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Mexico has many agricultural by-products that can be used for animal feed,

and green tomatoes are produced throughout the country and can be an

alternative to overcome the high prices of cereal-based feeds. This study

determined in vitro fermentation kinetics, production performance, nutrient

intake, digestibility, and nitrogen balance from sheep supplemented with

whole plant green tomato (GT) on corn silage (CS) based diets. For 21 days,

eighteen Su�olk lambs (38 ± 4 kg of live weight) were grouped into three

dietary GT inclusion levels to replace CS: a control diet based on 100%CS (GT0,

570g /kg drymatter, DM), while 100 g/kgDM (GT100) and 200 g/kgDM (GT200)

of GT were included as a replacement for CS. A completely randomized design

was used to measure in vitro gas production, in vitro rumen fermentation,

chemical composition, and in vivo parameters. In vitro gas production, “A” (ml/g

DM), fermentation rates “B,” (h−1), and “C” (h−½), were lower for GT200, while

DM disappearance (mg/100mg) was lower for GT100 compared with GT0.

Compared to GT0, GT100 and GT200 did not a�ect (P > 0.05) DM and organic

matter (OM) intake (g/kgLW0.75). Ether extract intake was higher for GT0 and

GT100 (P < 0.001) compared to GT200. Neutral detergent fiber (NDF) intake

was higher (P< 0.05) for GT200 comparedwith GT0. Intake of lignin was higher

(P < 0.001) for GT200 than that of GT0 and GT100. Digestibility coe�cients for

DM, OM, NDF, and Acid detergent fiber (ADF) were lower (P < 0.05) in GT100

than in the rest of the treatments. Nitrogen intake and N excreted in feces and

urine were lower (P< 0.001) for GT0. N balancewas negative for all treatments,
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being higher for GT200 (P < 0.05). Overall, the addition of GT at 100 or 200

g/kg DM in sheep diets negatively a�ects nutrient digestibility and N balance,

so their dietary inclusion is not recommended.
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green tomatoes, corn silage, sheep, fermentation kinetics, crop residues

Introduction

Mexico is an important producer and exporter of vegetables

worldwide and the main vegetables produced are green (Physalis

philadelphica) and red (Solanum lycopersicum) tomatoes.

Mexico has many agricultural by-products that can be used for

animal feeding, and this is an alternative to overcome the high

prices of cereal-based feeds (1). Red tomato by-products such as

hay or silage have been used in sheep (1, 2) diets. Forages with

high water content can be cut and dried in the field until they

reach 35% dry matter (DM) and then ensiled to conserve their

nutritional content (3). Green tomato is harvested in almost all-

Mexican territory, producing around 7,712 thousand tons per

year (4). The importance of green tomatoes lies in their culinary

use, and their antioxidant and vitamin contents (5), and when

tomatoes are harvested, the plant residues are left on the field

and used as organic matter for soil improvement. These by-

products could be used as ruminant feed, either as a grazing

material or cut fresh (6). To date, there are no reports on the use

of green tomato silage for ruminant feed. The hypothesis of this

study was that green tomato silage can alternate with corn silage

in lamb diets, thus two experiments (in vitro and in vivo) were

conducted to determine the effect of different inclusion levels

of whole plant green tomatoes on in vitro gas production and

rumen fermentation kinetics, nutrient intake, digestibility, and

nitrogen balance in sheep.

