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Abstract: Au nanoparticles were supported on TiO2 nanotubes by a novel vapor phase impregnation
approach (VPI) using gold dimethyl-acetylacetonate as a precursor. This study aimed to evaluate
the capacity of these materials in the photodecoloration of malachite green dye, with the vision
to correlate the chemical, structural, morphological, and optical properties with its photocatalytic
performance. The photocatalysts were characterized by X-ray diffraction, Raman spectroscopy, X-ray
photoelectronic spectroscopy (XPS), electronic microscopy (HAADF-STEM and HRTEM), and UV–vis
spectroscopy. The techniques mentioned above made it possible to detect the presence of small
gold nanoparticles (around 3.1 nm), with a high apparent dispersion even at high metal loading
for all analyzed systems. According to the XPS results, the Au nanoparticles remain reduced (Au◦),
and they have a high electronic interaction with TiO2, which eventually originates an electronic
exchange between them and consequently a decrease in the band gap energy. In addition, the surface
plasmonic resonance observed through UV–vis spectroscopy of the Au nanoparticles are factors that
can be related to the high decoloration observed in these photocatalysts, specifically in the 15 wt%
Au material, which achieves maximum photodecoloration of malachite green dye at 93%.

Keywords: titania nanotubes; photocatalytic decoloration; vapor-phase impregnation; gold nanoparticles

1. Introduction

Malachite green (MG) is regarded as one of the most toxic and persistent dyes using
commonly in the textile, food, and aquaculture industries that ends up being part of
wastewater [1–4]. For this reason, MG dye has been used as a model molecule to evaluate
the capacity of decoloration of catalytic materials with different chemical natures, crystalline
structures, morphology, and other critical physicochemical properties that can impact its
photocatalytic performance [1,5,6]. In this sense, the photocatalytic process emerged
as a feasible alternative among the advanced oxidation processes since it allows it to
work at room temperature and under UV or solar light sources. Some materials have
photocatalytic properties, including metal-transition oxides, such as TiO2, CeO2, and WO3,
and include other semiconductors [7–9]. Nevertheless, the challenge remains to find
materials that increase photocatalytic efficiency through more affordable energy sources
(visible light) and contribute to understanding the relationship between the properties and
their photocatalytic performance in some chemical reactions of environmental interest and
many other applications [10,11].
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In this quest for innovation in improved materials, nanostructured titanium oxide has
attracted considerable attention because it can be used as a catalytic material or support for
other active phases [3,12–15]. Particularly, TiO2 nanotubes (TiO2-NT), due to their textural
properties and functional groups, promote an increase in the number of reaction sites and
their dispersion [16]. The use of TiO2 nanotubes was widely reported in hydrotreatment
reactions. In them, the high surface area of this material (~350 m2/g) has allowed obtaining
a higher catalytic activity in comparison with other TiO2-based supports [17–19]. Addi-
tionally, in photocatalytic and photoelectrochemical reactions, TiO2 nanotubes present a
high degree of control over the separation of photogenerated charge carriers, improving
the efficiency of the processes [20,21]. A strategy already studied to reduce the band gap
of TiO2 consists in the addition of noble metals, which can modify its electronic state and
avoid the recombination process of the electron-hole pair, and at the same time, it is possible
to extend the absorption of light to the visible range [22–25].

Specifically, nanostructured metals such as gold, silver, and copper exhibit resonant be-
havior when interacting with ultraviolet and visible photons, so solar energy can be mostly
used in various photoinduced chemical reactions [26]. In this sense, the coupling between
plasmonic metals and semiconductors has enabled it to obtain photocatalysts that reach
higher reaction rates than their pure semiconductor counterparts [26–28]. In particular, the
Au/TiO2-NT system shows a synergistic effect, in which TiO2-NT promotes photoinduced
charge separation and reduces the recombination process by delocalizing charge carriers.
Meanwhile, gold nanoparticles act as an electron trap to reduce electron-hole recombination,
and its surface plasmon resonance promotes a wide range of absorption in the visible light
region [29,30]. In this respect, Au nanoparticles on TiO2-NT material were tested as photo-
catalysts in degradation reactions [30,31], antibacterial and anti-inflammatory agents [32],
photoelectrochemical biosensors, and photosensors [25,33]. Few studies reported the use of
TiO2 nanotubes for malachite green photodegradation, and to our knowledge, none of these
consider TiO2 nanotubes with Au nanoparticles despite the novel electronic properties
shown by this system. For example, a comparative study of photocatalytic performance
between TiO2 anatase nanoparticles and TiO2 nanotubes demonstrated that the nanotubes
completed the degradation reaction in a shorter time than TiO2 anatase nanoparticles [16].

