X-FSPMiner: A Novel Algorithm for Frequent Similar Pattern Mining

ANSEL Y. RODRÍGUEZ-GONZÁLEZ, Unidad de Transferencia Tecnológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Tepic, México
RAMÓN ARANDA, Centro de Investigación en Matemáticas, A.C., Unidad Mérida, Mérida, México
MIGUEL Á. ÁLVAREZ-CARMONA, Centro de Investigación en Matemáticas, A.C., Unidad Monterrey, Apodaca, México
ANGEL DÍAZ-PACHECO, Universidad de Guanajuato, División de Ingenierías, Campus Irapuato-Salamanca, Salamanca, México
ROSA MARÍA VALDOVINOS ROSAS, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo, México

Frequent similar pattern mining (FSP mining) allows found frequent patterns hidden from the classical approach. However, the use of similarity functions implies more computational effort, becoming necessary to develop more efficient algorithms for FSP mining. This work aims to improve the efficiency of mining all FSPs when using Boolean and non-increasing monotonic similarity functions. A data structure to condense an object description collection named $F V$-Tree, and an algorithm for mine all FSP from the FV-Tree, named X-FSPMiner, are proposed. The experimental results reveal that the novel algorithm X-FSPMiner vastly outperforms the state-of-the-art algorithms for mine all FSP using Boolean and non-increasing monotonic similarity functions.

CCS Concepts: • Information systems \rightarrow Data mining; •Theory of computation \rightarrow Sorting and searching
Additional Key Words and Phrases: data mining, frequent patterns, similarity functions, mixed data

1 INTRODUCTION

In the last decade of the previous century, frequent pattern mining [14] emerged from the market basket analysis, playing an essential role in other data mining tasks like association rule mining, classification, clustering and prediction [1, 8, 34]. Frequent itemsets were discovered in transactional data, in which each transaction is the set of items purchased by a customer [2]. A frequent itemset is a set of items that occurs at least in the minimum number of transactions. To prune the search space of frequent itemsets, a property named downward closure property (i.e., all supersets of a non-frequent itemset are non-frequent itemsets) is used.

In collections of more complex objects described by numerical and not numerical features (e.g., electronic medical records [19], crime databases [40], sociological databases [23] and educational data [43]) also frequent

Authors' addresses: Ansel Y. Rodríguez-González, ansel@cicese.edu.mx, Unidad de Transferencia Tecnológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Tepic, Andador 10, 109, Nayarit, México, 63173; Ramón Aranda, arac@cimat.mx, Centro de Investigación en Matemáticas, A.C., Unidad Mérida, Mérida, PCTY, Yucatán, México, 97302; Miguel Á. Álvarez-Carmona, miguel.alvarez@ cimat.mx, Centro de Investigación en Matemáticas, A.C., Unidad Monterrey, Apodaca, Alianza Centro 502, Nuevo León, México, 66629; Angel Díaz-Pacheco, angel.diaz@ugto.mx, Universidad de Guanajuato, División de Ingenierías, Campus Irapuato-Salamanca, Salamanca, Carretera Salamanca - Valle de Santiago km $3.5+1.8$, Guanajuato, México, 36885; Rosa María Valdovinos Rosas, rvaldovinosr@uaemex.mx, Facultad de Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo, Instituto Literario 100, México, 50000.

[^0]patterns were mined in the subsequent years. However, commonly in a data preprocessing step, new features are created from the existing ones, conversing each numerical feature into several nominal features. Then an itemset mining algorithm is applied.

While the classical approach of frequent pattern mining counts object sub-descriptions using exact matching, other similarity functions $[7,35,36,38]$ to compare objects are widespread in soft and hard sciences. For example, in geology [15], medicine [4, 22] and sociology [31], two instances or objects can be considered similar, even if they are not identical. In these problems, the similarity is used to compare object sub-descriptions, count how many times an object sub-description appears in an object collection, and make decisions. From this fact, [9] proposed complex mining objects (described by numerical and not numerical features) using comparison criteria for each feature and a similarity function over the object sub-descriptions. Later [26] formalizes these preliminary ideas, extending the concept of downward closure property to the use of similarity functions, linking it to properties of similarity functions, and defining the frequent similar pattern mining (FSP mining) problem.

A frequent similar pattern is a combination of feature values of the study objects, such that the similarity accumulation of its similar patterns is not less than a user-specified frequency threshold. The FSP mining problem discovers all FSP from an object description collection, given a user-specified frequency threshold and a similarity function.

The frequent similar pattern mining approach allows found frequent patterns hidden for the classical approach. Several algorithms have been proposed to mine FSPs: ObjectMiner [9], STreeDC-Miner [26, 29], STreeNDCMiner [26, 29], RP-Miner [28], CFSP-Miner [25], STree ${ }^{*}$ DC-Miner [27, 30], STree* NDC-Miner [30] and RP*Miner [30]. Also, [29] shown that in tasks like classification, the accuracy using the FSP is higher than the accuracy using the frequent patterns obtained by the classical approach.
Developing more efficient algorithms is a research issue for both the classical and FSP mining approaches. However, the use of similarity functions by the FSP mining approach carries more computational effort, which requires additional attention.

This paper focuses on FSP mining using Boolean and non-increasing monotonic similarity functions. The main contributions are i) a novel data structure, named $F V$-Tree, to condense an object description collection; ii) a novel algorithm for mine all FSP that use FV-Tree, named X-FSPMiner. The experimental results show that the proposed algorithm (X-FSPMiner) is faster than the state-of-the-art algorithms for mine all FSP using Boolean and non-increasing monotonic similarity functions.

The outline of this paper is as follows. In Section 2 related work is reviewed. Section 3 provides the basic concepts and notation of FSP mining. In Section 4 the FV-Tree data structure and the X-FSPMiner algorithm for mining frequent similar patterns is proposed. Section 5 presents the experimental results and discussion, and finally, in Section 6 some conclusions and future work are discussed.

2 RELATED WORK

Two related approaches for frequent pattern mining can be distinguished in the literature: the classical frequent pattern mining, which uses exact matching, and the frequent pattern mining, based on the similarity. In this section, the main studies about them are included.

2.1 Frequent Pattern Mining

The first work-related to frequent mining itemset was proposed by Agrawal et al. [2]. After that work, many methods have been proposed, and in general, those methods can be mainly classified into two groups: Apriori-like and Frequency Pattern growth ($F P$-growth) like methods [6]. Apriori-like methods are based on the anti-monotony principle [20]. Thus, these methods generate candidate itemsets of length $p+1$ from frequent itemsets of length
p by scanning the database iteratively. [3, 32, 33, 41, 42]. Some disadvantages of these methods are that they need to scan the database many times and generate a large set of candidates [17].

Differently to Apriori-like methods, $F P$-growth-like methods, instead of generating candidate itemsets, use strategies to recursively search frequent local patterns by dividing the dataset into sub-datasets. Then, the frequent local patterns are assembled into more extended global frequent patterns. Thus, $F P$-growth-like methods reduce search space and generate frequent itemsets without candidate generation. Some of those methods are based on $F P$-Tree to encode the dataset, and then they extract the frequent itemsets from the tree [16, 18, 21, 24]. A FP-Tree is represented by a frequent-item header table and prefix subtrees where each node consists of three fields: item-name (item this node represents), count (number of transactions obtained in the path portion reaching this node), and the node-link (links to the next node in the FP-Tree with the same item-name). FP-Tree has shown to be a highly condensed data structure for storing the database. However, it has been observed that the generation and use of the $F P$-Trees can be complex and inefficient in sparse dataset [39].
To overcome mentioned disadvantages, other $F P$-growth-like methods adopt a prefix tree structure called Pre-Post Code tree (PPC-Tree) to store the dataset [5, 10-13, 37]. Each node in the PPC-Tree includes 5 fields: item-name (item this node represents), count (number of transactions obtained in the portion of the path reaching this node), children-list (it registers all children of the node), pre-order (pre-order traversal code), and post-order (post-order traversal code). Note that although FP-Tree and PPC-Tree have similar structures, their main difference is that PPC-Tree does not handle a header table, which makes it simpler than FP-Tree.