Materials and methods

Green tomatoes and corn crops

Forage samples of whole plant green tomatoes (Physalis

philadelphica) with fruits were collected at 2,840m above sea

level, between the coordinates 19◦ 04’ north latitude and 99◦32’
west longitude. The climate is humid temperate, Cb (w2) (w) (i’)

(g), with summer rains and little thermal oscillation (7). Green

tomatoes (GT) seeds were planted in May 2019. A total area of

100 m2 was previously fertilized with sheep manure. For the

study, the vegetative stage of the plant was left to mature until

fruits were harvested at 90 days after cropping. Then, GT whole

plant was chopped in a hammer mill (size 5 cm Ø) and left to

sun dry for 4 days. In another crop, 100 m2 of whole corn plants

were harvested when the plant was in a milky stage, and they

were chopped using a hammermill (5 cmØ) for subsequent corn

silage (CS) production. Then, silages from green tomatoes and

corn, were placed in layers, compacted, sealed, and ensiled in six

hard plastic containers (975mm in height, 594mm Ø, and 208

liters of capacity) per treatment (GT Whole Plant or CS Whole

Plant), together with the addition of 0.001% fresh Pulque as an

inoculant to accelerate the silage fermentation process (8).

In vitro gas production

A buffer solution was prepared according to Menke and

Steingass (9), where 200mg DM of each diet mixture was

incubated in glass syringes of 100mL. Ruminal fluid (300mL per

animal) was obtained from three fistulated male Suffolk sheep

([62 ± 3 kg Live weight (LW) (average ± SD)]), previously fed

with the control diet. Ruminal fluid was extracted and filtered

through a triple layer of gauze and homogenized with CO2 for

5min. Glass syringes were filled under anaerobic conditions with

200mL of the previous mixture (100mL of rumen inoculum

and 900mL of an incubation solution). In 1 L, this solution

consisted of 238 mL/L of buffer solution [14 g NaHCO3 and

1.5 g (NH4)HCO3 per L], 238 mL/L of a macro mineral solution

(5.7 g Na2HPO4, 6.2 g KH2PO4 and 0.6 g MgSO4.7H2O per

L), 474 mL/L of distilled water, 0.1 mL/L of micro minerals

(13.2 g CuCl2.2H2O, 10.0 g MnCl24H2O, 1.0 g CoCl2.6H2O,

8.0 g FeCl2.6H2O and made up to 100mL with H2O) and 50

mL/L of a reduction solution (47.5mL distilled water, 2mL of 1N

NaOH and 313mg HCl-cysteine), and resazurin (phenoxazine

dye). Two additional syringes without substrate were also

prepared as blanks to account for the presence of other soluble

extracts on overall gas production and to correct readings

for substrate, including syringes from the self-fermentation of

rumen inoculum. Glass syringes per triplicate per treatment,

were filled with the incubation solution under a CO2 stream,

and incubated for 96 h in a water bath at 39◦C. The gas volume

was recorded at 3, 6, 9, 12, 24, 36, 48, 60, 72, 84, and 96 h of

incubation in three series of incubation.

Animals and diets

All experimental procedures were approved by the Animal

Experimental Guidelines of the Universidad Autonoma del

Estado de México (project code UAEMex 4974/2020). Eighteen
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male Suffolk lambs [38 ± 4 kg LW (average ± SD)], were

arranged in a completely randomized design for a 21-day

period that consisted of 14 d for diet adaptation and 7 d for

sample collection.

The control diet was formulated according to the nutritional

requirements for growing sheep (10) receiving 105 g crude

protein (CP)/d and 10.5 MJ metabolizable energy/kg DM. Three

levels of GT inclusion were used to replace CS: a control diet

based on 100% CS (GT0), 100 g/kg DM (GT100), and 200

g/kg DM (GT200) of GT were included as replacements for CS.

Chemical composition of feedstuffs and treatments is shown in

Tables 1, 2 respectively. Before feeding, individual live weights

were measured at the beginning and end of the experimental

period. Animals were housed in individual metabolic cages (1.20

× 0.80m), fed individually twice a day (0800 and 1,500 h), with

free access to water. Feed intake and refusals were measured

daily but only data from the last 7 days were accounted for

the statistical analysis. During the last 7 days of the period,

samples of feces and urine were collected daily and 10% of the

total samples for feces and urine were frozen at −20◦C for

further analysis.

