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Abstract
Habitat loss is one of the most important threats to biodiversity; it alters the habitat connectivity of species and is among the
main causes of the global amphibian extinction crisis. Identifying the potential areas of distribution and connectivity of
species is of the utmost importance so that informed decisions can be made for the conservation of vulnerable amphibian
populations. In this study, we performed species distribution models and used circuit theory to model omnidirectional
connectivity for two plethodontid salamanders of conservation concern distributed in the forests of Chiapas, Mexico, and
Guatemala (Bolitoglossa franklini and Bolitoglossa lincolni). Potential distribution maps show an affinity for well-preserved
montane forests for both species. Likewise, we found that the niches of the species are not similar. The connectivity models
show that the main areas of connectivity are in the Meseta Central de Chiapas, Sierra Madre de Chiapas, and the Cordillera
Volcánica Guatemalense, in this last range, important areas of connectivity were located, as well as least-cost paths and
barriers to the movement of both species. We identified that important areas of climatic suitability and connectivity are not
within the protected natural areas and may be threatened by the increasing influence of anthropogenic activities. The results
of our study show the importance of preserving the regional forests to ensure the persistence of species with arboreal habits
and high sensitivity to habitat transformation, as well as to recognize and prioritize potential areas for management and
protection in both southern Mexico and Guatemala.
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Introduction

The world’s forests are highly diverse in terms of species,
but it is estimated that at least 46% of them have dis-
appeared due to human activities (Crowther et al. 2015),

and only 40% remain free of modification (Grantham et al.
2020). The forests in tropical regions have a third of the
global biodiversity (Giam 2017), however, there is a great
loss of vertebrates, mainly due to habitat loss and land
change use, affecting the diversity, distribution, and species
interaction, and, hence, the ecosystem functioning (Jetz
et al. 2007; Thompson et al. 2017). Currently, amphibians
are facing an environmental crisis due to their population
reduction and the extinction of different species in several
regions of the planet (Stuart et al. 2004). For instance, in
Mesoamerica, threats to amphibians are much higher than in
all the rest of the American continents (Alroy 2015; Scheele
et al. 2019) due to habitat modification (Whitfield et al.
2016). In the south of Mexico, a collapse and reduction of
amphibian populations, particularly of amphibian species
that can be found in cloud forests and within mountain
ranges has been occurring for years (Lips 2008). In Gua-
temala, local extirpations of plethodontid salamanders have
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been happening even in protected natural areas (Rovito
et al. 2009). Among the plethodontid salamanders, the
genus Bolitoglossa is widely distributed from southwestern
North America to northern Brazil and the central mountains
of Bolivia; the greatest diversity and endemism of the genus
is found in the geological complex known as Nuclear
Central America (Wake and Lynch 1976; Rovito and Parra-
Olea 2016). Bolitoglossa franklini and B. lincolni are phy-
logenetically closely related and considered sister species
(Wake and Lynch 1982; Parra-Olea et al. 2004; Vásquez-
Almazán and Rovito 2014). They have an allopatric dis-
tribution and are found in pine, pine-oak, and cloud forest
areas within Chiapas and Guatemala’s occidental Central
Mountains (Wake et al. 1980).

Bolitoglossa franklini is a complex species, regarded
as vulnerable (IUCN SSC Amphibian Specialist Group
2020a) and distributed in the Sierra Madre de Chiapas
until the southwest Pacific slopes in western Guatemala
(Wake et al. 1980), within pine forests and pine-oak
forest between 1500 and 3200 m a.s.l. They are mainly
arboreal and use bromeliads as their main microhabitat in
mature and conserved forests (Wake and Lynch 1976).
Bolitoglossa lincolni, however, is a near-threatened spe-
cies (IUCN SSC Amphibian Specialist Group 2020b)
distributed mainly in the pine and pine-oak forests in the
Central Plateau of Chiapas (CCP), the mountain range of
Cuchumatanes, Cuilco Sierra, and the San Marcos
region in the Cordillera Volcánica Guatemalense (GVC)
(Wake and Lynch 1976; Wake et al. 1980), and it is found
in disturbed areas, exhibiting a generalist habit (Wake
and Lynch 1976; Rovito et al. 2009). Despite the dif-
ferences observed in both species, the populations share
threats to their conservation such as the loss and trans-
formation of habitat due to forest exploitation, agri-
cultural activities, and the growth of human settlements
in their distribution areas (IUCN SSC Amphibian Spe-
cialist Group 2020a, 2020b).