Like other catalytic systems, the dispersion, particle size, and surface area of active
phases constituted important issues that impact photocatalytic performance. In turn, the
manipulation of the composition, shape, and size allows the generation of plasmonic
particles that interact with sunlight more effectively [34]. For this purpose, the metal
incorporation on nanotubular support can be carried out by several methods of synthesis
such as reduction reaction in aqueous solution [30], electrochemical deposition [33,35],
magnetron sputtering [36,37], sol–gel [38], deposition precipitation with urea [39] and wet
impregnation [40]. Equally, through the vapor-phase methods, as vapor-phase impregna-
tion, it is possible to obtain high dispersion of metal particles on different kinds of supports,
especially those with surface functional groups that can serve as anchorage sites and, in
turn, inhibit particle growth [41]. In this context, the present contribution reports the
photocatalytic evaluation of Au nanoparticles supported on TiO2 nanotubes synthesized by
vapor phase impregnation methodology. This method of particle incorporation on nanos-
tructured TiO2 support allowed us to achieve an acceptable dispersion of the active phase
in the reduced state with controlled particle size independent of the metal loading. The
correlation between the physicochemical properties and the photocatalytic performance of
these materials was discussed.

2. Materials and Methods
Materials Synthesis

Titania nanotubes were prepared by hydrothermal method using a NaOH solution of
10 M in an autoclave reactor, maintaining autogenous pressure under experimental condi-
tions previously reported [42]. The Au nanoparticles incorporation on TiO2 nanotubes was
carried out by the vapor-phase impregnation (VPI) method, using a horizontal furnace. A
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mechanical mixture in agate mortar between powder precursor and support was developed
before introducing the reaction system. The nominal gold content deposited on TiO2-NT
was 1, 3, 6, and 15 wt%. The two-step approach includes sequential stages, where the mixed
powder was heated at 180 ◦C to reach the sublimation of Au precursor [(CH3)2(C5H7O2)
Au–98%], immediately followed by the second step at 400 ◦C to achieve the gold precursor
decomposition and to deposit the Au particles on TiO2 nanotubular surface. A stream
of 100 sccm of Ar carrier gas was supplied to favor the interaction between the metal
precursor and the support interaction, as well as the evacuation of secondary reaction
gases. A total pressure of 500 Torr was maintained in the reactor system. Figure 1 shows
a schematic representation of the vapor phase impregnation methodology for depositing
gold particles on TiO2 nanotubes. The characterization and photocatalytic evaluation of
Au/TiO2 nanotube materials were performed without prior treatment.
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Figure 1. Schematic representation of vapor phase impregnation methodology.

3. Materials Characterization
3.1. X-ray Diffraction

A Bruker D8 Advance X-ray Diffractometer using monochromated Kα Cu radiation
(X-ray source 2.2 kW, running conditions were 40 kV and 40 mA) was used to determine
the structural characteristics of Au/TiO2-NT materials. Measurements were performed in
the 2θ range from 10◦ to 90◦ with a step of 0.02◦.

3.2. Raman Spectroscopy

Raman spectra of the samples were recorded with a Perkin Elmer spectrophotometer
model Spectrum GX in a spectral range of 100 to 2500 cm−1 with a 1064 nm laser.

3.3. HAADF-STEM and HRTEM

The morphological characteristics of Au-TiO2-NT material were carried out by Trans-
mission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).
Both techniques were conducted in a JEM-2200FS–Jeol microscope with an accelerating
voltage of 200 kV. The microscope is equipped with a Schottky-type field emission gun,
and an ultra-high-resolution configuration (Cs = 0.5 mm; Cc = 1.1 mm; point-to-point reso-
lution = 0.19 nm) and in-column omega-type energy filter. The microscope operates with
an aberration-corrected device CEOS in STEM mode, producing a significantly smaller and
brighter electrons beam, a probe size of 0.1 nm. High angle annular dark field (HAADF)
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image was obtained using the HAADF detector in the STEM mode. In this technique,
the detector collects electrons that undergo Rutherford scattering, where their intensities
are approximately proportional to Z2 (Z being the atomic number of the scattering atom).
Elements with a high Z show higher intensities and brighter contrast in the image. In the
images, the difference in contrast between the support and the metal particles made it
possible to determine the particle size of each specimen through the measurement of about
200 particles. The samples were ground, suspended in isopropanol at room temperature,
and dispersed with ultrasonic agitation. An aliquot of this solution was then dropped onto
a 3 mm in diameter lacey carbon copper grid.