Inspired by the FP-Tree and the PPC-Tree, one of this work's main contributions is the proposal of a novel data structure for frequent similar pattern mining, named FV-Tree. This novel structure is described in detail in section 4.

2.2 Frequent Similar Pattern Mining

In the literature, there are several algorithms for mining FSP, which can be classified in a two-dimensional space taking into account the image and the monotony of the similarity functions allowed (See figure 1).

The image of similarity functions can be Boolean (in $\{0,1\}, 1$ means that objects compared are similar and 0 means the opposed) or non-Boolean (in [0,1], where the closer the similarity is to 1 , the more similar are the objects compared). The monotony of similarity functions can be non increasing or increasing. A similarity function is non-increasing monotonic if and only if, for any pair of an object, the similarity regarding a set of features is greater than or equal to the similarity regarding any superset of features. The non-increasing monotony of a similarity function is relevant property because it implies that all super-descriptions of a non-FSP are also non FSPs. This property, known as f_{S}-downward closure property, allows pruning the search space of FSPs [29, 30].

This work aims to improve the efficiency of mining all FSPs using Boolean and non-increasing monotonic similarity functions. The state-of-the-art algorithms for this kind of similarity function are ObjectMiner, STreeDCMiner and CFSP-Miner. However, CFSP-Miner does not mine all the FSPs, only a subset of them. Therefore, in the rest of the work, we only focus on ObjectMiner and STreeDC-Miner.

ObjectMiner [9] was the first algorithm for FSP mining. It was inspired on the Apriori algorithm [3]. The algorithm starts identifying all FSPs with only one feature, next following a breadth-first search strategy, for each iteration, k (starting with $k=2$), a set of candidates to FSPs with k features is obtained. For that, pairs of FSPs with $k-1$ features are merged to obtain FSPs with $k-2$ features values exactly equal. For each P candidate to FSP obtained by merging a pair (P_{1}, P_{2}) of FSP, a set of candidate objects that contains a sub-description similar to P is obtained. The frequency of each candidate to FSP is computed, iterating only over its set of candidate objects to contain similar sub-descriptions and using the similarity function. If the frequency is greater than the minimum frequency threshold, then the candidate to FSP is an FSP. ObjectMiner finishes when an iteration k

Fig. 1. Frequent similar pattern mining algorithms
does not produce any FSP with k features. The main weakness of ObjectMiner is their high computational cost for the FSP mining process and the storage cost of the repetitions of the FSP sub-descriptions.

STreeDC-Miner [29] solved the main weakness of ObjectMiner storing the sub-descriptions of objects into groups of equals sub-descriptions. Consequently, never two equals sub-description are compared, and never repetitions of different sub-descriptions are compared. To do this, STreeDC-Miner introduces a tree structure called STree. For each set of features A, each leaf of the associated tree structure $S T r e e_{A}$ represents a sub-description concerning the set of features A and stores all its repetitions and the similarities with other sub-descriptions (other leaves). The branches of the $S T r e e_{A}$ contain the common prefixes of the stored sub-descriptions. STreeDC-Miner sets an explicit definition of a total order over the feature set. From each set of only one feature A, and following a depth-first search strategy, a recursive procedure adds to A in each call, a new feature greater than the features in A. Also, in each call, a tree structure $S T r e e_{A}$ is built, the frequency of the sub-descriptions in $S T r e e_{A}$ is computed, and the FSPs are obtained. If the current set of features A contains only one feature, $S T r e e_{A}$ is built from the dataset. Otherwise, $S T r e e_{A}$ is built from the tree structure built in the previous recursive call. The recursive procedure's base case is produced when there are no frequent similar patterns for the set of feature A or no feature to add. In the STree building process, the similarity between two sub-descriptions is only computed if their sub-descriptions in the tree structure built in the previous recursive call are similar, and almost one of them is an FSP. Consequently, the number of similarity function evaluations is reduced, and the computational effort to compute the frequency of each sub-description is reduced. Thus, the behavior of the STreeDC-Miner surpassed the behavior of the ObjectMiner. However, the successive creation (and destruction) of tree structures, one tree structure for each feature set, is time-consuming.

To address the weakness of the STreeDC-Miner, in this work, we propose a single tree structure to condense the dataset and a novel FSP mining algorithm that uses it.

3 BASIC CONCEPTS AND NOTATION

This section provides the basic concepts and notation of FSP mining used in the rest of the work. We follow the notations and definitions reported in [29].

Let $\Omega=\left\{O_{1}, O_{2}, \ldots, O_{n}\right\}$ be an object collection. Each object O_{i} is described by a set of feature $R=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ and represented as a tuple $\left(v_{1}, v_{2}, \ldots, v_{m}\right)$, where $v_{j} \in D_{j}\left(D_{j}\right.$ is the domain of the feature $\left.r_{j}, 1 \leq j \leq m\right)$. A subdescription of an object O for a subset of features $S \subseteq R$ denoted by $I_{S}(O)$, is the description of O in terms of the features in S; $O[r]$ denotes the value of the feature $r \in R$ of O.

Also, $f_{S}: \Omega \times \Omega \rightarrow\{0,1\}$ is a Boolean similarity function to compare two object descriptions regarding a set o features S. Given two subdescriptions $I_{S}(O), I_{S}\left(O^{\prime}\right)$, with $O, O^{\prime} \in \Omega, f_{S}\left(O, O^{\prime}\right)=1$ means that O is similar to O^{\prime} with respect to S and $f_{S}\left(O, O^{\prime}\right)=0$ means that O is not similar to O^{\prime} with respect to S. Two examples of Boolean similarity functions $[26,28,29]$ used in the FSP mining approach are:

$$
\begin{align*}
& f_{S}\left(O, O^{\prime}\right)=\left\{\begin{array}{l}
1 \text { if } \forall r \in S, C_{r}\left(O[r], O^{\prime}[r]\right)=1 \\
0 \text { otherwise }
\end{array}\right. \tag{1}\\
& f_{S}\left(O, O^{\prime}\right)=\left\{\begin{array}{l}
1 \text { if } \frac{\left|\left\{r \in S \mid C_{r}\left(O[r], O^{\prime}[r]\right)=1\right\}\right|}{|S|} \geq k \\
0 \text { otherwise }
\end{array}\right. \tag{2}
\end{align*}
$$

where $C_{r}: D_{r} \times D_{r} \rightarrow\{0,1\}$ is a comparison function between values of feature r, and $k \in[0,1]$. Although other comparison criteria can be used, the next two are the most commonly used on related works:

$$
\begin{gather*}
C_{r}(x, y)=\left\{\begin{array}{l}
1 \text { if } x=y \\
0 \text { otherwise }
\end{array}\right. \tag{3}\\
C_{r}(x, y)=\left\{\begin{array}{l}
1 \text { if }|x-y| \leq \varepsilon \\
0 \text { otherwise }
\end{array}\right. \tag{4}
\end{gather*}
$$

Equation (3) compares non numerical features values and equation (4) compares numerical features values.
Now, the frequency of $I_{S}(O)$ in Ω for f_{S} is defined as:

$$
\begin{equation*}
\operatorname{freq}_{f_{S}, \Omega}(O)=\frac{\left|\left\{O^{\prime} \in \Omega: f_{S}\left(O, O^{\prime}\right)=1\right\}\right|}{|\Omega|} \tag{5}
\end{equation*}
$$

Using this frequency definition, $I_{S}(O)$ is a f_{S}-frequent subdescription (a frequent similar pattern) in Ω if freq $_{f_{s, \Omega}}(O) \geq$ minFreq, where minFreq is a given minimum frequency threshold. Consequently, the frequent similar pattern mining problem consists in finding all frequent similar patterns in Ω.