It is crucial to delineate the species distribution area to
establish conservation areas for preserving these species and
habitat conservation. The species distribution models
(SDM) estimate the environmental suitability and potential
distribution areas using the species presence records and the
geographic and environmental conditions (Peterson 2006;
Elith and Leathwick 2009; Warren 2012). These predictions
are valuable for assessing the potential distribution and,
therefore, the conservation status of rare, endemic, or poorly
studied species (Guisan et al. 2013). Such SDMs are also
useful in determining suitable habitats for populations of
undiscovered species, detecting climatic barriers to dis-
persal, and for exploring ecological divergence between
closely related taxa when species share distribution ranges
(Cunningham et al. 2009; Glor and Warren 2011; Hu and
Jiang 2018).

Landscape connectivity is the degree to which the
environment simplifies or prevents an organism’s move-
ment between different locations (Taylor et al. 1993;
Tischendorf and Fahrig 2000). Habitat fragmentation can
modify connectivity, imposing barriers to organism move-
ment and affecting the individuals’ ability to disperse and
reach habitable places (Wiens et al. 2009). Amphibians are
very susceptible to habitat transformation due to their lim-
ited vagility and high sensitivity to microclimatic variation
(Nowakowski et al. 2015). The habitat fragmentation and
land change use can modify the migration paths or affect
their general movement (Ray et al. 2002), in salamanders, it
has been observed that reduced connectivity is mainly due
to poor habitat quality and increased anthropogenic activ-
ities (Ashrafzadeh et al. 2019). Thus, for species with lim-
ited dispersal capacity, their habitats are expected to offer
suitable conditions for their maintenance and reproduction
as well to preserve their dispersion paths, and the evolu-
tionary process at different spatial and temporal scales
(Pelletier et al. 2014; Hilty et al. 2019).

A practice that can guarantee biodiversity conservation,
along with the functioning and stability of the ecosystem, is
the identification and design of corridors, which will facil-
itate the appropriate dispersion of the species in the land-
scape (Thompson et al. 2017). The connectivity between
habitats can be modeled as a cost measure where the
landscape elements are allocated resistance values accord-
ing to the degree to which they allow or hinder the move-
ment of individuals (Adriaensen et al. 2003). One of the
most used methodologies for this purpose is the circuit
theory; this analysis uses resistance and flow values of the
movement and, therefore, can be applied to predict the
movement and the probability of dispersal of organisms
while generating measures of connectivity or isolation
between populations, patches of habitats, or protected nat-
ural areas (McRae et al. 2008).

The previously described approaches are rarely used
among Mexican amphibians; however, their application in
the study of plethodontid salamanders in central Mexico has
been useful in identifying priority areas and corridors
(Vargas-Jaimes et al. 2021; Sunny et al. 2022), along with
the identification of barriers and their effect on the popu-
lation isolation (Velo-Antón et al. 2013; Sunny et al. 2022).

In this study, we utilized SDMs to describe the potential
distribution and evaluate the similarity of the climatic
niches of two sister species of the genus Bolitoglossa, (B.
lincolni and B. franklini). Additionally, we applied a circuit
theory approach to find the corridors between core areas,
least-cost path corridors, and bottlenecks for the movement
of plethodontid salamanders in the mountains of southern
Mexico and Guatemala. Therefore, this study aimed to
determine the potential distribution of the two salamander
species, identify corridors and pinch points (bottlenecks) in
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the study area, and analyze the corridor network to identify
important core areas and corridors to keep the network
connection and, consequently, to enhance information
within the conservation actions for the salamanders of
southern Mexico and Central America.

Methods

Study Area

The study area is located between southern Mexico and
western Guatemala, in the area known as Nuclear Central
America, and comprises 169,501 km2. Specifically, this area
includes the Sierra Madre de Chiapas (SMCH), Central
Chiapas Plateau (CCP), and the highlands of Guatemala
(Cordillera de Los Cuchumatanes (CC), the relief of this area
forms a mountainous landscape with an abrupt topography

that allows the presence of different climates and ecosystems
that have evolved many species and endemics (INE/
SEMARNAT 1999). In the SMCH, there is the largest pro-
portion of conserved forest areas under protection, like the
Sepultura, El Triunfo, Tacaná Volcano, and Frailescana, one
of the most important cloud forests in the region. In Guate-
mala, several protected natural areas occur in the study area,
like Volcán Tacaná, Tajumulco, and Volcán Lacandón, as
well as the Visis-Cabá (CONAP 2021) (Fig. 1). In the study
area, the predominant vegetation is cloud forests, pine for-
ests, pine-oak forests, and agricultural areas, mainly coffee
plantations, corn crops, and pastures for cattle.