Chemical analyses

All chemical analyses were performed in triplicate. Feed

orts, fecal samples, individual feedstuffs, and diets were dried

in a forced air oven (60◦C, 48 h), then ground in a mill

(Willey, 2mm Ø Arthur H. Thomas Philadelphia, PA) to

determine organic matter (OM; 942.05) (9). Total nitrogen (N;

954.01) was determined by the Kjeldahl method (9) using a

conversion factor of 6.25 for crude protein (CP) determination.

Neutral detergent fiber (NDF), acid detergent fiber (ADF)

and lignin were determined according to Van Soest (11) with

the addition of sodium sulfite and alpha-amylase using an

ANKOM fiber system. All feedstuffs were analyzed for ether

extract (920.39) (12). Composite samples of tomato (n = 6)

and corn (n = 6) silages were analyzed for ammonia and

volatile fatty acids (VFA) by gas chromatography according

to Moon et al. (13). Corn and green tomato silages pH were

determined in triplicate. Feces and urine samples were used

for nitrogen (N; 991.20) determination (12) to assess nitrogen

excretion. Nutrient digestibility coefficients were determined as:

digestibility (g/kg) = (nutrient intake – nutrient excreted) /

(nutrient intake)× 1,000 (14).

Calculations

The accumulated gas volume of each sample was determined

using the model proposed by France et al. (15).

Y=A [1− exp
(

−B(t − T
)

−C(
√
t−

A

T
))] (1)

Where: “Y” is the cumulative gas production (mL) “t”

is the incubation time (h), A is the asymptote curve (total

gas produced, mL), B (h−1), and C (h−½) are the gas

production constants, T is the time of delay (h) that colonize the

microorganisms to begin the fermentation.

After in vitro incubation periods, samples were filtered

and dried (48 h, 60◦C) to determine dry matter disappearance

(DMd96h), and gas yield production at 24 h (GY24). The volume

of gas (mL gas/g DM) produced after 24 h of incubation was

calculated by dividing the amount of DMd96h (g):

Gas production (GY24)=mLgas 24/gDMd96h (2)

The gas production (GP) at 96 h was correlated with DM

disappearance to produce relative gas yield (RGY; mL gas/g

DMd96h) (16).

Intakes (kg/day and g/kg LW0.75) were estimated during the

feeding trial.

Statistical analysis

Each in vitro experiment was completed in 4 days, using

three replicates per treatment per incubation run (nine replicates

per treatment). The analytical replicates were averaged before

statistical analysis, so the statistical number of treatment

replicates (n = 3) are the true replicates (three incubation

runs). The experimental unit was therefore the mean of

the three replicates obtained per incubation run forms a

statistical replicate. A completely randomized design was used

to determine in vitro gas production, and in vitro microbial

fermentation (17). Orthogonal contrast was used to test the

linear and quadratic responses of each in vitro dependent

variable at increasing levels (G0, G100, G200 g/kg DM) of green

tomato silage.

A completely randomized design was used to determine

the chemical composition and in vivo parameters (17)

as follows.

Yij=µ + Txi + εij (3)

Where Y ij = is each observation of treatments it; µ is the

general mean; Txi (n = 3) is the treatment effect; and εij is the

experimental error.

Data from the in vivo experiment (n = 18) were analyzed

using a one-way ANOVA (18). Where treatment (G0, G100,

G200 g/kg DM) was the main effect. Digestibility and N

balance data also were analyzed using a one-way ANOVA. The

Tukey test was used when significant differences were observed
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TABLE 1 Chemical composition (g/kg DM) of individual feedstu�s.