Analogously to the frequent itemset mining, where downward closure property was defined and used to prune the search space, for similar frequent pattern mining, a downward class property was also defined [29]:

Property 1 (f_{S}-downward closure). Given a dataset Ω, and a Boolean similarity function f_{S}; f_{S} fulfills the f_{S}-downward closure if and only if (iff) $\forall O, S_{1}, S_{2} ; O \in \Omega ; \emptyset \neq S_{1} \subseteq S_{2} \subseteq R\left[f_{S_{1}} f r e q(O)<\right.$ minFreq $] \Rightarrow$ [$f_{S_{2}}$ freq $(O)<$ minFreq].

However, unlike the downward closure property for frequent itemset mining, property 1 is not always true. Its fulfillment depends on whether the frequency and the similarity function are monotonic. The monotony of the frequency and the monotonic similarity function are defined below:

Property 2 (Monotony of the frequency). Given a dataset Ω and a Boolean similarity function $f_{S} ; f_{S}$ fulfills the monotony of the frequency iff $\forall O, S_{1}, S_{2} ; O \in \Omega\left[\emptyset \neq S_{1} \subseteq S_{2} \subseteq R\right] \Rightarrow\left[f_{S_{1}} f r e q(O) \geq f_{S_{2}} f r e q(O)\right]$.

Definition 1 (Monotonic similarity function). Given a dataset Ω and a Boolean similarity function f_{S}; f_{S} is non increasing monotonic iff $\forall O, O^{\prime}, S_{1}, S_{2} ; O, O^{\prime} \in \Omega,\left[\emptyset \neq S_{1} \subseteq S_{2} \subseteq R\right] \Rightarrow\left[f_{S_{1}}\left(O, O^{\prime}\right) \geq f_{S_{2}}\left(O, O^{\prime}\right)\right]$.

The relationship between the monotony of the function, the monotony of the frequency and the f_{S}-downward closure property, shown in the following propositions 1, 2 and 3, was proofed in [29]:

Proposition 1. If f_{S} is a non increasing monotonic similarity function, then f_{S} fulfills the monotony of the frequency.

Proposition 2. If f_{S} fulfills the monotony of the frequency, then f_{S} fulfills the f_{S}-downward closure.
Proposition 3. If f_{S} is a non increasing monotonic similarity function, then f_{S} satisfies the f_{S}-downward closure
For example, the similarity function (1) is a non-increasing monotonic similarity function; then it satisfies the f_{S}-downward closure. While the similarity function (2) is not a non-increasing monotonic similarity function, then it does not satisfy the f_{S}-downward closure.

A concept used for pruning the search space of FSPs is:
Definition 2 ($f_{S}-$ NON PrUnAble pattern). Given a dataset Ω and a Boolean similarity function f_{S}; a subdescription $I_{S}(O), O \in \Omega$ is an f_{S}-non-prunable pattern iff $I_{S}(O)$ is a frequent similar pattern or $I_{S}(O)$ is similar to another frequent similar pattern.

In contraposition, a subdescription $I_{S}(O), O \in \Omega$ is an f_{S}-prunable pattern iff $I_{S}(O)$ is not a frequent similar pattern and $I_{S}(O)$ is not similar to any frequent similar pattern.

It is important to note that, when a subdescription $I_{S}(O)$ is similar to another subdescription $I_{S}\left(O^{\prime}\right)$ then $I_{S}(O)$ contributes with its repetitions in Ω to the frequency of $I_{S}\left(O^{\prime}\right)$ (see equation (5)).

The following proposition, proofed in [29], allows pruning the search space by removing the subspace that contains all super descriptions of prunable patterns, without suppressing contributions to the frequency of FSPs and then without losing FSPs.

Proposition 4. Given a dataset Ω and a non increasing monotonic Boolean similarity function f_{S}; if a subdescription $I_{S}(O)$ is a f_{S}-prunable pattern, then all superdescriptions of $I_{S}(O)$ are f_{S}-prunable patterns

This paper focuses on mining all FSP using Boolean and non-increasing monotonic similarity functions. The f_{S}-downward closure and the Proposition 4 are used by our proposed algorithm, introduced in the next section.

4 X-FSPMINER

The algorithm proposed in this paper, named X-FSPMiner (Algorithm 1), consists of three general blocks: i) global variables initialization, i.e., feature value frequencies, similarities, and rank (lines 1 to 8); ii) build a novel condensed tree structure, named $F V$-Tree that store the object description collection (lines 9 to 12); iii) obtain the FSPs of only feature (1-FSPs) and mining all the frequent similar patterns from the 1-FSPs using the FV-Tree structure (lines 13 to 30). Details of each block are presented in the following sections.

4.1 Initialization block

Initialization block (Algorithm 1, lines 1 to 8) scans the object description collection in order to set and to compute the following global variables used by the subsequent blocks:

- $D_{r_{i}}^{\prime}$: Set of values in the domain of the feature $r_{i}\left(D_{r_{i}}\right), 1 \leq i \leq|R|$ that occurs in the dataset $\Omega . D_{r_{i}}^{\prime} \subseteq D_{r_{i}}$, such that, $v \in D_{r_{i}}^{\prime}$ iff $\exists O \in \Omega$, and $O\left[r_{i}\right]=v$.

Example 1. Given the object collection $\Omega=\left\{O_{1}, \ldots, O_{10}\right\}$, described by a set of features $R=\left\{r_{1}, r_{2}, r_{3}\right\}$, such that O_{1}, \ldots, O_{10} are defined as follows:

```
Algorithm 1: X-FSPMiner( \(\Omega, f_{S}, C\), minFreq)
    Input: \(\Omega\) - Object collection,
        \(f_{S}\) - Similarity function,
        \(C\) - Comparison criteria,
        minFreq-Minimum frequency threshold
    Output: \(F\) - FSP set
    // *********************************************
    // * Block 1: global variables initialization
    // *********************************************
\(1 D^{\prime} \leftarrow \operatorname{initD}^{\prime}(\Omega)\)
occByFV \(\leftarrow\) initOccByFV \(\left(D^{\prime}\right)\)
simsByFV \(\leftarrow \operatorname{initSimsByFV}\left(D^{\prime}, C\right)\)
4 simOccByFV \(\leftarrow\) initSimOccByFV (occByFV, simsByFV)
5 nonPrunableFV \(\leftarrow\) initNonPrunableFV(simOccByFV, minFreq)
6 rankByFV \(\leftarrow\) initRankByFV (nonPrunableFV, occByFV)
7 featureFromId \(\leftarrow\) initFeatureFromId \((\operatorname{rankByFV})\)
s valueFromId \(\leftarrow\) initValueFromId \((\operatorname{rankByFV})\)
    // *********************************************
    // * Block 2: build the tree structure
    // *********************************************
FV-Tree \(\leftarrow\) empty FV-Tree
    foreach \(O \in \Omega\) do
        \(F V\)-Tree.addObject \((O, \operatorname{rankByFV})\)
FV-Tree.updateNodeLinks()
    // ********************************************
    // * Block 3: mining the FSPs
    // *********************************************
    \(F \leftarrow \emptyset\)
    minOcc \(\leftarrow\) minFreq \(*|\Omega|\)
    nonPPs \(\leftarrow\) build1NonPPs(nonPrunableFV, rankByFV, occByFV, simsByFV, FV-Tree)
    foreach \(P \in\) nonPPs do
        if P.occ + P.similarOcc \(\geq \operatorname{minOcc}\) then
            \(F \cdot \operatorname{add}(P)\)
    occs \(\leftarrow\) empty array of size \(\mid F V\)-Tree.nodeLinks \(\mid\)
    \(n P s \leftarrow\) empty array of size \(|n o n P r u n a b l e F V|\)
    while \(n o n P P s \neq \emptyset\) do
        \(x P s \leftarrow \emptyset\)
        foreach \(P \in\) nonPPs do
            addExpandedPsFrom \((P, x P s\), occs, \(n P s, F V\)-Tree \()\)
        foreach \(P \in x P s\) do
            updateSimilarsAndFrequencyOf( \(P\), featureFromId, valueFromId, \(f_{S}, C\) )
            if P.occ + P.similarOcc \(\geq\) minOcc then
                \(F \cdot \operatorname{add}(P)\)
        nonPPs \(\leftarrow \operatorname{getNonPPsFrom}(x P s, \operatorname{minOcc})\)
    return \(F\)
```

$$
\begin{array}{ll}
O_{1} & =(1,10,100) \\
O_{2} & =(2,20,200) \\
O_{3} & =(2,20,100) \\
O_{4} & =(2,10,100) \\
O_{5} & =(3,30,300) \\
O_{6} & =(4,40,400) \\
O_{7} & =(6,60,500) \\
O_{8} & =(6,50,500) \\
O_{9} & =(5,50,500) \\
O_{10} & =(6,60,600)
\end{array}
$$