Species Occurrence and Environmental Variables

Occurrence records of Bolitoglossa franklini and B. lincolni
were obtained from online sources, GBIF (https://www.gbif.
org), Consejo Nacional de la Biodiversidad (CONABIO;

Fig. 1 Study area and salamander species presence points. The green areas are the M used for each salamander studied. CCP Chiapas Central
Plateau, SMCH Sierra Madre de Chiapas, GVM Guatemala Volcanic Mountain Range
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https://www.gob.mx/conabio); data from regional collec-
tions; Colección Herpetológica de El Colegio de la Frontera
Sur (ECOSUR-SC) and Colección Zoológica Regional
Secretaría de Medio Ambiente e Historia Natural
(SEMAHN) and field surveys in the Sierra Madre de Chiapas
to detect the presence of B. franklini. Seven field trips were
conducted between October and March 2020–2022, during
the dry season, two-three persons conducted free transect
walks during the day between the hours of 10:00–16:00, and
at night 20:00–24:00 h, in the habitat of the species between
1800 and 2200m asl, the sampling involved an active search
within bromeliads, the main microhabitat of the species, as
well in bark, fallen trunks, and leaf litter (Wake and Lynch
1976). Cleaning of the occurrence data was carried out with
the thin command of the library spThin (Aiello‐Lammens
et al. 2015) for R software (4.00; R Development Core Team
2019) as follows: 1) occurrence data was previsualized to
remove erroneous records or records outside the potential
geographic range, 2) duplicate records were eliminated, and
3) to avoid pseudoreplication, the species’ distribution data
were subsampled considering only records that were spaced
at least 1 km from each other, according to the range of
dispersal abilities observed in Plethodontidae salamanders
(Smith and Green 2005; Lowe et al. 2008). This method
substantially reduces the overfitting in the model (Segurado
et al. 2006; Boria et al. 2014). We obtained 228 records for
B. franklini and 92 for B. lincolni. (Supplementary Infor-
mation 1, SI1). After applying spatial filtering, we retained 69
and 63 records, respectively.

Species Distribution Models

To delimit the distribution of a species, it is necessary to
determine a calibration space for the models, or M
according to the BAM diagram, which represents the
accessible area for a species and is compatible with the
biogeographic history of the species (Soberon and Peterson
2005). For this purpose, we selected and grouped the
Central American pine-oak forests (CAPOF), Central
American montane forests (CAMF), Chiapas montane for-
ests (CMF), and Sierra Madre de Chiapas moist forests
(SMF) ecoregions according to Olson et al. 2001 (Fig. 1).
For the environmental niche modeling, we use the biocli-
matic layers available in Worldclim Project 2 (Fick and
Hijmans 2017) and the ENVIREM climate layers (Title and
Bemmels 2017). To prevent the models from having an
effect caused by the over-parameterization and collinearity
between the layers, we discarded some bioclimatic layers
based on the variance inflation factor (VIF), which quanti-
fies the multicollinearity between the layers, indicating the
degree that a variable increases the standard error of the
regression. The VIF was calculated with the package usdm
1.1.18 for R, with a threshold of 10, where higher values

indicate collinearity (Dormann et al. 2013; Naimi et al.
2014). The final set of variables was: annual mean diurnal
range (Bio 2), temperature seasonality (Bio 4), mean tem-
perature of the wettest quarter (Bio 9), precipitation sea-
sonality (Bio 15), precipitation of the wettest quarter (Bio
16), precipitation of the warmest quarter (Bio 18), pre-
cipitation of the coldest quarter (Bio 19), climatic moisture
index, potential evapotranspiration (PET) of the driest
quarter, and PET seasonality (Supplementary Information 2,
SI2; Supplementary Table S1). For the environmental niche
modeling, we used the maximum entropy analysis imple-
mented in Maxent 3.4.1 (Phillips and Dudík 2008). Before
the elaboration of the SDM, using independent evaluation
metrics of the threshold, we looked for the optimal set of
parameters to obtain the most parsimonious model with the
ENMeval package (Muscarella et al. 2014). One test con-
sidered for the evaluation of the model was the AUC test,
which measures the discriminatory capacity, where the
highest values indicate that the model has a reliable capacity
to distinguish between the test locations and the background
points (Peterson 2011). The difference in the AUC (AUC
DIFF) is the difference between the AUC calculated from
the training locations and the AUC test. This parameter
quantifies the overfitting of the models, high values indicate
excessive overfitting of the model (Warren and Seifert
2011), and the Akaike information criterion corrected for
small samples (AICc) shows the goodness of fit and the
complexity of the model. The models with the lowest AICc
value are considered the best of the set of models obtained
(Warren and Seifert 2011). To obtain the evaluation metrics,
we generated 10,000 random points that were used as
background points. We partitioned the number of records
by the “Checkerboard1” method with an aggregation factor
of 5; this method generates a grid over the study area as a
Chessboard, which partitions the localities into cells (bins),
although it does not offer a balanced number of presences in
each cell, and it performs an equal sampling of the geo-
graphical and environmental space (Muscarella et al. 2014).
Subsequently, the complexity of the models was estimated
based on the regularization multiplier (RM) and the Maxent
features classes. The RM determines how concentrated or
adjusted the distribution is; values less than 1.0 will give
rise to a more localized distribution and adjusted to the
presence registers, which can lead to overfitting in the
models. High values of the RM will give a more dispersed
and less localized prediction. For our study, we obtained the
most parsimonious model by testing all possible combina-
tions between the RMs and Maxent’s feature classes; we
tested 10 RMs in a range from 1 to 5, with increments of 0.5
and six feature classes: linear (L), quadratic (Q), product
(P), threshold (T), and hinge (H). With the information
obtained, we built the model in Maxent, implemented in
Dismo 1.1–4 (Hijmans et al. 2017) for R. To quantify the
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area of climatic suitability, we converted the continuous
potential map to a binary map according to a cut-off
threshold of the 10-percentile training presence. Addition-
ally, to evaluate the precision of the Maxent model, we
transformed the area under the curve (AUC) by calculating
the partial ROC (partial receiver operating characteristic
curve graphics, Peterson et al. 2008), which was obtained
by evaluating the statistical significance through null dis-
tributions; we calculated the Partial ROC in the package
ntbox (Osorio‐Olvera et al. 2020) in R, applying 1000
iterations and an error of 5%. The significance of the AUC
was estimated with a bootstrapping of 1000 and using 50%
of the presences as training locations.