Parameter Green

tomato silage

Corn

silage

Alfalfa

hay

Sorghum

grain

Soya bean

meal

Canola

meal

Wheat

bran

Dry matter1 319± 16 256± 13 900± 45 900± 43 880± 42 890± 44 900± 42

Organic matter 804± 40 911± 45 910± 43 980± 49 940± 47 900± 27 930± 37.2

Crude protein 101± 4 73± 3 140± 7 80± 3 430± 17 320± 13 150± 7

Ether extract 28± 2 32± 2 60± 3 30± 1 23± 1 32± 1 46± 2

Neutral detergent fiber 562± 22 496± 25 540± 27 150± 6 150± 5 330± 13 480± 24

Acid detergent fiber 252± 10 229± 9 390± 16 50± 2 100± 4 190± 7 130± 5

Acid detergent lignin 77± 4 57± 2 70± 3 30± 1 40± 2 50± 2 60± 3

Metabolizable energy2 9.4 10.0 8.4 12.6 12.6 10.9 10.5

pH 4.2± 0.12 4.1± 0.16

Ammonia N (mg/dl) 16.2± 0.6 7.61± 0.4

Volatile fatty acids (mol/100mol)

Acetic acid 70.3± 3 75.7± 3

Propionic acid 17.5± 3 12.0± 3

Butyric Acid 12.2± 0.6 11.9± 0.5

1DM, dry matter expressed as fresh matter (g/kg); 2Expressed as MJ/kg DM.

between treatments P < 0.05. Orthogonal contrast was used to

test the linear and quadratic responses to determine differences

among treatments.

Results

In vitro fermentation kinetics

In vitro fermentation parameters ate shown in Table 3. Gas

production “A” (mL/g DM), fermentation rates “B” (h−1), and

“C” (h−½), were lower for GT200. DMd96h was lower (P <

0.05) for GT100. Gas production at 24 h and RGY were higher

(P <0.05) for GT0 than the rest of the treatments.

Nutrient intake and digestibility

Nutrient intake and digestibility data are shown in Table 4.

Dry matter and OM intake (g/kg LW0.75) were similar (P >

0.05) between treatments. Compared to GT200, ether extract

was higher for GT0 and GT100 (P < 0.001). Compared with

GT0, NDF intake was higher (P < 0.05) for GT200. Digestibility

coefficients for DM, OM, NDF, and ADF were lower (P < 0.05)

in GT100 than in the rest of the treatments.

Nitrogen balance

Nitrogen intake and nitrogen excreted in feces and urine

(g/kg LW0.75) (Table 4), were lower (P < 0.001) for GT0. A

negative nitrogen balance was also obtained in all treatments,

and this had a linear effect (P< 0.001), being GT200 the one that

has the most negative nitrogen balance (P < 0.001) compared

with the rest of the treatments.

Discussion

Feed quality and diet composition

A proximate analysis of major feed ingredients is shown in

Table 1. The DM, CP, NDF, and ADF contents of corn silage,

alfalfa hay, soybean meal, canola meal and wheat bran indicated

that these feeds are within the expected nutrient levels (10).

There are no data related to the chemical composition of whole

plant green tomato (as fresh or silage), however Fondevila et al.

(19) reported data on tomato pomace (Solanum lycopersicum),

which contains 24 % CP which is higher than whole plant green

tomato silage (10.1%CP), however, they are similar in NDF

content (56%).

Composition of the three diets fed in the study is shown in

Table 2. Green tomato silage, which was added at the expense

of corn silage, increased from about 6 to 12% of dietary DM

(GT100 and GT200 respectively); actual CP concentrations

ranged from 103 to 108 g/kg (DM basis). The inclusion of GT

had little effect on NDF, ADF and Lignin content compared with

the control diet.

In vitro fermentation kinetics

In vitro gas production was lower for GT200. Besharati et al.

(20) reported that in a study with red tomato addition, gas yields
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TABLE 2 Feedstu� inclusion (g/kg DM) and chemical composition

(g/kg DM) of dietary treatments.