Then,

$$
\begin{aligned}
& D_{r_{1}}^{\prime}=\{r r r r r r \\
& D_{r_{2}}^{\prime}=\left\{\begin{array}{rrrrr}
& 1, & 2, & 3, & 4, \\
D_{r_{3}}=\{ & 20, & 30, & 40, & 60, \\
D_{10}^{\prime} & 100, & 200, & 300, & 400, \\
500, & 600\}
\end{array}\right.
\end{aligned}
$$

We put value 6 before value 5 in $D_{r_{1}}^{\prime}$ and value 60 before value 50 in $D_{r_{2}}^{\prime}$ in order to note that values 6 and 60 appears first in Omega.
The position of the values in each $D_{r_{i}}^{\prime}$ is used in the following global variables definitions.

- occByFV[i,j]: the occurrences of each feature value pair $\left(r_{i}, v_{j}\right), 1 \leq i \leq|R|, 1 \leq j \leq\left|D_{r_{i}}^{\prime}\right|$.

Example 2. Given the object collection Ω and each $D_{r_{i}}^{\prime}$ defined on example 1:

$$
o c c B y F V=\left(\begin{array}{llllll}
1 & 3 & 1 & 1 & 3 & 1 \\
2 & 2 & 1 & 1 & 2 & 2 \\
3 & 1 & 1 & 1 & 3 & 1
\end{array}\right)
$$

Note that, value 6 of feature r_{1}, is the 5 th value in $D_{r_{1}}^{\prime}$. Then the occurrences of the value 6 is occByFV $[1,5]=3$.

- $\operatorname{simsByFV}[i, j]$: the set of features values similar to v_{j} given a similarity function f_{S}, excluding itself, of each feature r_{i}, such that $1 \leq i \leq|R|, 1 \leq j \leq\left|D_{r_{i}}^{\prime}\right|$.
Example 3. Given the object collection Ω, and each $D_{r_{i}}^{\prime}$ defined on example 1, the Boolean similarity function f_{S} defined on eq. (1) and the following explicit definitions of the comparison criteria $C_{r_{1}}, C_{r_{2}}$ and $C_{r_{3}}$:

$C_{r_{1}}(x, y)$	1	2	3	4	5	6
1	1	1	0	0	0	1
2	1	1	1	0	0	0
3	0	1	1	1	0	0
4	0	0	1	1	1	0
5	0	0	0	1	1	1
6	1	0	0	0	1	1

$C_{r_{2}}(x, y)$	10	20	30	40	50	60
10	1	1	0	0	0	1
20	1	1	1	0	0	0
30	0	1	1	1	0	0
40	0	0	1	1	1	0
50	0	0	0	1	1	1
60	1	0	0	0	1	1

$C_{r_{3}}(x, y)$	100	200	300	400	500	600
100	1	1	0	0	0	1
200	1	1	1	0	0	0
300	0	1	1	1	0	0
400	0	0	1	1	1	0
500	0	0	0	1	1	1
600	1	0	0	0	1	1

Then,

$$
\begin{aligned}
& \operatorname{simsByFV}= \\
& \left(\begin{array}{cccccc}
\{2,5\} & \{1,3\} & \{2,4\} & \{3,6\} & \{1,6\} & \{4,5\} \\
\{2,5\} & \{1,3\} & \{2,4\} & \{3,6\} & \{1,6\} & \{4,5\} \\
\{2,6\} & \{1,3\} & \{2,4\} & \{3,5\} & \{4,6\} & \{1,5\}
\end{array}\right)
\end{aligned}
$$

Note that, for each feature value pair $\left(r_{i}, v_{j}\right)$, simsByFV $[i, j]$ stores the positions in $D_{r_{i}}^{\prime}$ of the features values similar to v_{j}. For example, the feature value 10 which is represented by the pair $\left(r_{2}, v_{1}\right)$ is similar to the feature values 20 and 60 , which are represented by the pairs $\left(r_{2}, v_{2}\right)$ and $\left(r_{2}, v_{5}\right)$ respectively. Then simsByFV $[2,1]=$ $\{2,5\}$.

- $\operatorname{simOccByFV}[i, j]$: the occurrences, using the similarity function, of each feature value pair $\left(r_{i}, v_{j}\right), 1 \leq i \leq$ $|R|, 1 \leq j \leq\left|D_{r_{i}}^{\prime}\right| . \operatorname{simOccByFV[i,j]\text {iscomputedefficientlyfromoccByFVandsimsByFVaccumulating}}$ the occurrences of $v_{j}(o c c B y F V[i, j])$ and the occurrences of each v_{l} similar to v_{j} (occByFV[i,l] such that $\left.v_{l} \in \operatorname{simsByFV}[i, j]\right)$.

Example 4. Given the object collection Ω, the similarity function f_{s}, each $D_{r_{i}}^{\prime}$, the occByFV and the simsByFV defined or resulted on examples 1, 2 and 3:

$$
\operatorname{simOccByFV}=\left(\begin{array}{llllll}
7 & 5 & 5 & 3 & 5 & 5 \\
6 & 5 & 4 & 4 & 6 & 5 \\
5 & 5 & 3 & 5 & 5 & 7
\end{array}\right)
$$

Note that the occurrences, using the similarity function, of the feature value 10 (represented by the pair $\left(r_{2}, v_{1}\right)$) is:

$$
\operatorname{simOccByFV}[2,1]=\sum_{l \in \operatorname{simsByFV}[2,1]}^{o c c B y F V[2,1]+} \operatorname{occByFV[2,l]}
$$

Variable l takes values 2 and 5, which represent the feature values 20 and 60 of r_{2} similar to the feature value 10. Then,

$$
\begin{aligned}
\operatorname{simOccByFV}[2,1]= & \operatorname{occByFV[2,1]+} \begin{aligned}
& \operatorname{occByFV}[2,2]+ \\
& \operatorname{occByFV[2,5]} \\
= & 2+2+2 \\
= & 6
\end{aligned}
\end{aligned}
$$

- nonPrunableFV: Set of feature value pairs, such that, each feature value pair $\left(r_{i}, v_{j}\right), 1 \leq i \leq|R|, 1 \leq j \leq$ $\left|D_{r_{i}}^{\prime}\right|$, is a non prunable pattern (i.e. it is a FSPs or similar to an FSPs).

Example 5. Given the object collection Ω, the similarity function f_{s}, each $D_{r_{i}}^{\prime}$, the simsByFV and the simOccByFV defined or resulted on examples 1, 3 and 4. Also, given a frequency threshold minFreq $=0.6$:

$$
\text { nonPrunableFV }=\left\{\begin{array}{l}
(1,1),(1,2),(1,5), \\
(2,1),(2,2),(2,5),(2,6), \\
(3,1),(3,5),(3,6)
\end{array}\right\}
$$

Taking into account that the number of objects in Ω is 10, a pattern is considered and FSP for minFreq $=0.6$ iff its occurrences, using the similarity function is greater than or equals to 6 . Consequently only the features values 1 (represented by the pair $\left(r_{1}, v_{1}\right)$), 10 (represented by the pair $\left(r_{2}, v_{1}\right)$), 60 (represented by the pair $\left.\left(r_{2}, v_{5}\right)\right)$ and 600 (represented by the pair $\left(r_{3}, v_{6}\right)$) are FSPs.
However, the set of non prunable pattern include both, the FSPs and the patterns similar to an FSPs. Then the features values: 2 (represented by the pair $\left(r_{1}, v_{2}\right)$), 6 (represented by the pair $\left(r_{1}, v_{5}\right)$), 20 (represented by the pair $\left(r_{2}, v_{2}\right)$), 50 (represented by the pair $\left(r_{2}, v_{6}\right)$), 100 (represented by the pair $\left(r_{3}, v_{1}\right)$) and 600 (represented by the pair $\left.\left(r_{3}, v_{5}\right)\right)$ also are non prunable patterns.