Similarity, Equivalence, and Niche Overlap

In species with shared ancestry such as Bolitoglossa
franklini and B. lincolni, niche similarity may be more
likely but rarely identical (Warren et al. 2008). To identify
environmental differences, we compare the ecological
niches of the species and determine if they are significantly
different from each other, we contrasted the niches of both
species according to the method of Broennimann et al.
(2012). The bioclimatic variables used in the modeling
were reduced using an ordering technique with a principal
component analysis (PCA), and then we delimited the
environmental space using the first two axes of the PCA.
Species presence records were plotted within the environ-
mental space using a Kernel density function, which cor-
rects the potential bias of sampling errors (Broenniman
et al. 2012) (Fig. 2d). The niche overlap was calculated
with the Schoener’s D metric (Schoener 1970; Rödder and
Engler 2011), which calculates the habitable space based
on its abundance of the species and the Hellinger distance I,
which quantifies the probability of distribution of the spe-
cies to inhabit a given area, calculating the overlap of the
niches (Warren et al. 2008). Both metrics have ranges from
0 to 1, where 1 indicates that the niches are identical. The
estimates of presence density and the similarity of the niche
between species in the environmental space were repeated
100 times to generate a null distribution comparable with
the observed D value; non-significant results indicate that
the niches are not identical. The analyses were carried out
with the ecospat 3.1 package (Di Cola et al. 2017), and the
presence density for the two species were plotted with
ggplot2 (Wickham 2016) for R.

Connectivity Models

To evaluate the connectivity patterns between the B.
franklini and B. lincolni localities, we calculated land-
scape resistance using circuit theory, which models the
movement patterns of species in a complex landscape

(McRae et al. 2008). The geographic area used to model
connectivity was delimited by a minimum convex poly-
gon made from the sample points, with a buffer of 20 km
to minimize the increase in resistance values (Koen et al.
2010). The models were elaborated with the presence of
localities and a resistance surface layer, which was ela-
borated from the information obtained from the land cover
of Copernicus Global Land Service for the year 2019 at a
resolution of 100 m (Buchhorn et al. 2020). The layers
contain spatial information about the different types of
coverage and the influence that humans have on them, and
have continuous field values expressed as percentages
(Buchhorn et al. 2020). We resampled the layers and
assigned low resistance values to pixels that represented
high coverage percentages, and we included a layer of
roads, infrastructure, and cities obtained from Open-
StreetMap (2020) contributors (http://www.openstreetma
p.org/). The layer was rasterized and rescaled using the
Mosaic to Raster tool of ArcMap 10.8. Finally, the
resistance values of the landscape were scaled to 5–100
(Supplementary SI2, Supplementary Fig. S1).

The connectivity patterns were obtained with the CIR-
CUITSCAPE 4.0.5 software, which calculates the effective
resistance to movement and all possible paths between pairs
of locations or focal nodes, where a node is arbitrarily
connected to a 1-amp current source, while the other node is
connected to ground (McRae 2006). The process is carried
out through iterations between pairs of occurrence points
used as focal nodes, and they are expressed in current
values on a current map (Supplementary SI2, Supplemen-
tary Fig. S2). Additionally, the least cost path (LCP) was
determined with the Linkage Mapper 3.0.0 extension for
ArcMap (McRae and Kavanagh 2011). The software cal-
culates all possible routes and their cost in the landscape,
showing the lowest cost routes based on the Cost Distance
algorithm. This is a calculation of the minimum accumu-
lated cost distance between two nodes. The result is a raster
layer with cell values that represent the accumulated cost
from a nearby source cell. From this raster, the LCPs are
calculated in a vector layer of lines that establish the optimal
routes for the establishment of corridors (Adriaensen et al.
2003). To assess the relative importance of core areas, we
use current flow centrality analysis. In this approach, core
areas are treated as nodes and the current flow through the
network is calculated, thus determining the importance of
each node and corridor in maintaining connectivity between
habitat patches (Carroll et al. 2012; Dutta et al. 2016).

