. One of the most important improvisations was 
the introduction of a 9-fluorenylmethoxycarbonyl group (Fmoc) in 1970 by Han and 
Carpino as a new base-labile protecting group of amines, this greatly contributed to 
establishing the actual approach that is the most common strategy of SPSS nowadays 
[74,78,79]. 

The principle of SPPS is based on attaching the first amino acid to a resin, then 
proceeding with peptide chain elongation to ultimately provide the target peptide. A resin 
is composed of polymeric solid support linked permanently to a linker (bifunctional 
spacer, or handle) that facilitates temporary anchoring of the first amino acid to the 
polymeric support, one of the most common solid support used is 1–2% divinylbenzene-
cross-linked polystyrene in the form of a bead with diameters of about 50 microns, 
although others supports are feasible [79–81]. 

Even if the method has improved a lot in the last years, limitations and technical 
intrinsic problems remain, for example, the synthesis of ~50 amino acids or more and the 
difficulty of synthesizing hydrophobic peptides [82]. The demand for huge amounts of 
synthetic peptides for pharmaceutical applications represents a challenge to satisfy the 
market, the use of large-scale jacketed solid-phase reactors is necessary when dealing with 
quantities >100 kg [83]. Another point of concern is the substantial use of organic solvents 
such as dimethylformamide (DMF) and other compounds that are toxic to the 
environment and human beings; several green options are being investigated [84,85]. 
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The principle of recombinant synthesis is to make use of the natural production 
machinery of the cells. The use of recombinant technologies offers cost-effective means for 
large-scale peptide manufacture, nevertheless, it is not free of particular problems to 
express and purify peptides. Both prokaryotic and eukaryotic host systems can be used to 
produce therapeutic protein/peptides that include cell cultures of mammals (for example 
Chinese hamster ovary cells), insects, plants, molds, and bacteria such as E. coli, 
Pseudomonas fluorescens, Bacillus subtilis, Staphylococcus carnosus, Lactococcus lactis, 
Sacharomyces cerevisiae, and Pichia pastoris [9,86–89]. 

Despite the success of recombinant production of peptides, chemical synthesis is the 
prevalent manufacturing approach. Two reasons can explain this situation: the first is 
related to the nature of the biotechnological process itself. To obtain a recombinant 
peptide a complex process is required (selection of a suitable expression system, 
construction of expression vector, bioprocess development in the bioreactors at different 
scales, and ending with downstream processing), therefore, is labor-intensive and takes a 
substantial amount of time to develop and market in comparison to chemical synthesis; 
notwithstanding, attractive features such as the synthesis of larger peptides, relative large-
scale production, and environmentally friendly synthesis make this technology a good 
option. These and other features including advantages and drawbacks of peptide 
production by recombinant technology are discussed previously [9]. 

The enzymatic synthesis makes use of different enzymes of animal, vegetable, and 
microbial origin, the vast majority of these enzymes are proteases and transpeptidases, 
for example, cysteine proteases (papain, bromelain), serine proteases (α-chymotrypsin, 
proteinase K, trypsin, subtilisin) and esterases (lipase) [75,90,91]. In comparison with SPSS 
technology alone, where it is challenging to produce longer peptides, enzymes offer the 
opportunity to ligate several smaller peptide fragments, with excellent region and 
chemoselectivity and perform the catalysis of reactions under mild conditions. The use of 
both chemical and enzymatic synthesis (chemo-enzymatic peptide synthesis) is an 
attractive option for researchers as it could enhance the flexibility to synthesize peptides 
[73]. 

Another advantage of enzymatic synthesis is that it is environmentally friendly, 
avoiding the need to use harmful solvents; the drawbacks, however, are low product yield 
and non-ideal purity [73,92]. Despite these limitations, the methodology allows to process 
plant and animal protein hydrolysates that provide highly digestive peptides and 
bioactive peptides, therefore it is a valuable tool for animal nutrition [93]. 

5. Advantages and Drawbacks of Synthetic Peptide-Based ELISA 
Like each method, the application of ELISA for diagnostics, as well as synthetic 

peptides have their traits, therefore, the optimization of each ELISA protocol must 
consider the most suitable peptide and the pertinent modifications in its structure. 

ELISA has been a well-known method for several decades, the use of direct, indirect, 
or sandwich ELISA has been described elsewhere, and every one of them needs to be 
optimized; fortunately, this is facilitated thanks to the use of a chessboard titration, 
troubleshooting guides and some tips [94–96]; however, the particularities of synthetic 
peptides should be added and several strategies are feasible to overcome these problems. 