3.4. X-ray Photoelectronic Spectroscopy (XPS)

The Au oxidation state and the surface chemical composition were determined by
XPS. The XPS spectrum was obtained on a Thermo-VG Scalab 250 spectrometer equipped
with an Al Kα–X-Ray source (1486.6 eV) and a hemispheric analyzer.

The experimental peaks were decomposed into individual components using mixed
Gaussian–Lorentzian functions, non-linear squares fitting algorithm, and Shirley-type
background subtraction by using XPS peak fit software. The C 1s line at 284.6 eV was used
as an internal standard for correcting binding energies (BE).

3.5. UV–Vis Spectroscopy

The UV–Vis spectroscopic technique was used to obtain the absorbance spectra of Au-
TiO2-NT materials to obtain the band gap energy and track the progress of the decoloration
reaction. For this purpose, we use a UV–Vis spectrophotometer (Perkin Elmer LAMBDA
35). The measurement wavelength range was from 200 to 1000 nm. The optical properties of
solid materials were determined using an integration sphere and Spectralon as a reference;
this material has a reflectance generally >95% from 250 to 2500 nm.

3.6. Photocatalytic Evaluation

The decoloration capacity under solar light of Au/TiO2-NT materials was evaluated
using a system constituted by a light source emitted via a solar simulator Scientech SF150
model, class A, with an average intensity of 60 mW cm−2. The distance between the light
source and the reaction system was 15 cm. The photocatalytic reaction was carried out using
25 mL of malachite green carbinol base dye solution 10 µmol L−1. All experiments were
carried out at room temperature. The dye decoloration was followed by taking aliquots of
4 mL at different times through absorbance measurement (616 nm malachite green) and
related with a concentration using the Lambert–Beer equation [43]. The kinetic study of
malachite green decoloration was developed considering a pseudo first-order kinetic order
from the reaction time vs. concentration graph. Before the dye decoloration reaction, the
photocatalysts were placed in the malachite green solution without light irradiation for a
stabilization time of 30 min.

4. Results
4.1. X-ray Diffraction

The structural characteristics of Au/TiO2-NT were investigated by the X-ray diffrac-
tion technique. The X-ray patterns show the characteristic reflections attributed to the TiO2
anatase phase in all samples (ICCD 21-1272; Figure 2). Additionally, other reflections can be
observed in materials with 3, 6, and 15 wt% Au at 2θ = 44.3◦ and 64.7◦, related to the FCC
phase of Au (ICCD 04-0784). The most intense reflection (111) of Au at 38.1◦ is very close
to (004) of the anatase phase at 37.8◦. Consequently, both peaks can overlap; despite this,
a significant increase in the intensity of the peak was observed. It is also notable that the
(101) intensity decreases due to inhibition of the anatase phase with the gold incorporation.
No other reflections attributed to any gold-related phases are appreciated in the diffraction
patterns. It should be noted that only with Au contents of 6% or more the characteristic
metal signal is appreciable, which suggests that the particles are very dispersed on the
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support. This is relevant considering that the gold nanoparticles are active sites that can
interact with the dye molecule.
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Figure 2. X-ray diffraction patterns of Au/TiO2-NT photocatalysts with different metal loads.