Finally, we calculated the bottlenecks or constriction
zones for the movement of the species (pinch points) in the
study area. These are used to identify important areas for
connectivity due to a high flow of individuals, where high
values indicate that corridors are vulnerable to unfavorable
conditions (McRae et al. 2008).
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Results

Species Distribution Models

For B. franklini, we obtained 61 models, of which the least
complex model (AICc= 1296.5) had the following para-
meters: LQH with a regularization multiplier (rm) of 2.5 and
an AUC= 0.94. For B. lincolni, we obtained 61 models,
two of them being equally parsimonious (ΔAICc ≤ 2). For
this species, niche modeling was performed with the fol-
lowing parameters: AICc= 1219.0, LQH with a rm= 3.5,
and an AUC= 0.93. The performance of the models was
adequate; according to the calculation of the partial ROC
bootstrap tests, 100% of the models were statistically sig-
nificant with AUC ratio values of 1.89 for B. franklini and
1.86 for B. lincolni, (p < 0.001). The potential distribution
of both species shows an area of climatic suitability in the
mountains of Chiapas and Guatemala. For B. franklini, a

potential distribution area of 8121.8 km2 was achieved
(Fig. 2a), and for B. lincolni, a distribution area of
9411.9 km2 was determined (Fig. 2b); these areas are
approximately 13.7 and 15.9% of the study area, respec-
tively. For B. franklini, the areas of greatest suitability were
located mainly in the Cordillera Volcánica Guatemalense
(GVC) and in the Sierra Madre de Chiapas (SMCH) in the
Istmo de Tehuantepec. Its distribution is reduced, and only
the tops of the mountains of the region have suitability. In
this area, there are at least three important protected natural
areas, the Biosphere Reserves of El Triunfo, La Sepultura,
and Volcán Tacaná in México. Bolitoglossa lincolni, in
Mexico, is distributed mainly in the Meseta Central de
Chiapas (CCP); the analysis showed a region of low
probability of presence for the species located in lowlands
located between the CCP and the Sierra de los Cuchuma-
tanes. In the GVC area, both species overlap in their dis-
tribution. In Mexico, the distribution of B. lincolni is not

Fig. 2 Potential distribution of a Bolitoglossa franklini and b B. lincolni; c PCA and contribution of environmental variables in the niche overlap of
both species; d overlap of the niche for both Bolitoglossa species, the shaded areas indicate the density of occurrences for each species
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documented within federally protected areas, and in Gua-
temala, its distribution occurs in at least four important
ANPs: Visis Cabá, Covirey, Volcán Tajumulco, and Volcán
Lacandón. According to the jackknife analysis carried out in
Maxent, the variable with the greatest relative contribution
to the distribution models was the mean temperature of the
driest quarter for B. franklini (Bio9= 24.1%) and B. lin-
colni (Bio9= 72.8%) (Supplementary SI2, Supplementary
Table S2).

Similarity, Equivalence, and Niche Overlap

Niche overlap analysis by PCA (Fig. 2c, d) showed that the
contributions of the first two axes to PCA were 33.3 and
23%, respectively, and the precipitation of the wettest
quarter (Bio16= 24.5%) was the variable that explains the
greater variation in the PC1 component, while the variation
in the PC2 component indicated that the niche overlap was
mainly explained by the seasonality of PET (37.5%).
Schoener’s D and Warren’s I tests indicated non-significant
values for the equivalence and similarity of the niches
between B. franklini and B. lincolni (D= 0.40, P > 0.001,
I= 0.58, and P > 0.001).