- $\operatorname{rankByFV}[i, j]$: the rank position of each feature value pair $\left(r_{i}, v_{j}\right)$, such that the pair $(i, j) \in$ nonPrunable $F V$, $1 \leq \operatorname{rankByFV}[i, j] \leq|n o n P r u n a b l e F V|$. if $(i, j) \notin$ nonPrunableFV, RankByFV$[i, j]=\emptyset$. The rank position of a feature value pair $\left(r_{i}, v_{j}\right)$ is used as its id.
We obtain the rank positions in two steps:
(1) The non-prunable feature value pairs are ranked utilizing the occurrences from occByFV. The feature value pair with more occurrences is the first in the rank. If two feature value pairs have the same occurrences, the feature value pair with a less feature index is first in the rank. If there is still a tie (both feature value pairs have the same feature index), the feature value pair with a lower index is first in the rank.
(2) The features are sorted by the sum of the rank position of its feature values. Then, the non-prunable feature value pairs are ranked again, considering the feature order first. Feature value pairs of the same feature are ranked utilizing the rank established in step 1.
Considering only the feature values that are non-prunable patterns (i.e., are non-1-FSPs and are not similar to 1-FSPs), reduce the search space of FSPs (i.e., to reduce the number of possible combinations of feature values). Consequently, the values of the features that are prunable patterns are no longer used in successive steps of the proposed algorithm.

Example 6. Given the object collection Ω, each $D_{r_{i}}^{\prime}$, the occByFV and the nonPrunableFV defined or resulted on examples 1, 2, and 5. A rank position of each feature value pair $\left(r_{i}, v_{j}\right)$ after step 1 is:

$$
\operatorname{rankByFV}=\left(\begin{array}{rrrrrr}
9 & 1 & 0 & 0 & 2 & 0 \\
5 & 6 & 0 & 0 & 7 & 8 \\
3 & \emptyset & \emptyset & 0 & 4 & 10
\end{array}\right)
$$

Due sum by row (feature) is 12 for $r_{1}, 26$ for r_{2} and 17 for r_{3}, the feature order is r_{1}, r_{3}, r_{2}. Then the rank position of each feature value pair $\left(r_{i}, v_{j}\right)$ after step 2 is:

$$
\operatorname{rankByFV}=\left(\begin{array}{rrrrrr}
3 & 1 & \emptyset & 0 & 2 & \emptyset \\
7 & 8 & \emptyset & 0 & 9 & 10 \\
4 & \emptyset & \emptyset & \emptyset & 5 & 6
\end{array}\right)
$$

- featureFromId $[i d]$: the feature index i of the feature value pair $\left(r_{i}, v_{j}\right)$, such that, $\operatorname{rankByFV}[i, j]=i d$.
- valueFromId $[i d]$: the value index j of the feature value pair $\left(r_{i}, v_{j}\right)$, such that, $\operatorname{rankByFV}[i, j]=i d$. featureFromId and valueFromId are used to decode a feature value id into a feature value pair.
Example 7. Given the object collection Ω, the nonPrunableFV and the rankByFV defined or resulted on examples 1, 5 and 6 :

> featureFromId $=$
> $\left(\begin{array}{cccccccccc}1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3\end{array}\right)$
and,

```
valueFromId \(=\)
\(\left(\begin{array}{llllllllll}2 & 5 & 1 & 1 & 5 & 6 & 1 & 2 & 5 & 6\end{array}\right)\)
```

Note that in the example the non prunable feature value 60 (represented by the pair $\left(r_{2}, v_{5}\right)$) has 9 as id (rankByFV[2,5] = 9). But also a decode operation can be done from the id 9, using featureFromId[9] and valueFromId[9] to obtain 2 as feature index and 5 as value index.

4.2 Build the tree structure

To condense a collection Ω of objects described by numerical and non-numerical features and to compute the frequency of the FSPs, we propose the FV-Tree structure, which is used by our novel algorithm X-FSPMiner (Algorithm 1).
$F V$-Tree is a tree structure in which each branch from the root to a leaf represents an object $O \in \Omega$. Each node ($F V$-Node) in a branch (except the root node) represents a feature value $O\left[r_{i}\right]=\left(r_{i}, v_{j}\right), 1 \leq i \leq|R|, 1 \leq j \leq\left|D_{r_{i}}^{\prime}\right|$, $(i, j) \in$ nonPrunable $F V$. Only non prunable feature values are considered and objects with one o more prunable feature values are represented in a branch from the root but not necessarily to a leaf.

Each FV-Node contains:

- $f v I d$: Identifier of the feature value. $f v I d=\operatorname{rankByFV}[i, j]$.
- occ: Number of occurrences in Ω of the subdescription that contains all ancestor feature values and itself (i.e., all feature values in the branch from the root to itself).
- preCode : Pre-order of the FV-Node in the FV-Tree.
- parent: link to the parent FV-Node in the FV-Tree.
- children: Set of links to the children FV-Nodes in the FV-Tree.

To quickly know if an $F V$-Node is a child, and to quickly access it, we use a Self-balancing binary search tree (SBBST) as the set of children. The fvId of each $F V$-Node child is used as the key of the nodes of the SBBST.

The root of an FV-Tree is an special FV-Node, without fvId, occs, preCode, postCode and parent. It only contains children. FV-Tree also includes an array nodesLinks with links to the all the FV-Nodes.
Starting from an empty $F V$-Tree, the special root FV-Node is created. Later, each object $O \in \Omega$ is added to the $F V$-Tree. The method to add an object to the FV-Tree (Procedure FV-Tree.addObject) first puts the ids of the feature values of the object that there are in the rank (i.e., f_{S}-frequent feature values or non f_{S}-frequent feature values similar to an f_{S}-frequent feature value) into the list $f v I d s$ (lines 1 to 5). Also, the list $f v I d s$ is sorted according to the rank (line 6). Besides, an auxiliary FV-Node, auxFVNode, is positioned at the root of the FV-Tree (line 7). auxFVNode is used to move (following the rank order) over the branch containing the object's feature values to add (lines 8 to 19). If there is an $F V$-Node in the branch with the same $f v I d$ that the $i d$ of the corresponding feature value of the object, the occurrences of this $F V$-Node is increased by 1 (lines 9 to 11). Otherwise, a new $F V$-Node, for the corresponding feature value of the object, is created, initialized, and inserted in the branch (lines 12 to 18).

After all objects in Ω are added to the $F V$-Tree, preCode of each $F V$-Node in $F V$-Tree (except for the root $F V$ Node) is set by traversal the FV-Tree in pre-order. Later, the nodesLinks array is created and each nodesLinks[i] is updated with a link to the FV-Node, such that, $F V-$ Node.preCode $=i$.

Example 8. Given the object collection Ω, the nonPrunableFV and the rankByFV defined or resulted on examples 1, 5 and 6.
Figure 2 show the FV-Tree structure after insert each object. FV-nodes are represented by rectangles that contains fvId and occ. Links to parent and children are represented by black arrows and dashed arrows, respectively. Dark gray FV-nodes represent the FV-nodes created or updated at the insertion of the object. The bold occ value indicates

```
Procedure \(F V\)-Tree.addObject \((O\), rankByFV)
    Input: \(O\) - Object \(\in \Omega\),
            rankByFV - Rank by feature value
    fvIds \(\leftarrow\) empty List
    for \(i \leftarrow 1\) to \(|R|\) do
        \(v_{j}=O\left[r_{i}\right]\)
        if \(\exists \operatorname{rankByFV}[i, j]\) then
            fvIds.add(rankByFV[i,j])
    sort(fvids)
    auxFVNode \(\leftarrow\) root FVNode
    foreach id \(\in\) fuIds do
        if auxFVNode.children.contains(id) then
            child \(\leftarrow\) auxFVNode.children.get \((\) id \()\)
            child.occ \(\leftarrow\) child.occ +1
        else
            child \(\leftarrow\) empty \(F V\) Node
            child.fvId \(\leftarrow\) id
            child.parent \(\leftarrow a u x F V N o d e\)
            child.occ \(\leftarrow 1\)
            child.children \(\leftarrow\) empty SBBST
            auxFVNode.children.add(child)
        auxFVNode \(\leftarrow\) child
```

that the associated FV-nodes already existed before the insertion of an object, and then only the occurrence of the node was updated.