4.2. Raman Spectroscopy

The Raman spectra of the Au/TiO2-NT samples are shown in Figure 3. In addition,
the spectrum of TiO2 nanotubes is shown. It can be seen the presence of vibration bands
at 146, 196, 398, 515, and 640 cm−1, corresponding to Eg (1), Eg (2), B1g, A1g, and Eg (3),
attributed to anatase phase of TiO2 [44]. Increment in the metal loading causes a significant
decrease in the vibration modes of anatase, just like a slight change in the Raman shift.
This is attributed to different factors, such as lattice defects and oxygen deficiencies, which
can contribute to changes in the position, width, and shape of the Eg mode [45]. It is
noteworthy that in the Raman spectra of the samples with 6 and 15 wt% Au, two broad
vibration bands can be appreciated at 924 and 820 cm−1, approximately. These bands could
be assigned to Ti–O–Au (not a formal bond) and Ti–O–H symmetrical stretching modes
with very short Ti–O distance in titanate structures. The 905–920 cm−1 band suggests an
incomplete ion exchange of Au, which is typical in the nanotubular titanate systems [46–50].
This can favor the charge transfer process between the metal and the semiconductor when
it is photoactivated.
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4.3. Scanning Transmission Electron Microscopy (STEM)

The surface morphology of TiO2 nanotubes decorated with gold nanoparticles (15 wt%
Au loading) was observed by STEM and is presented in Figure 4. The nanotubes are
composed of two structural layers with an interlayer distance of 0.76 nm; the inner diameter
of the nanotubes is around 5.0 nm, whereas the outer diameter is around 9.0 nm (inset
of Figure 4). The morphological study of TiO2 nanotubes prepared by the hydrothermal
method was previously reported [51,52]. Uniform distribution of particles (black dots) with
a relatively narrow range on TiO2-NT support was observed. Nevertheless, to determine
the average particle size and confirm the chemical nature of nanoparticles more precisely,
the samples were analyzed through STEM in the dark field mode (Figure 5).
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Figure 5. HAADF-STEM images of Au/TiO2-NT photocatalysts with different metal content and its
corresponding histogram of particle size distribution. (a) 1 wt% Au, (b) 3 wt% Au, (c) 6 wt% Au, and
(d) 15 wt% Au.

4.4. HAADF-STEM

Figure 5a–d compares HAADF-STEM images for 1, 3, 6, and 15 wt% Au/TiO2-NT. The
predominant feature of the samples is the high dispersion of bright spots with an apparent
spherical geometry on the nanotubular TiO2 support, attributed to Au nanoparticles, given
the difference in contrast of the images. The increase in the metal load up to 15 wt% Au
seems not to induce the agglomeration of the particles, so the size of the particles remains
almost unchanged at around 3.1 nm. Nevertheless, the standard deviation denotes a high
data dispersion around the mean, indicating that Au nanoparticles prepared by vapor phase
impregnation have a wide variety of sizes between 1 and 5 nm. The statistical analysis was
performed by measuring 200 particles shown in the histogram inset of Figure 5a–d. In all
samples, the mean size of Au nanoparticles remains constant at around 3 nm.
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4.5. HR-TEM

The complementary study of the morphology and crystalline structure of the Au
nanoparticles on TiO2-NT was performed by HR-TEM. In the image of Figure 6a, can
be observed small semispherical particles with a crystalline arrangement of about 5 nm
in size. Two particles are enclosed in the red square, and its corresponding magnified
image and Fourier Transformed are displayed in Figure 6 b and c. d—spacing of 0.232 nm,
0.231 nm, and 0.208 nm presents a good match with the (1 1 1), (−1 −1 1), and (0 0 2)
planes, viewed along [1 −1 0] zone axis, attributed to the FCC crystal structure of Au,
according to the ICCD card number 4-0784. Between the geometries associated with gold
nanoparticle growth are classified as icosahedral and fcc polyhedral. Gold nanoparticles,
prepared by vapor-phase impregnation, apparently crystallize in cuboctahedra or truncated
cuboctahedra geometries.
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4.6. X-ray Photoelectronic Spectroscopy