Ingredients g/kg GT02 GT100 GT200

Corn silage 570 470 370

Green tomato silage 0 100 200

Alfalfa hay 87 87 87

Sorghum grain 235 235 235

Soyabean meal 43 43 43

Canola meal 27 27 27

Wheat bran 22 22 22

Minerals and vitamins1 16 16 16

Total 1000 1000 1000

Chemical composition

Dry matter 534 540 546

Organic matter 913 902 891

Crude protein 103 105 108

Ether extract 32 33 32

Neutral detergent fiber 391 397 404

Acid detergent fiber 188 190 193

Lignin 50 52 54

Metabolizable energy, MJ/kg DM 10.5 10.4 10.3

1Mineral and vitamin supplement, in 1.0 kg DM it contains the following: 25mg of

antioxidant, 4.5 g of calcium carbonate, 6 g of salt, 30 g of ionophore, 50 g of zinc oxide,

6 g of sodium bicarbonate, 6 g of copper sulfate, 20 g of ferrous sulfate, 125 g of sodium

sulfate, 18000 IU of vitamin E, 3 000 000 UI of vitamin A, 3 750 000 IU of vitamin D, 140 g

of potassium chloride, 0.500 g of E.D.D. I ethylene-dynamine, 0.090 g of cobalt carbonate,

500mg of magnesium oxide, 36 g of manganese oxide, and 0.090 g of selenium.
2GT, green tomato silage.

were lower in the initial incubation times compared to GT0 due

to high contents of slowly fermented carbohydrates in tomato, as

tomato has a high level of NDF (454 g NDF/ kg DM) and needs

more time to adhere to the microorganism (21).

In this study, the decrease in gas production from tomato

inclusion (GT100 and GT200) could be explained by flavonoid

presence. Until now, not much information is available

on the mechanism of action of flavonoids against rumen

microbes, but flavonoids generally act against microorganisms

by inhibiting cytoplasmic membrane function, inhibiting

bacterial cell wall synthesis, or inhibiting nucleic acid synthesis

(22, 23). Similarly, secondary compounds are inhibitors of

gas production, ruminal microflora, protozoan content of

ruminal flow, and proportionate production (24). In general,

compared to control (GT0), green tomato treatments decreased

fermentation parameters which agrees with studies showing that

total gas production is negatively correlated with secondary

plant metabolites (25).

The affected rumen fermentation kinetics observed in this

study should be further considered in an experimental setup

where less amounts of GT are added to diets and rumen

microbiome is analyzed. Secondary plant compounds such as

flavonoids, have antimicrobial effects and provoke a shift of

protozoa and gram-positive bacteria populations in the rumen

(26). Thus, using GT could be a nutritional strategy aiming at

reducing enteric methane emissions not only in sheep but in

other ruminant species. This approach has been recently revised

(27–29) and dietary flavonoids have the potential for improving

nutrient digestibility and animal performance.

Nutrient intake and digestibility

The observed increase in NDF and lignin intake observed

with GT100 and GT200 could be attributed to a higher amount

NDF content of tomato plants, compared with CS, which is

associated with the phenological stage of the plant, which in this

study was in its final growth stage (stem and green tomatoes).

A limiting factor that affects the efficiency of energy use is the

excess of fiber, which limits the development of the animals.

Diets with high amounts of indigestible fiber can lead to low

production of volatile fatty acids which eventually affects energy

synthesis and availability (30, 31).

Dry matter and OM digestibility were similar among

treatments, on the contrary, NDF and ADF digestibility

decreased as the GT inclusion increased, contrary to

Abdollahzadeh et al. (32) and Gawad et al. (33), who reported

that feeding tomato silage as a replacer for alfalfa hay for

Holstein dairy cows and buffaloes, led to a significant increase

in the digestibility of CP and NDF. The lower digestibility of

NDF with respect to the inclusion of GT may be because it has a

higher concentration of indigestible NDF and lignin.

The fiber composition of the basal diet used to feed sheep is

important as it could lead to different effects on OMdigestibility,

for example, it has been reported that OM digestibility of dried

tomato from 56% (12) in lambs fed on alfalfa hay-based diets

while lambs fed on dried tomato in a diet based on barley straw

can have an OM digestibility of 90% (3, 34).