After insert into the FV-Tree the 10 objects in Ω, precode is set for each FV-node and the nodeLinks array is created. Figure 3 show the final FV-Tree structure.

4.3 Mining the frequent similar patterns

The general idea for mine all FSPs (Algorithm 1, lines 13 to 30) follows a breadth-first search strategy, which starts from 1-non prunable patterns, i.e., non-prunable patterns with only one feature value (line 15), and the 1-FSPs are extracted (lines 16 to 18). On subsequent steps (lines 19 to 30): expanding the non-prunable patterns by adding 1 -non prunable patterns (lines 22 to 24), computing the frequency of the generated patterns (lines 25 to 26), and The FSPs (lines 27 to 28) and the non-prunable patterns (line 29) are extracted from the set of generated patterns.

The $F V$-Tree structure built on the previous block and a novel structure named $S P$-Node to represent each pattern are used in the expansion process and the computation of the frequency of the generated patterns. $S P$-Node is a structure representing a pattern and includes other relevant information to achieve a fast expansion process and the computation of its frequency. An $S P$-Node contains:

- fvIds: array of the ids of the feature values that compound the pattern. Using the global variables featureFromId and valueFromId can be decoded each id into a feature value pair (r_{i}, v_{j}). fvIds follows the reverse rank order.

Example 9. Given the object collection Ω, the RankByFV and the FV-Tree defined or resulted on examples 1, 6 and 8. The pattern $(10,100)$ in Ω is represent by an $S P-$ Node, such that:

$$
\text { SP-Node.fvIds }=\left(\begin{array}{l}
74
\end{array}\right)
$$

Fig. 2. FV-Tree after insert each object of the collection Ω defined in example 1

Remember that the feature value 100 is represented by the feature value pair $(3,1)$ whose id is RankByFV $[3,1]=$ 4; and the feature value 10 is represented by the feature value pair $(1,1)$ whose id is RankByFV $[1,1]=7$.

- patternSubTrees: array of pairs (preCode, occ). Each preCode represents the FV-Node in FV-Tree, such that, $F V$-Node.fvId $=$ fvIds $[|f v I d s|]$, and the subtree from $F V$-Node contains at least 1 occurrence of the

Fig. 3. Final $F V$-Tree that contains the objects of the collection Ω defined in example 1
pattern. Each occ of a pair (preCode,occ) is the number of occurrences of the patterns in the subtree from FV-Node.

Example 10. From previous example 9:

$$
\text { SP-Node.patternSubTrees }=((2,1)(13,1))
$$

Note that there are only two FV-Nodes in FV-Tree, such that, FV-Node.fvId $=4$ (equal to the last component of the fvIds). These FV-Nodes have preCodes 2 and 13. Also, each one is the root of a subtree that contains at least 1 occurrence of the pattern.

- occ: number of repetitions of the pattern. It is the sum all occurrences from the pairs (preCode,occ) in patternSubTrees.
- similarPatterns: an array of links to the similar patterns represented as SP-Nodes
- similarOcc: number of repetitions of similar patterns, but not the same pattern. Note that $\frac{\text { occ+similar } O c c}{|\Omega|}$ is the frequency of the pattern.
- producer: link to another pattern represented as an $S P$-Node from which the pattern was generated by adding a 1-non prunable pattern.
- expansions: Set of links to patterns represented by $S P$-Nodes produced by adding a 1-non-prunable pattern. To quickly know if an $S P-$ Node is in expansions, but also quickly know if there is at least one $S P-$ Node in expansions with a particular last feature, and to access it quickly, we use a bi-level tree of Self-balancing
binary search tree (SBBST) as the set of expansions. The root is an SBBST that uses as the keys, the feature id of the last feature of each $S P$ - Node in expansions (featureFromId [SP - Node.fvIds[|fvIds|]]). The content of the nodes of the SBBST are SBBSTs that use as the keys the value id of the last feature of each $S P$ - Node in expansions (valueFromId $[S P$ - Node.fvIds $[|f v I d s|]]$). This structure is used to obtain the similarPatterns of the $S P$-Nodes produced by adding a 1-non prunable pattern.
The proposed algorithm (Algorithm 1) delegates the build of the 1-non prunable patterns set to the Function build1NonPPs. It starts creating an empty array nonPP of size |nonPrunableFV| to put the $S P$-Node that represents the 1 non prunable patterns (line 1). In a first Loop (lines 2 to 9), for each feature value pair $(r, v) \in$ nonPrunableFV an $S P$-Node is build and putted in non $P P$, initializing the most of the attributes (fvIds, occ, producer, expansions and patternSubTrees) using the global variables. In a second loop (lines 10 to 16), the $S P$-Nodes built are revisited and the attributes similarOcc and similarPatterns are initialized. Finally (lines 17 to 18), the FV-Tree is traversed to add to the patternSubTrees attribute of the corresponding SP-Nodes the pair (precode, occ) of each FV-Node in FV-Tree by means of the recursive Procedure updatePsSubTrees.

```
    Input: nonPrunableFV - Non prunable feature values,
            rankByFV - Rank by feature value,
            occByFV - Occurrence by feature value,
            simsByFV - Similars by feature value,
            FV-Tree - Tree structure
    Output: nonPPs-1-non prunable patterns set
    nonPPs }\leftarrow\mathrm{ empty array of size |nonPrunableFV|
    for (r,v) \in nonPrunableFV do
        P}\leftarrow\mathrm{ empty SP-Node
        P.fvIds \leftarrow( rankByFV[r,v])
        P.occ \leftarrowoccByFV[r,v]
        P.producer }\leftarrow
        P.expansions }\leftarrow\mathrm{ empty SBBST
        P.patternSubTrees =}\leftarrow
        nonPPs[rankByFV[r,v]]}\leftarrowS
    for (r,v)\in nonPrunableFV do
        P}\leftarrownonPPs[rankByFV[r,v]
        P.similarOcc }\leftarrow
        for sv\in simsByFV[r,v] do
            sP\leftarrownonPPs[rankByFV[r,sv]]
            P.similarPatterns.add(sP)
            P.similarOcc }\leftarrowP.similarOcc +sP.oc
    foreach child }\inFV\mathrm{ -Tree.root do
        updatePsSubTrees(nonPPs, child)
    return nonPPs
```

Function build1NonPPs(nonPrunableFV, rankByFV, occByFV, simsByFV, FV-Tree)

After building the 1-non-prunable patterns, the Algorithm 1 filters the FSPs from nonPP into F (lines 16 to 18). Also, two large arrays (occs and $n P s$) systematically used during the expansion process are initialized to avoid multiple inner initializations (lines 19 and 20). The main loop of the proposed algorithm (Algorithm 1 lines 21 to 29), is executed while there are new non prunable patterns ($n o n P P s \neq \emptyset$). On each iteration, the expansions by adding one more feature value of the currents non-prunable patterns are generated (lines 22 to 24). The expansion

```
Procedure updatePsSubTrees(nonPPs, root)
    Input: root - FV-Node \(\in F V\)-Tree,
        nonPPS - array of \(S P-\) Nodes
    foreach child \(\in\) root.children do
        \(P \leftarrow\) nonPPs[child.fvId]
        P.patternSubTrees.add( (child.preCode, child.occ) )
        updatePsSubTrees(nonPPs, child)
```

of each non-prunable pattern is delegated to the Procedure addExpandedPsFrom. When all expanded patterns ($x P s$) are generated, for each one (lines 25 to 28), the set of links to its similar patterns(similarPatterns), and its number of repetitions of similar patterns similarOcc is updated. Also, each expanded pattern, that is an FSP, is added to F. The update of the similarPatterns and similarOcc attributes of each expanded pattern is delegated to the Procedure updateSimilarsAndFrequencyOf. The last step in an iteration is to filter the non-prunable patterns from the expanded patterns (line 29), which is delegated to the Function getNonPPsFrom, and to substitute the old set of non-prunable patterns (nonPP) by the newest set. Finally, after the main loop, the mined FSP are returned (line 30).