The analysis of the chemical state of Au/TiO2-NT photocatalysts surface was carried
out by High-resolution X-ray photoelectronic spectroscopy- XPS. Figure 7a–c shows the
Ti2p, Au4f, and O1s XPS spectra of unmodified TiO2-NT, as well as 1, 3, 6, and 15 wt%
Au/TiO2-NT. The comparison between spectra with different metal content allows observ-
ing a slight variation in the binding energy and intensity at energy levels analyzed with
respect to the XPS spectra of the TiO2 nanotubes. For the TiO2-NT sample, it was possible
to note that two pairs of peaks constitute the Ti2p region; the first one corresponds to the
doublet Ti2p1/2 (binding energy, BE, 464.4 eV) and Ti2p3/2 (BE 458.8 eV) arises from spin
orbit-splitting. The binding energy between Ti 2p1/2 and Ti 2p3/2 (5.8 eV) indicated that Ti
exists in the form of Ti4+ in the TiO2 lattice [53,54]. The other detectable signals appear at
lower binding energies (Ti2p1/2-463.4 eV and Ti2p3/2-457.5 eV), indicating the presence of
a small contribution of reduced species Ti3+. The amount of reduced Ti3+ seems to decrease
as Au content increases since Au is the component easier to reduce than Ti.
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Figure 7d shows the deconvolution of the 15 wt% Au/TiO2-NT spectrum, where the
same signals attributed to the presence of Ti4+ and Ti3+ ions can be observed, with slight
variations in the binding energy due to the shift in the chemical environment of the TiO2
derived from the inclusion of Au [55]. Previous studies reported that the incorporation of
metal ions in the support structure could originate the reduction in TiO2, either as a thin
film or powder constituted by nanotubular geometry [56]. In some cases, the formation of
Ti3+ ion reveals the presence of oxides such as Ti2O3 or some mixed oxide structure with de
metal dopant [53,57], in this case, with gold, which is unlikely due to its chemical nature,
so it is not considered as a formal bond. Even X-ray diffraction does not show the presence
of other phases with gold.
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Likewise, the XPS spectra in the Au4f region show a significant increment in the
intensity of the signals for 15 wt% Au photocatalyst (see the deconvoluted spectrum of
15 wt% Au-Figure 7e). In all the samples, the deconvoluted spectra with Au4f5/2 and
Au4f7/2 in energy values around 87.4 and 83.7 eV, respectively, correspond to metallic gold.
It is interesting that even at the highest Au concentration, all Au nanoparticles deposited
on TiO2-NT remain in a reduced state as Au0, which can be reached by the vapor phase
impregnation method used to prepare the samples. Additionally, the analysis of O1s core-
level spectra is shown in Figure 7c. The deconvoluted spectrum of 15 wt% photocatalysts
(Figure 7f) shows the superposition of four components centered at 529.8 (O1s A), 530.8
(O1s B), 531.7 eV (O1s C), and 532.6 (O1s D). O1s A peak is characteristic of O2

− in the TiO2
lattice; O1s B peak corresponds to O2- associated with the vacancy sites [58,59].

The higher binding energy O1s C band is related to some surface hydroxyl (OH) group,
whereas the fourth peak at 532.6 eV corresponds to some residual H2O and/or carbonates
generated during Au precursor decomposition [31]. The results described above allow us to
deduce that due to the synthesis conditions of the photocatalysts, the reductive atmosphere
generated during Au precursor decomposition reduces the Au nanoparticles, allowing us
to obtain gold nanoparticles in a reduced state (Au◦). The XPS parameters of Au/TiO2-NT
photocatalysts are shown in Table 1.

Table 1. XPS parameters for Au/TiO2-NT photocatalysts.

Photocatalyst Binding Energy (eV) FWHM (eV) Assignment % at.

