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Abstract. We consider a pure 3-qubits system inter-
acting through a XY-Hamiltonian with antiferromagnetic
constant J. We employ the 3-tangle as an efficient
measure of the entanglement between such a 3-qubit
system. The time evolution of such a 3-tangle is studied.
In order to do the above, the 3-tangle associated to the
pure 3-qubit state |¢(t)) = co(t)|000) + c1(¢)|001) +
c2(8)[010) + e3(¢)|011) + ca(¥)|100) + c5(¢)|101) +
c6(t)[110) + c7(¢)|111) is calculated as a function of the
initial coefficients {c;(t = 0)} ( = 0,1,...,7), the time
t and the antiferromagnetic constant J. We find that
the 3-tangle of the 3-qubit system is periodic with period
t = 4x/J. Furthermore, we also find that the 3-tangle as
a function of the time ¢ and J has maximal and minimum
values. The maximal values of the 3-tangle can be
employed in Quantum Information Protocols (QIP) that
use entanglement as a basic resource. The pattern
found for the 3-tangle of the system of three qubits
interacting through a XY Hamiltonian as a function of
J and the time ¢t resembles to a quantized physical
quantity.

Keywords. 3-qubits; non-classical communications;
quantum information processing; entanglement.

1 Introduction

Entanglement of multipartite pure states has
been object of many studies both theoretical and
experimental [1, 3]. The reason for the above is
that multipartite entanglement is a basic ingredient
for Quantum Information Protocols (QIP). Although
certainly there have been advances in the study
of multipartite entanglement [4, 11], it is not
yet understood the time evolution of the initial

entanglement of a system of several qubits.
In particular, it arises the question about the
characteristics of the time evolution of the 3-tangle
of a system of 3-qubit interacting mutually through
a XY Hamiltonian.

As it has been pointed out in Ref. [4] the 3-tangle
can be an important quantity for measuring the
entanglement of a 3-qubit system. In the present
paper we study the time evolution of the 3-tangle
associated to a 3-qubit system in a pure state.
In order to do the above we employ the 3-tangle
introduced in Ref. [4] and also the quantum
Heisenberg XY-Hamiltonian [12] for a system of
3-qubit.

Thus, given an initial 3-qubit state |4 (¢t = 0)) =
co(t = 0)]000) + ¢;(t = 0)]001) + co(t = 0)]010) +
c3(t = 0)|011) + ¢4t = 0)]100) + c5(t = 0)[101) +
cs(t = 0)|110) + c7(¢t = 0)|111), the time evolution
of such a state is given by the Heisenberg operator
ie. [y(t) = e Mt = 0)) = c(1)[000) +
c1(t)|001) + c2(t)]010) + ¢3(t)]011) + c4()[100) +
es(t)]101) 4 ¢6(¢)|110) + c7(¢)|111) where H is the
XY-Hamiltonian of the 3-qubit system. In our
approach, we derive an analytic expression for the
Heisenberg operator e~** with which if the initial
3-tangle (7(t = 0)) is known in terms of the initial
coefficients {¢;(t = 0)} (¢ = 0,1,...,7) then the
final tangle 7(¢) will be known in terms of the final
coefficients {c;(t)} (: = 0,1,...,7), the value of J
and the time ¢.

As a result we find noticeable harmonic-like time

behavior for the 3-tangle. The later seemingly
suggests that the entanglement of a 3-qubit system
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interacting through a XY Hamiltonian is a quantized
quantity. The paper is organized as follows: in
Section 2 we derive the formalism for a 3-qubit
system interacting through a XY-Hamiltonian. In
Section 3 we find an expression for the 3-tangle
as a function of time. Finally, we conclude the work
by giving a discussion of our results in a section of
Conclusions.

2 3-qubits XY Hamiltonian

In order to facilitate our calculations it is employed
the decimal notation, which is defined as follows:

0) = [000),
1) = 1001),
2) = 1010),
3) = [o11), (1)
[4) = [100),
5) = [101),
6) = [110),
7y = [111)

Then, a general pure 3-qubits state can be defined
in terms of a superposition of the above basis as
follows:

7
|’(/}> = Zci|i>7 (2)
1=0

where: ,
> e =1. ()
=0

With the decimal notation it is possible to associate
a matrix with a Hamiltonian operator. The
respective associated matrix elements to the
Hamiltonian operator H become:

Hij = (ilH|j)- (4)

The so called XY-Hamiltonian for n qubits is: [12]

iy

H=J (Szw za»l + Sg’sﬂ-ﬁa (5)
0

1=

where N = 2", J is the coupling constant, and S¢
is the a (e = z,y) component of the spin of the
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i — th qubit. In the present case we have n = 3
qubits (i.e. N = 8).