The way to generate the expansions of a pattern (Procedure addExpandedPsFrom) and how to calculate its frequency (Procedure updateSimilarsAndFrequencyOf) are the two critical processes of the proposed algorithm X-FSPMiner that make the difference in terms of execution time respect to the related work algorithms that mine all the FSPs.

The process to generate the expansions of a pattern (Procedure addExpandedPsFrom) follows two main ideas. The first one is that each possible expansion generated is a valid expansion in Ω. That is, to generate directly, without candidate expansions generation and filtering the ones in Ω. The second one is to add only features values that are non-prunable patterns to the pattern. This idea reduces the number of candidates to frequent similar patterns because if the new feature value is a prunable pattern, the expanded pattern will also be. The use of the FV-Tree built on block 2 allows developing both ideas. FV-Tree only contains in its branches patterns that appear in Ω, but also it does not contain prunable features values.

Given a pattern P, Procedure addExpandedPsFrom starts from an empty set (nodeIds) of ids of FV-Nodes (line 1). In a first Loop (lines 2 to 11), the nodes in FV-Tree which represent the root of a subtree that contains at least one occurrence of the pattern P are obtained. The preCode to obtain each node is extracted from the pairs (preCode, occ) \in P.patternSubTrees (line 3). The ancestors of each node are traversed (lines $4-10$). Each ancestor node represents a feature value that, together with the features values of the P, will make up a new valid expanded pattern. Since two o more nodes can have the same ancestor node, an ancestor node represents the root of a subtree that contains exactly the sum of the occurrences of the pattern P in the corresponding subtrees whose root is node, as the occurrences of the pattern expanded pattern. In order to directly identify if an ancestor node was previously visited and to update the occurrences of the expanded pattern that it represents, the occs array is used (lines 7 to 10). Also the preCode of the ancestor nodes visited are added to the set nodeIds (line 11).

From an empty set (fvIds) of ids of features values (line 12), in a second loop (lines 13 to 31), the feature value id ($f v I d$) of each ancestor node (with nId as preCode) is obtained. Two o more ancestor nodes can have the same fVId (i.e., two o more ancestor nodes can represent the same expanded pattern). In order to directly identify if an foId was previously visited and the corresponding expanded pattern was built, the $n P s$ array is used (line 15). If the $f v I d$ was previously visited, the expanded pattern $n P$ is recovered and the id of each ancestor node ($n I d$) and the occurrences of the expanded pattern in the corresponding ancestor node subtree (occs[nid]) are added to the attribute patternSubTrees of the expanded pattern (lines 15 to 18). Otherwise (lines 19 to 31), the

```
Procedure addExpandedPsFrom ( \(P\), \(x P s\), occs, \(n P s, F V\)-Tree \()\)
    Input: \(P\) - a non prunable pattern,
            \(x P s\) - expanded patterns set,
            occs - empty array of size \(\mid F V\)-Tree.nodeLinks \(\mid\),
            \(n P s\) - empty array of size |nonPrunableFV|,
            FV-Tree - Tree structure
    nodeIds \(\leftarrow \emptyset\)
    foreach (preCode, occ) \(\in\) P.patternSubTrees do
        node \(\leftarrow F V\)-Tree.nodeLinks[preCode]
        while node.parent \(\neq F V\)-Tree.root do
            node \(\leftarrow\) node.parent
            \(n I d \leftarrow\) node.preCode
            if \(\exists\) occs \([n I d]\) then
                \(\operatorname{occs}[n I d] \leftarrow o c c s[n I d]+o c c\)
            else
                occs \([n I d] \leftarrow o c c\)
                nodeIds.add(nId)
    fvIds \(\leftarrow \emptyset\)
    foreach \(n I d \in\) nodeIds do
        fvId \(\leftarrow\) nodeLinks \([n I d] . f v I d\)
        if \(\exists n P s[f v I d]\) then
            \(n P \leftarrow n P s[f v I d]\)
            \(n P . o c c \leftarrow n P . o c c+\) occs \([n I d]\)
            \(n P\). patternSubTrees.add( (nId,occs \([n I d]))\)
        else
            \(n P \leftarrow\) empty \(S P-\) Node
            \(n P\).fvIds \(\leftarrow\) empty array of size \(|P . f v I d s|+1\)
            for \(i=1\) to \(\mid P\).fvIds \(\mid\) do
                \(n P . f v I d s[i] \leftarrow P . f v I d s[i]\)
            \(n P . f v I d s[|n P . f v I d s|] \leftarrow f v I d\)
            \(n P . o c c \leftarrow\) occs \([n I d]\)
            \(n P . p r o d u c e r \leftarrow P\)
            P.expansions.add \((n P)\)
            \(n P\).expansions \(\leftarrow\) empty SBBST
            \(n P . p a t t e r n S u b T r e e s ~ \leftarrow\{(n I d\), occs \([n I d])\}\)
            \(n P s[f v I d] \leftarrow n P\)
            \(x P s \cdot a d d(n P)\)
    foreach \(n I d \in\) nodeIds do
        occs \([n I d] \leftarrow \emptyset\)
    foreach \(f v I d \in f v I d s\) do
        \(n P s[f v I d] \leftarrow \emptyset\)
```

expanded pattern is built and the most of its attributes (fvIds, occ, producer, expansions and patternSubTrees) are initialized. Also, the expanded pattern $n P$ is assigned to $n P s[f v I d]$ and added to the set of expanded patterns.

Since few positions of the arrays occs and $n P s$ are used in each call to the algorithm, and they are large arrays, these arrays are not initialized each time but a single time by the caller (i.e., by the X-FSPMiner algorithm).

Consequently, the positions used by the procedure in the arrays occs and $n P s$ are cleared for using it by subsequent procedure calls (lines 32 to 35).

```
Procedure updateSimilarsAndFrequencyOf \(\left(P\right.\), featureFromId, valueFromId, \(\left.f_{S}, C\right)\)
    Input: \(P\) - expanded pattern,
        featureFromId - Array of the feature id for each feature value id,
        valueFromId - Array of the value id for each feature value id,
        \(f_{S}\) - Similarity function,
        \(C\) - Comparison criteria
    similarCandidates \(\leftarrow \emptyset\)
    fvId \(\leftarrow P . f v I d s[|P . f v I d s|]\)
    \(f I d \leftarrow\) featureFromId [fvId]
    vId \(\leftarrow\) valueFromId[fvId]
    foreach prodSP \(\in\) P.producer.similarPatterns do
        if prodSP.expansions \(\neq \emptyset\) then
            \(x P s \leftarrow\) prodSP.expansions.getSubset \((f I d)\)
            foreach \(x P \in x P s\) do
                    \(f v I d x P \leftarrow x P . f v I d s[|x P . f v I d s|]\)
                    \(v I d x P \leftarrow\) valueFromId \([f v I d x P]\)
                    if \(C_{r_{f I d}}\left(v_{v I d}, v_{v I d x P}\right)=1\) then
                similarCandidates.add \((x P)\)
    \(x P s \leftarrow P\).producer.expansions.getSubset \((f I d)\)
    foreach \(x P \in x P s\) do
        \(f v I d x P \leftarrow x P . f v I d s[|x P . f v I d s|]\)
        if \(f v I d x P \neq f v I d\) then
            \(v I d x P \leftarrow\) valueFromId \([\) fvIdx \(P\) ]
            if \(C_{r_{f I d}}\left(v_{v I d}, v_{v I d x P}\right)=1\) then
            similarCandidates.add \((x P)\)
    P.similarOcc \(\leftarrow 0\)
    foreach \(s P \in\) similarCandidates do
        if \(f_{S}(P, s P)=1\) then
            P.similarOcc \(\leftarrow P\).similarOcc + sP.occ
            P.similarPatterns.add (sP)
```

Given a pattern P, the process to update the set of its similar patterns and to calculate its frequency (Procedure updateSimilarsAndFrequencyOf) takes advantage of the following two consequences of the non-increasing monotonic similarity function definition. The first one is that only expansions of patterns similar to the pattern expanded to obtain P can be similar to P. The second one is that only patterns that have similar values of the last features can be similar patterns.