Nitrogen balance

In the present study, animals had a negative nitrogen

balance, however, sheep fed on GT200 had the highest

nitrogen loss compared with GT0 and GT100. This could be

due to a higher presence of secondary metabolites including

phenolic compounds, phytoalexins, protease inhibitors, and

glycoalkaloids in green tomatoes, which could have decreased

the efficiency of N utilization, making it difficult to absorb and

usage of N in the digestive tract (30, 35, 36), and consequently,

the nitrogen content was lost, resulting in the microbial protein

in the post-ruminal tract not reflected into sheep growth (37).

Also, tomato plants (green or red) synthesize glycoalkaloids

dehydrotomatine and alpha-tomatine, as a defense against

bacteria, fungi, viruses, and insects (38). Yamashoji and Onoda

(39), evaluated the antiobesity effect of immature green tomatoes
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TABLE 3 In vitro gas production from di�erent inclusion levels of whole green tomato silage (GT) as an alternative to corn silage.

Treatment SEM P-value

GT0 GT100 GT200 Treatment Lineal Quadratic

A 593.88a 389.39b 418.20b 27.30 0.001 0.001 0.763

B 0.05 0.04 0.05 0.01 0.210 0.212 0.231

C −0.05a −0.06a −0.13b 0.01 0.001 0.066 0.001

Lag time 1.34c 2.40b 5.34a 0.21 0.001 0.001 0.001

Gas production

3h 22.56a 6.56b 2.61b 2.06 0.001 0.001 0.162

6h 70.32a 22.31b 10.43b 4.91 0.001 0.001 0.577

9h 157.89a 56.46b 28.69b 9.02 0.001 0.001 0.852

12h 282.63a 114.23b 65.21b 13.67 0.001 0.001 0.583

24h 367.57a 182.50b 182.62b 14.20 0.001 0.001 0.015

48h 497.66a 290.17b 336.58b 22.98 0.001 0.001 0.040

72h 553.38a 340.05b 374.42b 26.02 0.001 0.001 0.309

96h 635.64a 396.47b 426.60b 30.37 0.001 0.002 0.809

DMd 67.00a 54.67b 60.33ab 2.17 0.001 0.001 0.001

RGY 94.76a 73.15b 71.01b 41.85 0.004 0.102 0.005

GY24 73.51a 36.50b 36.52b 2.84 0.001 0.001 0.015

A, total gas produced expressed as ml gas/g DM; B (h−1) and C (h−½) are the gas production constants; DMd, dry matter disappearance expressed in g; RGY, relative gas yield expressed

as ml gas/g DMd; GY24, gas yield production at 24 h expressed as ml gas 24h /g DMd; SEM, standard error of the mean.
a,bDifferent letters in the same column are different statistically (p < 0.05).

and reported that they inhibited the accumulation of lipid in

adipocytes, a-tomatine from tomatoes interferes with cholesterol

absorption and increase sterol excretion by forming a non-

absorbable complex with cholesterol in the gastrointestinal tract.

Health hazards of a-tomatine have been studied by various

animal tests and it is known that the toxicity of α-tomatine

depends on the presence of lycotetraose, because removal of

one or all four sugar residues renders α-tomatine less toxic (40).

In this study, it is possible that tomato secondary compounds

disrupted rumen microorganisms’ populations with negative

effects on nutrient metabolism. Further studies should consider

analyzing rumen microbiome to confirm these findings.