Let us observe that the states |0) and |7) are
annihilated by the action of the operator H of Eq.
(5), that is:

H|0) = 0,
(6)

I
e

HI7)

Furthermore, the action of the XY Hamiltonian H
of Eqg. (5) on the rest of the decimal states is:

Hy = 5[ +1e),
H) = 5[ +1e)],
) = 5[ +16)].
Hay = 5[ +], 7)
a5y = S[i6)+ )],
Hl6) — g:|5>+|3>:.

Through the use of the Egs. (4)-(7) and
the orthonormality of the decimal basis, the
construction of the matrix associated to H yields:

00 00O0GO0TO 0O
00101000
01001000
J100O0OO0OOT1T1O0

H=510 11000 0 0 8)
00010010
000107100
00 0O0O0GO0TO 0O

On the other hand, the time evolution operator
can be expanded in powers of H as follows:

Ut) = exp[—iHt] (9)

= 1—iHt+ # [Ht)? + (_;!)3 [H1)? .
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We observe that the several different powers of
H of Eq. (8) behave peculiarly. For instance the
quadratic power is:

(3

SO OO OO OO

SO OO OO OO

] OO OO oo oo

COOHROHROO0 OO0 OD oo, O o
COOHOOHFO OO0 ORFRS oo R,ON R~ O
OCHPOOOOO CO0OO0OOHOO O R, OO OO
CHOOHOOO COORrROOOS O R NNOR~ROOO
CORPrOHOOO OCOHOOO0OOC O vUROR~ROOO
COOCOCCOO0O0 OO0 O0OO coocoooc oo O

[\
oy
[
-
+
o]
Y

In a similar way, for the other powers we obtain that:

HG

J 2
2I(5_7} + <2> 3H

2*3[{2_7}+< 3+2H7

J 3
;) @42
(10)
J 4
J 5
2 % 11]{2_7} + <2) (11+10)H,

where I;;_7; has been defined in Eq. (11). In
general for the n — th power we find that:

J n J n—1
H" — (2> a,LI{2,7} + (2) b, H. (11)

However, we can see that a«,, = 2b,,_; and
by, = bp_1 + ap_1 = bp_1 + 2b,_o, then the above
equation can be expressed as:

I\ (=) + 2]
N (2> S,

We observe from the above equation that for n =
0, the second term will be equal to zero and that
the first one is equal to 1. However, in this case,
H° = Ij5_7, and this is not the identity /s as can
be seen from Eq. (11). Such a problem can be
solved as follows:

H" = Ijysyoon (13)
J“’2 n— n—
+(2) g[—(—l) 1+2 1]1{277}
J\"H [ (=) + 27
-z L N A N | >
+(2) 3 H, n>0,
where:
10000000
00000000
00000O0GO0 0
00000000
Tasy=1 00000000 (14)
00000000
00000000
00000O0GO0 1

From the above equation we find that the time
evolution operator will always be linear on H, and
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the time evolution operator can be written as:

u - 3 (—iHt)"

n!

n=0
—it)n
= Z( ,) {1{1,8}5%
"0 n.
J\" 2 1
+(3) SECuTter ey
.\ n—1 n
+(g) (1) +2}H}
2
= Ipgy

20 1 [ —itJ\"

ﬂ _ _(_1\n—1
PS5 () e
+2n—1]

OH 1 [ —itJ\" .
+3anon!<2> ==
+2m). (15)

It is worth to observe that the last expression can
be written in terms of exponentials with which the
time evolution operator takes a simple form:

2o e 1
Ut) = Tpgy+ oD (% 4 et
: 3 2
2H ) it
+— (e‘”t — e%) . (16)

Let us note that according to Egs. (9) and (10)
the time evolution of the state |¢)(t = 0)) is given
by:

(1) = UIiP(t )
(t=0)|0> ci(t =0)[1)
( =
—|—C4(
+ c6(t =
= ¢o(8)|0) + 1 (t)[1) + e2(2)[2)
+c3(t)[3) + ca(t)|4) + c5(t)
+ c(1)[6) + c7(2)]7). (17)