Among the most common drawbacks responsible for poor peptide performance is 
the peptide length (usually when it is shorter than 20 residues), this limits the number of 
sidechains available for both adsorption and target recognition; howbeit, several 
improvements have been described and include modifications of the microtiter plate 
polystyrene surface, some of them coating it with maleimide-activated bovine serum 
albumin, maleimide-activated keyhole limpet hemocyanin or alcian blue [97–99]. Other 
carriers include the use of biotinylated peptides that take advantage of the strong bond 
between biotin-streptavidin or albumin-conjugated peptides [100–102]. 

One more limitation is that almost all of the petides used as mimotopes are linear; 
conformational epitopes cannot be synthetized with the actual technology, this is expected 
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as three dimensional structures are more complex, however other approaches of peptides 
synthesis enable the use of dendrimeric peptides which have increase bio-availability and 
have been used in veterinary serodiagnosis studies with promising results. It is possible 
that dendrimeric peptides could increase the sensitivity and specificity more than actual 
linear peptides [103,104]. 

Moreover, some investigations have focused on enhancing the peptides-polystyrene 
adherence, some of them using a polystyrene-binding sequence (PS-tag) which deploys 
high affinity toward polystyrene, such a sequence is then attached to the target peptide 
increasing the binding capability in comparison with native peptide or other 
modifications such as biotin-tagged peptides [105,106]. They all seek to increase the 
peptide adsorption rate and functionality. 

But why do synthetic peptides have more advantages over recombinant proteins? 
Although it cannot be true in all cases it provides several benefits: 
• Allow the construction of peptides that are incompatible with recombinant methods 
• Possibility to customize peptides and aggregate other molecules 
• It is an alternative for laboratories that do not have the technology for recombinant 

processes as the sequences are processed by a company 
• Shorter time to obtain a peptide 
• Easy to manipulate (powder) 
• Fewer possibilities of cross-reaction with other similar pathogens or capacity to 

differentiate variants within the same microorganism 
Although is evident that peptide-based systems are an interesting and functional 

alternative, their capability must be compared with other known tests to ensure that it is 
the best choice available for each particular disease; recombinant proteins in serodiagnosis 
or qPCR continue to be excellent options with its peculiarities that according to the 
situation have adequate performance. Ultimately, cost, performance, and suitability 
should be taken into account when selecting the diagnostic system. 

6. Conclusions 
We reviewed 23 studies that used synthetic peptides and were applied to detect 21 

different diseases in 10 domestic animals and four non-domestic animals; It is important 
to highlight that almost all of them differ from the commercial kits and reflect the 
opportunity to develop in-house protocols. Viral and bacterial diseases with high 
morbidity and mortality in animal production were the main goal of these investigations, 
which have also diagnostic flaws with other methods such as low sensitivity or specificity, 
reproducibility, or are difficult to perform. Moreover, two studies also used human serum 
for some zoonotic diseases of concern; this is interesting because the same diagnostic 
system can have multi-species applications which is a feature of several commercial 
devices and could compete with them. 

According to the diagnostic system, pELISA was the most used with 19 publications, 
followed by lateral flow devices and peptide-based latex agglutination tests. Almost all of 
the investigations developed their own diagnostic devices and only three investigations 
purchased available commercial peptides; the low amount of marketed pELISA could be 
because recombinant proteins are more commonly used in ELISA, however, it is expected 
in the next years that an increasing number of new peptide drugs, AMP, and other 
products for pathogenic and non-pathogenic diseases will be patented and marketed 
worldwide. Every year, new peptides are isolated from animal sources and their 
therapeutic potential is explored with promissory results. 

Regarding the technology used to obtain peptides, synthetic peptides offer an 
available option to create peptides more easily; new strategies for large peptides and 
difficult sequences are being explored and are the principal focus of several investigations 
and could be an important step in peptide synthesis. Despite the fact that we encompassed 
more research with synthetic peptides, the use of recombinant DNA technology remains 
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well-established support in Veterinary Medicine when dealing with protein, and new 
protocols for peptide synthesis are being developed, hence it is expected that recombinant 
peptides continue to be another viable option. 

Among the things that need to improve is the inclusion of other epitope mapping 
methods and comparative studies with other molecular methods. Additionally, a broad 
spectrum of marketed peptide diagnostic systems is necessary to attract more researchers 
and government agencies; the introduction of POCT with peptides could be interesting 
and could compete with already established products. The use of these in-house peptides 
is incipient in some cases, hence, it is necessary to increase the number of samples and 
obtain more tangible results about sensitivity, specificity, accuracy and other parameters 
that lack some studies (Table 2) to make them more reliable. 

Finally, the contrast with other tests confirms the sturdiness and validity of peptides-
based systems, especially for pELISA; therefore, synthetic peptides are an alternative 
option with the possibilities of facilitating the diagnosis of some diseases, however, more 
large-scale studies are necessary and complementary analysis to approve a generalized 
use of these diagnostic tools with the potential to be employed in national programs of 
eradication, control, or vaccination. 
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