Connectivity Analysis

According to connectivity models based on circuit theory,
for B. franklini, we identified a potential corridor that
extends between the “La Sepultura” Biosphere Reserve in
the SMCH, Mexico, to the Chicabal volcano in the GVC
(Fig. 3a). The connectivity of the populations of B. franklini
(Fig. 3a) is lower in the western extension of the SMCH,
near the Isthmus of Tehuantepec, especially in the La
Sepultura and La Frailescana. The SMCH shows important
areas for connectivity and LCPs within El Triunfo Bio-
sphere Reserve (ETBR); however, two larger areas of
connectivity were also observed outside of these protected
areas. These are mainly found in Mexico in the Motozintla
mountains, adjacent to the Pico El Loro-Paxtal state reserve,
and in Guatemala in the area between the Tajumulco Vol-
cano reserve and the Esquipulas and Astillero San Marcos
Municipal reserves (Fig. 3a). The least cost routes for B.
franklini are found mainly in the extreme east of the SMCH
and the GVC. In Mexico, the routes with medium to high
costs for the movement of the species are within the El
Triunfo Biosphere Reserve, CPL and Tacaná Volcano. In
Guatemala, LCPs with low to moderate values are found
between the Tajumulco Volcano and Chicabal Volcano. In
Mexico, the western extension of the SMCH offers the most
costly and resistant routes for the movement of B. franklini,
within the protected areas of La Frailescana and La Sepul-
tura, covering a length of 109.2 km, from the area corre-
sponding to Cerro Quetzal (CQ) in the ETBR, to Cerro Tres

Picos in La Sepultura (Fig. 3a). For B. lincolni, the lowest to
moderate cost LCPs are in the Central Chiapas Plateau,
while the high to higher cost routes for the species are in the
Cuchumatanes region and Sierra de Cuilco.

Within the distribution area of the species, the con-
nectivity analysis detected 29 areas of relative importance
for B. franklini, among them, the areas of higher current-
flow centrality are located in the area bordering Mexico and
Guatemala, of which the most extensive habitat is located in
the mountains of Motozintla (between the protected areas
CPL and VTBR) and has an extension of 169.4 km2, the
second most central core area is located in the VTBR and
has an extension of 44.7 km2. In the ETBR, La Frailescana,
and La Sepultura natural areas, the core area extensions are
mainly isolated on the mountain tops.

The areas of greatest current-flow centrality are found for
B. lincolni in the mountains of the CCP, in the region, there
are areas of greatest centrality located on the summits of the
Central American pine-oak Forest, the largest central area is
in Mexico and has an extension of 172 km2, the second
largest area (100.2 km2) is in the area of the Tajumulco
Volcano in Guatemala (Fig. 3b).

According to the Pinch points analysis, constriction
zones or unfavorable conditions that could break the
corridors of both species are found at several points along
the corridors, potentially due to the topography of the
terrain and climatic conditions of the low-elevation lands
(Fig. 3c, d).

Discussion

Our results show a significant area of environmental
suitability for B. franklini and B. lincolni in the mountains
of southern Mexico and western Guatemala. The species
distribution model shows that suitable climatic conditions
for B. franklini distribution are found mainly in the GVC,
the pine-oak forests of Central America, and the montane
forests of Central America. In Mexico, its distribution
occurs in the humid forests of the SMCH but can be
restricted to the top of the mountains, as the surroundings
are characterized by suboptimal habitats that may be
uninhabitable due to their poor climatic suitability.
Therefore, migration may be impossible even at short
geographical distances (Sexton et al. 2009). Within our
results, the distribution of B. lincolni is listed mainly in the
pine-oak forests of Central America in the CCP, the
Central American montane forests of the Cuchumatanes,
and the GVC. Its distribution overlaps with that of B.
franklini in the same areas, where it has been previously
proposed as a zone of secondary contact, in which the
hybridization of both species is promoted (Wake et al.
1980). Furthermore, our SDM confirms the affinity of both
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species, which was previously discussed by Wake et al.
(1980), who acknowledged a greater affinity of B. franklini
for cloud forests.

Distribution in Mesoamerican salamanders shows a
negative relationship with temperature (Kozak and Wiens
2012); meanwhile, our results indicate that the distribution
of B. franklini and B. lincolni are explained by the con-
tribution of the mean temperatures of the driest quarter,
considered as the coldest and with the lowest precipitation
range in the studied area (Magaña et al. 1999). Moreover,
the distribution overlap for both species is explained by the
precipitation in PC1 and the seasonality of PET in PC2, this
outcome is expected for arboreal salamanders’ distributions
(Baken et al. 2021), since these species inhabit cooler and

mesic regions that provide microhabitats under constant
humidity conditions (Farallo et al. 2018). Closely related
species are expected to share certain levels of environmental
similarity since the rate of niche evolution is not fast enough
to eliminate all signs of common ancestry (Warren et al.
2008; Warren et al. 2014). In the present study, we observed
that both species show sympatry and overlapping geo-
graphic distribution ranges; however, the similarity analyzes
and equivalence test show that their niches are not
equivalent or similar to each other. This can imply that their
coexistence does not show competitive exclusion due to
their phylogenetic position (Warren et al. 2014), possibly it
may be a consequence of the wide number of climates and
niches available in the neotropical region compared to other