The reported apparent digestibility of N from dried tomato

pomace was less than that from soybean meal (41). A highly

concentrated diet containing dried tomato at 30% of the DM

had an apparent CP digestibility of 51% compared with 69%

for a diet containing soybean meal (33, 41). Previous reports

on the N balance of lambs fed dried tomato pomace are not

consistent. In agreement with our data, Ammerman et al. (41)

reported a lower N balance when lambs were fed with dried red

tomato than when lambs were fed with soybean meal. However,

Fondevila et al. (19) reported no difference in N balance between

lambs fed dried red tomato and that fed soybean meal. In the

present study, urine excretion was highest for GT200 (2,004mL),

followed by GT100 (1,139mL) and the lowest excretion was for

GT0 (569mL). Increases in urine volume in animals fed green

tomatoes increased urinary N excretion, with GT200 having the

most negative nitrogen balance (Table 4) with a 94 % increase

in total N excretion with respect to GT0. This increase in

the excretion of urine and therefore of N, can be seen as a

mechanism of excretion of toxic compounds present in tomato

(α-tomatine) (42) and consequently, a greater excess of N in

urine in the animal by including GT00 and GT200.

This increase in urine excretion was reflected in an increase

in water consumption, possibly due to a detoxification response

of the animals as it has been observed that the green tomatoes

whole plant accumulates a variety of secondary metabolites (38,

43). In this sense, it has been reported that dehydrotomatine and

alpha-tomatine contents from tomatoes varied from 42 to 1,498

and 521 to 16,285 mg/g of fresh weight, respectively (42, 43),

which represents 120 times more tomatine than red tomatoes

(38). Taken together, in this study, it is very possible that this

increase in tomatine affected animal welfare, and consequently,

one way to eliminate the compound was by increasing the

excretion of urine and therefore of N.

Conclusions

In sheep diets, the inclusion of whole plant green tomato

silage at 100 or 200 g/kg DM as an alternative to corn silage,

does not affect dry matter intake but negatively affects nutrient

digestibility and N balance. Therefore, under the conditions of

this study, its inclusion in sheep diets is not recommended.
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TABLE 4 Dry matter intake (g/kg LW0.75, MBW) with di�erent inclusion levels of whole green tomato silage (GT) as an alternative to corn silage in

lamb diets and nitrogen balance (g/kg LW0.75, MBW).

Variable Treatment SEM P-value

GT0 GT100 GT200 Treatment Lineal Quadratic

MBW, kg 21.10 20.27 20.28 0.86 0.739 0.511 0.502

Intake, MBW

DM 68.87 72.73 72.47 2.08 0.365 0.239 0.208

OM 60.92 63.15 61.98 2.03 0.742 0.715 0.448

CP 4.70b 5.43a 5.40a 0.17 0.013 0.011 0.008

EE 2.06a 2.02a 1.62b 0.06 0.001 0.001 0.599

NDF 32.03b 34.78ab 37.98a 1.13 0.008 0.002 0.188

ADF 14.78 15.40 15.11 0.49 0.685 0.641 0.392

ADL 3.68b 4.25a 4.56a 0.14 0.001 0.001 0.011

Digestibility (g/kg)

DMd 650.0a 543.3b 606.7ab 22.7 0.015 0.197 0.004

OMd 660.0a 533.3b 605.0ab 22.8 0.004 0.108 0.001

NDFd 666.7a 523.3b 653.3a 8.4 0.002 0.615 0.001

ADFd 540.0a 353.3b 453.3ab 32.5 0.003 0.079 0.001

Nitrogen balance (g/kg LW0.75, MBW)

N intake 0.75b 0.84a 0.86a 0.02 0.004 0.001 0.009

N excreted

Feces 0.25b 0.39a 0.33a 0.02 0.001 0.016 0.001

Urine 1.72b 1.29b 3.10a 0.26 0.001 0.002 0.283

N balance −1.22a −0.86a −2.37b 0.27 0.001 0.003 0.361

MBW, metabolic body weight; DM, dry matter; OM, organic matter; CP, crude protein; EE, ether extract; NDF, neutral detergent fiber; ADF, acid detergent fiber; ADL, acid detergent

lignin; SEM, standard error of the mean. a,bDifferent letters in the same column are different statistically (p < 0.05).
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