It can be observed from the above equation that
we can calculate the coefficients at any time {c;(¢)}
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(4 = 0,1,...,7) if the initial coefficients {c;(t = 0)}
(s = 0,1,...,7) are known and if it is also known
the action of the time evolution operator on each of
the decimal states, that is, U(t)|i) for i = 0,...,7.
Through the use of Egs. (6), (7), (11), (16), and
(18) it is found that:

Uu)oy = 10, (18)
U = ; <e + ;e“t> 1) (19)
g (e 12)+ 14y,
U2y = % <e" + ;e“t> 12) (20)
3 (e - ) ) + ),
U3 = ; <e + ;e“t> 3) 21)
3 (e =) [15) + 6],
U4 = % <e + ;e—“t> |4) (22)
+3 (e =) 12)+ ),
U — ; <e + ;e_i‘]t> 5) (23)
3 (e =) 16) + 13,
Ut)e) = % <e + ;e_”t> 16) (24)
3 (=) 5) + 13,
uwln = 17 (25)

To substitute Egs. (20)-(27) into Eqg. (19), we find
the coefficients at any time {c;(¥)} (j = 0,1,...,7)
in terms of both the above exponentials and the
initial coefficients {c;(t =0)} (j = 0,1, ...,7) where

7
Zj:o lcj(t=0)]> = 1.
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3 3-tangle as a Measure of Multipartite
Entanglement of a 3-qubit System

The measure of entanglement for a 3-qubit system
can be is obtained through the 3-tangle which is
defined as [4]

T3 = 4|dy — 2dy + 4d3], (26)
with:
dy = i+ + i+, (27)
do = coereses + coereses + coereger (28)
+ c3cqc5c9 + c3cycgcy + cscacpey,
ds = cycecses + crcicacy, (29)

where ¢; represents the coefficient of basic state
|i). Thus, by calculating the coefficients ¢; (i =
0,1,...,7) as a function of time, in the way it was
explained at the end of the above section, we shall
be able of finding the 3-tangle of Eq. (28) as a
function of time. That is to find 75(t) = 4|d.(¢) —
2dy(t) + 4ds(t)| providing the coefficients ¢;(t) are
known. It is worth to observe from Egs. (18) and
(19) that the coefficients ¢;(¢t) (i = 0,1,...,7) will
depend on the initial coefficients ¢;(t = 0) (j =
0,1,...,7), the antiferromagnetic constant J and the
time ¢. By the way, in the present work the initial
coefficients ¢;(t = 0) (Z§:0|cj|2 = 1) are found
in a random way with which the coefficients c¢;(¢)
(s = 0,1,...,7) at time ¢ will result a two variables
function namely J and ¢.

Before of considering a general state we are
focusing on the so called W and GH Z states which
are defined as:

W) = %(|4>+\2>+|1>>7 (30)
GHZ) = %uowm). (31)

The respective initial 3-tangle for the GHZ-state
is unit while for the W-state the initial 3-tangle is
zero. Now, the W-state time evolution is only over
the phase. Therefore the 3-tangle of the W-state
does not change in time. Thus, the XY Hamiltonian
keeps constant the entanglement of the W-state
which is an important result. On the other hand, the

GHZ-state also is not modified by the time evolution
operator of Eq. (19) hence its associated 3-tangle
keeps constant in time. We conclude that the XY
Hamiltonian assures that the entanglement of the
GHZ-state does not change in time.

Let us now consider an arbitrary initial 3-qubit
state at t = 0 denoted by |[¢(t = 0)) = co(t =
0)[000) + ¢1(t = 0)]001) + co(t = 0)|010) + c3(t =
0)]011) + c4(t = 0)]100) + ¢5(t = 0)]101) + c6(t =
0)[110) + ¢7(t = 0)|111) where S.7_ |es(t = 0)[2 =
1. In order to evaluate the 3-tangle at time ¢ from
Egs. (28)-(31), we employ egs. (19)-(27) where
the initial coefficients ¢;(t = 0) are found in a
random way. We perform the above procedure in
three different cases and calculate the respective
3-tangle in each one of the three different cases.
In the Appendix we write the three different random
initial 3-qubit states employed in the present work.
In figure 6, we show the time evolution of the
3-tangle as a function of both J and ¢ associated
to each of the three different random initial 3-qubit
states employed in the present work.