Fig. 3 Connectivity analysis for Bolitoglossa species; connectivity
corridors, least cost paths and current-flow centrality areas for a B.
franklini and b B. lincolni obtained in linkage mapper software.
Pinchpoints zones of the corridors of both species are showed in c y d.
The PNAs and core areas in the study area for Mexico are: LSBR
Reserva de la Biosfera La Sepultura, LFR La Frailescana, ETBR El
Triunfo, CPL Cordon Pico El Loro-Paxtal, VTBR Volcán Tacaná,

NPLM Parque Nacional Lagunas de Montebello, and for Guatemala
are: VTBR Volcán Tacaná, VTPA Volcán Tajumulco, AMSM Astil-
lero Municipal de San Marcos, SPG Astillero Municipal Esquipulas
Palo Gordo, RPA Reserva Privada Australia, KT K’ojlab’l Tze´ te
Tnom Todos Santos Cuchumatán, KSJ Piedras de Kab’tzin, San Juan
Ixcoy, PMC Covirey, YUY Yal Unin Yul Witz, IVC Ixil Visis Cabá,
AP Alta Verapaz
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regions with plethodontid species. The advantage that the
niches are not equivalent is that it reduces physiological
pressures and species interactions (Baken et al. 2020).

Connectivity analysis indicates that the SMCH and the
GVC have important corridors for B. franklini, yet the
areas with greater connectivity and less resistance to
movement are particularly found between the territorial
limits of Mexico and Guatemala (Fig. 3). Our centrality
analysis shows that, in the GVC and between the Pico de
Loro, El Paxtal, and Volcán Tacaná reserves (VTBR) in
Mexico, and between the VTBR and Volcán Tajumulco in
Guatemala are significant habitat areas for focal species,
there are conserved forests with canopy cover > 70%
(Buchhorn et al. 2020) where significant communities of
salamanders are found (Wake and Lynch 1976). In the
case of B. lincolni, a wide-ranging corridor is observed in
the region of the Chiapas montane forests, which includes
the CCP, the Sierra de los Cuchumatanes, Cuilco and the
GVC. These areas present a complex matrix composed of
the presence of pine and pine-oak forests under different
stages of succession and agricultural areas (INEGI 2016;
Buchhorn et al. 2020).

Despite the coverage of the species’ potential corridors,
favorable conditions for their movement are not found all
over their extent. According to our circuit analyses, the
routes with the lowest cost and the greatest connectivity for
the dispersal of B. franklini are found in the GVC in western
Guatemala, between the Volcán Tacaná and Volcán Taju-
mulco reserves. This area has mixed forests and conserved
mature forests, with canopy cover greater than 70%
(Buchhorn et al. 2020), and is surrounded by forest areas
with integrity rates of less than 50% (Grantham et al. 2020).
The areas with lower connectivity are found in the SMCH
between the protected natural areas of El Triunfo and La
Sepultura. In contrast to the GVC, this area corresponds to a
mountain chain that descends in altitude from 3000 to
1500 m a.s.l., and it is characterized by having a rugged
relief in the Isthmus of Tehuantepec (Wake and Lynch
1976). The cloud forest habitats within these areas are
restricted to the top of mountains, above 1800 m a.s.l.;
therefore, the habitable areas for B. franklini and other
plethodontid species are reduced to isolated habitat patches
(sky islands), causing allopatric distributions because of
historical climatic fluctuations (Wake and Lynch 1982).

According to the bottlenecks (pinch points) for B.
franklini, the corridors most susceptible to losing con-
nectivity are in Guatemala, within the Tacaná and Taju-
mulco volcanos. There are potential dispersal routes
between these protected natural areas and the surrounding
local reserves; nonetheless, these areas are immersed in a
matrix with low rates of landscape connectivity (Grantham
et al. 2020) since these areas are between the cities of the
central region of Guatemala and the Pacific coastal region.

In Mexico, important low-cost paths are found in the
SMCH, between the Tacaná Volcano and the Cordón Pico
de Loro Paxtal reserve. This area represents a connection
point between the SMCH and the GVC; however, at the
same time, it has high anthropogenic disturbances such as
high urban areas and mining activity (Godínez-Gómez et al.
2020). For B. lincolni, we identified different bottlenecks in
the corridors, and the largest ones are found in the CCP.
This area is within a matrix of predominantly secondary
pine remnants, pine-oak forests, and agricultural areas
(INEGI 2016). Herein are the main urbanized areas of the
region and the predominance of traditional agriculture, as
well as low-intensity forestry practices (González-Espinosa
et al. 2007). Even though the region has potential con-
nectivity routes for B. lincolni, these areas are not under any
federal conservation criteria.