TiO2-NT 458.8
457.5

1.3
2.2

Ti4+

Ti3+
16.7
4.1

1 wt%
Au/TiO2-NT

458.6
457.0
83.3

1.1
1.1
0.8

Ti4+

Ti3+

Au0

25.4
0.7
0.1

3 wt%
Au/TiO2-NT

458.7
456.9
83.4

1.1
1.1
0.9

Ti4+

Ti3+

Au0

23.3
0.5
0.26

6 wt%
Au/TiO2-NT

458.6
456.8
83.4

1.1
1.1
0.9

Ti4+

Ti3+

Au0

25.4
0.6
0.37

15 wt%
Au/TiO2-NT

458.8
457.0
83.7

1.1
1.1
0.9

Ti4+

Ti3+

Au0

24.4
0.5

1.97

4.7. UV–Vis Spectroscopy

The optical properties of the synthesized TiO2-NT were investigated by UV–Vis
spectroscopy. Figure 8 shows the corresponding spectra of pure TiO2 nanotubes and
15 wt% Au/TiO2-NT. The spectrum displays an intense absorption band between 200 and
400 nm, which is typical of semiconductor titania nanotubes [60]. In addition, the samples
Au NP-containing presented an absorption component between 500 and 700 nm; however,
only the spectrum with 15 wt% Au is shown in Figure 8; the spectra of the remaining
photocatalysts show a similar trend with an increase in the absorption peak associated
with the metal content. This band is attributed to the surface plasmonic resonance of
Au nanoparticles (SPR) [28,61,62]. Photocatalysts constituted by semiconductors and
plasmonic metal nanostructures, such as Au, interact with light through the excitation of
SPR. Several studies showed that the SPR plays an important role in enhancing the rate of
numerous photocatalytic reactions [63–66]. Therefore, Au-SPR increases the photocatalytic
reaction rate by increasing the steady-state concentration of charge carriers at the surface of
the semiconductor [34].
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Figure 8. The UV–vis light absorption spectra of TiO2-NT and Au/TiO2-NT photocatalysts.

Moreover, it is known that TiO2-based photocatalysts exhibit band gap energies around
3.2 eV, and the incorporation of metal nanoparticles on TiO2-NT can change the band gap to
the desired level. One way to evidence the possible changes in the electronic properties of
titanium nanotubes is through the measurement of band gap energy. In the inset of Figure 8
can be appreciated the band gap determination via Kubelka–Munk function and related
to the wavelength in the Tauc graph for 15 wt% Au photocatalyst. The results indicate
that, indeed, the deposition of Au nanoparticles on TiO2-NT promotes a decrease in the
energy values, and it is possible to associate it with an ion exchange process mentioned
in the XPS analysis [49,67]. Furthermore, such a decrease in a band gap energy suggests a
strong electronic interaction between nanotubular TiO2 and Au. Table 2 shows the results
of the determination of band gap energy for all photocatalysts.

Table 2. Mean particle size, band gap energy, and kinetic parameters of the malachite green decol-
oration photocatalyzed by Au/TiO2-NT materials.

Catalysts Mean Particle
Size (nm)

Band Gap
Energy (eV)

Rate Constant a,
k × 10−4

(min−1)
% Decoloration a

Photolysis – – 17.55 31.19

TiO2-NT – 3.15 54.76 72.15

1 wt%Au/TiO2-
NT 3.1 3.16 72.54 75.98

3 wt%
Au/TiO2-NT 3.1 3.10 76.54 81.51

6 wt%
Au/TiO2-NT 2.9 3.06 83.77 81.05

15 wt%
Au/TiO2-NT 3.2 2.92 159.30 93.47

a: At 180 min reaction time.
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4.8. Photocatalytic Evaluation

The effect of Au content on the decoloration of malachite green dye was studied by
UV–Vis spectroscopy through a reduction in the absorption bands characteristic of MG at
316, 425, and 616 nm [68]. Figure 9 shows the UV–vis spectra of the system photocatalyzed
by 15 wt% Au/TiO2-NT sample at different reaction times. The monitoring of the most
intense absorption band (616 nm) allowed us to observe the variation in the absorbance
intensity as the reaction progressed. It is evident that as the irradiation time increases, the
initial blue color of the solution gradually turns light-colored, and the intensity absorption
band decreases (this appreciation will be observed later). The decrease in the absorption
band intensity was attributed to the destruction of the whole conjugated chromophore
structure of the dye [3]. In addition, a small band around 329 nm was observed, specifically
after one hour of starting the reaction (inset of Figure 9 corresponds to the amplified region
of the wavelength), which can be attributed to cleavage of the central carbon and possibly
the formation of 4-(dimethyl amino) benzophenone, according to previous studies [69].
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reaction times.

It is worth mentioning that the increase in the metal load of the photocatalysts causes
a bathochromic shift of the principal absorption band from 616 nm to 649 nm (6 and 15 wt%
Au samples). This displacement can be observed in Figure 10 at a reaction time of 60 min.
Additionally, the absorbance spectra of MG dye obtained at zero min of reaction and
photolysis are presented. However, the change in the wavelength of the main absorption
band of MG dye was observed during short reaction times (10 min). The red shift could be
attributed to the presence of electron donor/acceptor groups on the aryl moieties, which
are possibly promoted by the photocatalyst with high metal content because a higher gold
nanoparticles density provides a greater number of surface available electrons affecting the
extent of the red shift [70]. The inset of Figure 10 describes the structure of the malachite
green carbinol base.
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Derived from the UV–vis spectra for the decoloration of MG dye, we used the Lambert–
Beer relation to determine the concentration and calculate the decoloration percentage
through Equation (1).