4 Relevance of Entanglement for
Technological Applications

Quantum entanglement is essential not only
for technological applications such as quantum
computation [13], data base search algorithm [14]
or quantum cryptography [15] and quantum secret
sharing [16] but also for non-artificial systems. For
instance for photosynthesis [17]-[18], navigational
orientation of animals [19], the imbalance of matter
and antimatter in the universe [20] and evolution
itself [21].

5 Random Initial 3-qubit States

We write the three different random initial 3-qubit
states that we have employed in the present work.
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Fig. 1. The 3-tangle as a function of both the time ¢ and the antiferromagnetic factor J for a three different states
which their respective initial coefficients {c;(t = 0)} are found in a random way. Eqgs. (28)-(31) and (19)-(27) are used.
Concerning to the label, the number represent the state while the letter expresses the kind of graphic

Such a states are the following: [th2(t =0)) =~

1 (t=0)) ~ (0.0649682 + 0.4802444)[0) (32)
+ (0.0820031 + 0.0744268i)|1)
+ (0.157695 4 0.5673614)|2)
0.00990613 + 0.30057:)|3)
0.159286 4 0.1223714)|4)
0.136861 + 0.04061541)|5)
0.00576077 + 0.2678181)|6)
0.424509 + 0.0545951)|7),

A~ N N /N

n
_|_
+
+
+
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(0.254723 + 0.4527914)[0)  (33)
+ (0.205806 + 0.36567)|1)
+(0.119695 + 0.4526554)[2)
0.10712 + 0.0957144)|3)
0.000551918 + 0.4088667)|4)
0.0713835 + 0.0732269i)|5)
0.0279197 + 0.09933651)|6)
0.316043 + 0.1614244)|7),

o~ o~ o~ o~ o~ o~

+
+
+
+
+
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[Ws(t=0)) ~ (0.228717+0.667391)[0)  (34)
+ (0.124412 4 0.627444)|1)
+(0.0241769 + 0.164164)|2)

0.00878132 4 0.06908144)|3)

0.0589419 + 0.1658144)|4)

0.0255238 + 0.1050974)|5)

0.0946251 + 0.07507344)[6)

+ (0.00977502 + 0.0581965:)|7).

(
+
+
+
+(
(

We observe that all of the above three 3-qubit
states are normalized to unit.

6 Conclusions

We have studied the behavior in time of the
3-tangle associated to a 3-qubit system interacting
through the XY Hamiltonian given by Egs. (5) and
(8). The 3-tangle associated to the state | (t)) =
Co(ﬁ)|000> + Cl(ﬁ)|001> + Cg(t)|010> + Cg(t)|011> +
ca(t)|100) + ¢5(t)|101) + c6(¢)[110) + c7(¢)|111) is
given by Egs. (28)-(31) where each one of the
coefficients {¢;(t)} (: = 0,1,...,7) depend on
the random initial coefficients {c;(t = 0)} (j =
0,1,...,7), J and the time t as it can be seen from
Egs. (18)-(27).

An important result obtained in the present work
is that the entanglement of both the W-state and
the GHZ-state keeps constant in time providing the
three qubits interact through the XY Hamiltonian
given by Eq. (5).

Such a result could have important experimental
advantages whereas both the W-state and the
GHZ-state can be used on solid basis for testing
different QIP protocols.

In Figure we have plotted the 3-tangle of
Eq. (28) as a function of both the time t and
the antiferromagnetic factor J for three different
random 3-qubit states. It is worth to point out
that the 3-tangle shows a noticeable periodic
behavior as it is appreciated from Figure being the
respective period ¢ = 47/J. Such a behavior in
time is a consequence of the harmonic structure of
the time evolution operator of Eq. (18).

Our results invoke to the present experimental
facilities to measure the 3-tangle for a system
of 3-qubits by taking into account that for

certain times the entanglement disappears and
that for other values of both the time and the
antiferromagnetic constant J such a quantity is
maximal. The maximal values of the 3-tangle can
be used for implementing Quantum Information
Processing protocols where entanglement is a
resource. Our results might indicate that the
3-tangle associated to a 3-qubit system resembles
to a quantized physical quantity providing the three
qubits interact through a XY Hamiltonian.
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