Implications for Conservation

Our study suggests that the preservation of the region’s
forests is a conservation priority for the habitat and con-
nectivity areas of the salamander populations found in
southern Mexico and Central America, specifically those
found in the GVC and SMCH and the CCP, given that in
these areas, climatic suitability and potential corridors for
the species studied are present. It is essential to know that
the areas identified in this study face several challenges for
their conservation. The main challenge is to prevent the
loss of tropical forests, especially for species with arboreal
habits that depend on the vertical structure and micro-
habitats they provide (McEntire 2016). This is extremely
important since, for example in Mexico, 594 Kha of humid
primary forest were lost between 2002 and 2019, which
places Mexico as the ninth tropical country in primary
forest loss according to the Global Forest Watch (Hansen
et al. 2013). Ecological studies looking at the importance of
forest and habitat structure conservation of plethodontids
have examined all the negative consequences and the
pressure that changes in land use and climate change exert
on the salamander habitats (Díaz-Garcia et al. 2020;
Vargas-Jaimes et al. 2021; González-Fernández et al.
2022a) that can drive salamanders to decline in their
populations or even to extinction. The SMCH is a valuable
corridor for several vertebrate species (Ocampo et al. 2019;
Ceballos et al. 2021). In this region, it is estimated that at
least 12% of the forest cover was lost between 1970 and
2000 because of agricultural activities and forest extraction
(Cortina-Villar et al. 2012). The conversion of forests to
agricultural areas can mean additional pressure on the
populations and potential corridors of B. franklini and other
salamanders found in the SMCH, which is also considered
one of the most significant coffee-growing areas in Mexico
(Schroth et al. 2009).
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In Guatemala, the expansion of coffee plantations repre-
sents the greatest threat to the populations of several sala-
mander species (IUCN SSC Amphibian Specialist Group
2020a, b). The pine and oak forests of the CCP, the main
habitat of B. lincolni, lost about 50% of their cover during
the last 50 years (Cayuela et al. 2006), although the decline
tendency has reduced to 14% of the forest during the last 20
years (Global Forest Watch 2021). For the Guatemalan
volcanic mountain range, the corridors in which both species
distributions overlap, the greatest threats are erosion and
natural and human-caused fires for anthropogenic actives
(Bullock et al. 2020). This area is rich in approximately 15
different salamander species (Wake 1987) and we consider
that it is necessary to preserve the secondary contact zones to
preserve the salamander biodiversity and genetic diversity,
since competition events between B. lincolni and B. frank-
lini, can displace B. franklini, which is more sensitive to
habitat changes, whereas B. lincolni can survive in moder-
ately disturbed areas (Wake et al. 1980; IUCN SSC
Amphibian Specialist Group 2020a).

Connectivity preservation is one of the expected benefits
of protected natural areas; nevertheless, most of those pro-
tected areas are isolated by eroded habitat, which breaks
with the connectivity of the landscape (Ward et al. 2020). In
the Sierra Madre de Chiapas, most of the forest cover that
surrounds the reserve core areas corresponds to traditional
shade-grown coffee plantations (Schrot et al. 2009). While
in the region agroforestry systems could maintain inter-
mediate levels of connectivity for some vertebrate species
(Ocampo et al. 2019), amphibians are most susceptible to
habitat change, since they present low species diversity in
cultivated areas compared to primary forests (Whitfield
et al. 2016). In addition, plethodontid salamanders show
little resilience to transformation and loss of forest cover
(Díaz-García et al. 2020). Although most of the agriculture
takes place in the lowlands, we suppose that with global
change these may increase in the highlands of the moun-
tains, reducing or even displacing the areas inhabited by
these salamanders (Schrot et al. 2009).

Biodiversity hotspots are often found mainly outside
protected areas (Almasieh et al. 2019), currently, the cov-
erage of the protected areas is insufficient on a regional and
global scale, as 25% of amphibians are not distributed
within the limits of protected natural areas (Nori et al. 2015;
González-Fernández et al. 2022b). In Mexico, at least two
out of five threatened species of salamanders do not inhabit
protected areas (García-Bañuelos et al. 2019). Our results
reinforce the above and show that a large portion of the
habitat and potential corridors of both species is found
outside the protected natural areas, mainly for B. lincolni.
For this plethodontid the connectivity corridors and current-
flow centrality areas in México are found in private natural
areas, as there are no nature reserves under federal

protection or large-scale conservation actors (UNEP-
WCMC and IUCN 2021), alternative local communities’
actions could be effective for protecting their significant
habitats (Stachowiak et al. 2021).

This information can be useful for reinforcement and/or
conservation protection activities, such as the expansion of
protected natural areas, however these actions must be taken
carefully to ensure the legitimacy of the processes by the local
people and to avoid privileging only certain members of the
community and restoration (González-Fernández et al.
2022b), likewise our results can help to carry out activities for
amphibian conservation in areas with anthropogenic activities
since important areas for conservation were identified, as well
as the network of biological corridors and the importance of
each one of them as well as the potential distribution areas for
the studied species in southern Mexico and Guatemala.
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