%Decoloration =
C0 − C

C0
x100 (1)

where C0 is the initial concentration of dye; C is the concentration at a time t.
The results of the application of the above equation are presented in Table 2. In

addition, Figure 11 shows the variation in MG concentration as a function of irradiation
time, as well as the effect on the dye concentration due to the catalyst without light
irradiation, to establish the adsorption–desorption equilibrium of the catalysts. It is possible
to observe that the capacity of the catalysts is not enough to achieve the green dye being
removed by physical adsorption due to the low percentage of decoloration during the dark
evaluation, and the better diminution of dye green is due to the photocatalytic process.
It should be noted that the trend of decoloration reaction is highly favorable when the
photocatalysts TiO2-NT and Au/TiO2-NT are used, as can be seen when compared to the
reaction with photolysis. The inset in Figure 11 shows the MG dye solution before and after
the decoloration reaction using a 15 wt% Au/TiO2-NT photocatalyst. It is well known that
the dye photodecoloration increases with increasing catalyst amount and thus the number
of active sites, which is the feature of heterogeneous photocatalysis [71,72]. However, the
use of TiO2 nanotubes has an important effect on the decoloration of the dye, especially in
the first 30 min of reaction, given that, as was previously documented, the photocatalytic
activity is attributed to the functional groups present on its surface [73]. However, this
capacity for decoloration is limited due to the low electron density compared to the metal-
semiconductor coupling, especially in high metal load, where a higher electronic surface
density allows a greater number of electrons available to continue the oxidation process
and subsequent decoloration of the dye, such as the 15 wt% Au catalyst.
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Although the photocatalysts with low Au load (3 and 6 wt%. Au photocatalyst,
especially) show a significant decoloration capacity in the first minutes of the reaction,
attributed to a convenient number of active sites and dispersion on the TiO2 nanotubes are
not sufficient to continue the complete decoloration dye.

Table 2 presents the decoloration results obtained with the different photocatalysts, as
well as band gap energy and main particle size determined from HAADF-STEM measure-
ments.

The reaction rate constant k was determined considering that under the experimental
conditions used, the photocatalytic curves follow pseudo-first order kinetic reaction, which
is given by Equation (2).

ln
Co

C
= Kt (2)

where C is the reactant concentration, K is the reaction constant, and t is the reaction
time. Kinetic parameters resulting from the application of this equation are presented in
Table 2. In general, the Au/TiO2-NT materials are more efficient photocatalysts compared
to the unmodified TiO2-NT, with higher decoloration percentages at 180 min and higher
values of the rate constant. In the absence of gold nanoparticles, TiO2-NT decomposes
MG dye with a rate constant of 54.76 × 10−4 min−1; this value is triplicated for 15 wt%
Au photocatalyst. This increase in the total reaction rate related to the increase in Au
content can be explained through the results of the characterization performed. Predomi-
nantly, the effect of metal nanoparticles in providing chemically active sites where relevant
chemical transformations can take place with lower activation barriers than on the TiO2
semiconductor. In addition, Au nanoparticles can extend the lifetime of energy carriers
reaching the surface of the semiconductor by increasing the electron-hole separation rates
at the nanoparticle/semiconductor interface [34,66]. This, coupled with the fact that, as
observed in the results obtained by UV–Vis spectroscopy of the photocatalysts, surface
plasmonic resonance can contribute to the increase in the photodecoloration rate. One of
the mechanisms proposed indicated that charge carriers are directly injected from excited
plasmonic-metal nanostructures into the semiconductor surface. The strong interaction



Materials 2022, 15, 6209 15 of 19

between Au nanoparticle and TiO2-NT semiconductor allows a fast of charge carriers.
It means, in essence, that the metal nanoparticles act as a dye sensitizer, absorbing res-
onant photons and transferring the energetic electron formed in the process of the SPR
excitation to the TiO2 semiconductor [63]. Another important issue is that the intensity of
SPR and wavelength can be modulated by the composition, shape, and size of plasmonic
nanoparticles [64,65].

In Figure 12, a linear correlation was observed between the photocatalytic rate constant
and Au surface concentration determined by XPS. As mentioned before in our HAADF-
STEM results, particle size remains constant even at the highest Au concentration; the
higher Au nanoparticles, the higher electronic interaction between Au and TiO2 surface,
which is revealed by a linear decrease in the semiconductor band gap, as can also be seen
in Figure 12.
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5. Discussion

Various techniques for the incorporation of noble metal nanoparticles were described
in several studies. Among the most common reduction methods, those using citrates [74,75]
or sodium borohydride [76] as reducing agents allow obtaining monodisperse particles of
uniform size. However, the size obtained is dependent on the subsequent heat treatment
scheme, which can lead to particle growth or agglomeration, as well as higher energy
costs. Various techniques for the incorporation of noble metal nanoparticles were described
in several studies. Among the most common reduction methods, those using citrates or
sodium borohydride as reducing agents allow obtaining monodisperse particles of uniform
size. However, the size obtained is dependent on the subsequent heat treatment scheme,
which can lead to particle growth or agglomeration, as well as higher energy costs. On
the other hand, traditional synthesis techniques such as sol–gel and its variants lead to
the same problem [77]. In order to overcome the drawbacks of the above-mentioned
techniques, Au/TiO2 materials were prepared by VPI. The structural characterization
reveals that nanoparticles are in a reduced state and in close relationship with the functional
groups present in the support (Ti–O–Au), according to the X-ray diffraction and Raman
spectroscopy analysis. Au nanoparticles present a high dispersion and a mean particle size
around 3.0 nm for metal loading from 1 to 15 wt% and apparently have a semispherical
form in a cuboctahedra geometry. The XPS results confirm that Au nanoparticles are
in oxidation state Au0 even at high Au concentration. This means that during the VPI
method used to prepare the photocatalysts, a reductive atmosphere is generated by the Au
precursor decomposition, and highly dispersed reduced Au0 nanoparticles were obtained.
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For its part, Au nanoparticles present a surface plasmonic resonance evidenced by UV–
Vis spectroscopy, which can improve the photocatalytic decoloration rate. According to
previous studies, the photocatalytic efficiency of plasmonic metals is directly related to the
intensity and wavelength of SPR; these parameters are dependent on the size, form, and
composition of nanomaterials [34]. Nevertheless, the mechanism by which RPS can increase
the concentration of charge carriers, and this, in turn, increase the photocatalytic activity,
need to be studied. Likewise, photocatalytic activity correlates linearly with the surface
Au concentration determined by XPS, which in turn decreases band gap energy of these
photocatalysts due to an increment of the electronic interaction between Au nanoparticles
and TiO2 semiconductor, yielding the electron-hole separation and more holes left by the
electron migration contribute to enhance the photodecoloration efficiency. In this way,
the high photocatalytic decoloration of malachite green dye using Au/TiO2-NT materials,
especially 15 wt% Au sample, could be ascribed to a synergic effect between plasmonic
Au nanoparticles and TiO2− NT, which generate a high density of surface electrons that
promotes the decoloration of the MG dye.

6. Conclusions

The photocatalytic efficiency is related to four important parameters: (1) Metal load
deposited on TiO2-NT. As noted above, the increased gold content boosts the number of
surface-active sites available for catalysis. (2) Although Au particle size is a factor that
directly impacts the surface area, the Au/TiO2-NT photocatalysts have a small particle
size, and the increment in the metal load apparently does not affect the dispersion, and
the particle size is maintained. This is directly related to the synthesis technique used to
obtain the photocatalysts. (3) The electronic interaction between Au nanoparticles and
TiO2 nanotubular, suggested by XPS and Raman results, must be related to the decrease in
the band gap, which eventually results in an ion exchange process [49,67]. Furthermore,
influence the photocatalytic performance of the systems under study by electron-hole
separation. Thus, more holes left by the electron migration can facilitate the photodecol-
oration processes [29,33]. (4) The effect of SPR visualized by UV–Vis of Au nanoparticles
on TiO2-NT improves the reaction rate allowing the decoloration of the MG dye. Thus,
for the photocatalysts evaluated, the highest efficiency (93%) was obtained with a metal
loading of 15%.
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