Procedure updateSimilarsAndFrequencyOf starts from an empty set (similarCandidates) of candidate patterns to be similar to P (line 1). Later (lines 2 to 4), the feature value id ($f v I d$), the feature id ($f I d$) and the value id $(v I d)$ of the last feature value of the pattern P is obtained. In a first loop (lines 5 to 12), the expansions of patterns that are similar to the pattern that was expanded to build P and have the last feature similar to the last feature of P are added to the set similarCandidates. Since the attribute, expansions of a pattern is a bi-level tree of the Self-balancing binary search tree, the expanded patterns with the same last feature are efficiently obtained from
each pattern, similar to the pattern that was expanded to build P (line 7). In a second loop (lines 14 to 19), the expansion patterns of the pattern that was expanded to build P have the same last feature that P and their values of the last feature are similar, are added to the set similarCandidates.

In a second loop (lines 14 to 19), the expansion patterns of the pattern that was expanded to build P *and* have the same last feature that P, *with* their values are similar, are added to the set similarCandidates.

Finally (lines 20 to 24), in a third loop, the similarity between P and each candidate patterns to be similar to P is evaluated. Then, patterns similar to P are added to P.similarPatterns and the attribute P.similarOcc is updated.

```
Function getNonPPsFrom \((x P s, \operatorname{minOcc})\)
    Input: \(x P s\) - expanded patterns set,
            minOcc - Minimum occurrence threshold
    Output: nonPPs - non prunable patterns set
    nonPPs \(\leftarrow \emptyset\)
    foreach \(P \in x P s\) do
        if \(P . o c c+P\).similarOcc \(\geq\) minOcc then
            nonPPs.add \((P)\)
        else
            foreach \(s P \in P\).similarPatterns do
                if \(s P\).occ \(+s P\).similarOcc \(\geq\) minOcc then
                        nonPPs.add \((P)\)
                break
    return nonPPs
```

The filtering of the non prunable patterns from the expanded patterns (Function getNonPPsFrom) starts from an empty new non prunable pattern set nonPP (line 1) and simply adds to the expanded patterns that are FSPs (lines 2 to 4) or have a least one similar patterns that is an FSP (lines 5 to 9). The resulted nonPP is returned (line 10).

The exclusion of the prunable patterns saves time consumed to generate expanded patterns that will not be FSP, nor will they contribute to the frequency of the FSP and compute their frequencies. A prune is done without losing possible FSPs.

5 EXPERIMENTS AND RESULTS

In this section, the performance of the proposed algorithm X-FSPMiner is evaluated and compared with the state-of-the-art algorithms that mine all FSPs using Boolean and non-increasing monotonic similarity functions (i.e., ObjectMiner and STreeDC-Miner). Since these algorithms mine the same set of FSPs, the comparison was made in terms of the efficiency of the algorithm measuring their runtimes. The less runtime of an algorithm is, the more efficient the algorithm is.

Table 1 describes the datasets used in the experiment. These datasets proceed from the UC Irvine Machine Learning Repository ${ }^{1}$.

The X-FSPMiner algorithm was implemented in Java. The Java implementations of ObjectMiner and STreeDCMiner provided by their authors were used. The experiment was done on a workstation with an $\operatorname{Intel}(\mathrm{R}) \operatorname{Xeon}(\mathrm{R})$ CPU E5-2603 v3 at 1.60 GHz and 96 Gb of RAM.

[^1]Table 1. Description of datasets.

Datasets	Objects	Non-numerical Features	Numerical Features
Abalone	4177	2	7
Auto MPG	392	3	5
AutoUniv au6	1000	4	36
Balance Scale	576	1	4
Breast Cancer Wisconsin	683	1	9
Liver disorders	345	1	6
Car Evaluation	1728	5	2
Contraceative Method Choice	1473	9	2
Credit Approval	690	9	1
Pima indians diabetes	768	1	7
Glass IIentification	146	1	8
Heart Disease	270	1	9
Indian Liver Patient	579	2	13
Iris	150	2	9
Metadata	528	11	4
Poker Hand	100000	3	4
Teaching Assistant Evaluation	151	1	17
Vehicle Silhouettes	846	1	0
Wine	178		3
			18

Table 2. Number of FSPs by varying the minFreq from 0.02 to 0.20 with step 0.02 for each dataset.

Datasets	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
Abalone	1233035	795360	492615	305439	187624	106475	62088	32168	15542	8724
Auto MPG	17422	7884	4290	2489	1622	1105	853	569	396	250
AutoUniv au6	657525	148507	54242	24580	13162	7313	4359	2837	1839	1369
Balance Scale	342	142	54	46	42	38	30	26	22	10
Breast Cancer Wisconsin	6080	3329	1991	1535	1311	1039	722	466	329	277
Liver disorders	14493	8466	5529	3908	2764	2040	1529	1170	896	703
Car Evaluation	1606	403	303	220	86	44	44	40	36	31
Contraceptive Method Choice	8573	2588	1211	727	475	326	233	185	145	121
Credit Approval	11000118	6623427	4624674	3429405	2678886	2081617	1642501	1306608	1043208	852004
Pima indians diabetes	45392	21941	12474	7974	5181	3483	2580	1938	1415	1094
Glass Identification	75282	50310	36861	27445	20326	15456	11842	8935	6811	5297
Heart Disease	216199	71701	28352	14805	8434	4633	2966	1808	1231	882
Indian Liver Patient	391910	244431	174912	131207	103625	82719	67913	56948	47468	41623
Iris	1905	1011	549	320	207	109	82	54	44	41
Metadata	62535248	60037634	1107573	1107565	307308	307308	149632	149632	138858	89130
Poker Hand	739	288	247	62	62	42	22	22	22	22
Teaching Assistant Evaluation	1840	847	497	330	221	167	113	78	53	35
Vehicle Silhouettes	3360285	499974	158384	69829	34244	18681	10730	6777	5079	3756
Wine	33042	8761	4369	2298	1559	1021	783	566	411	285

For all dataset as a non-Boolean and non-increasing monotonic similarity function, we use the similarity function (1) of section 3. For each numerical feature r, we use the comparison criteria (4) with $\varepsilon=\alpha \times$ ($\max V-$ $\min V$), where $\max V$ is the maximum $v \in D_{r}, \min V$ is the minimum $v \in D_{r}$ and $\alpha=0.05$. In the particular case of numerical features where $\max V-\min V \leq 5$ we use $\alpha=0.20$. For non-numerical features, we use the equality (3) as comparison criteria.
The experiment carried out consisted on the execution of the proposed algorithm X-FSPMiner and the state-of-the-art algorithms ObjectMiner and STreeDC-Miner by varying the minFreq from 0.02 to 0.20 with step size of 0.02 for each dataset. In each execution of an algorithm, the number of FSPs mined and the runtime was measured ${ }^{2}$.

The compared algorithms, including the proposed X-FSPMiner algorithm, mine the same FSPs (the set of all FSPs given a minFreq threshold). The number of mined FSPs is shown in Table 2. The less the minFreq threshold is, the greater the set of all FSPs is. But also, the runtime consumed by each algorithm (albeit different) is greater.

[^2]Table 3. Runtimes (in millisecs) of the algorithms ObjectMiner, STreeDC-Miner, and X-FSPMiner by varying the minFreq from 0.02 to 0.20 with step 0.02 for each dataset.

Datasets	Algorithms	0.02	0.04	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
Abalone	ObjectMiner	1321836	1112347	921384	782100	680862	569590	486949	419882	349935	195390
	STreeDC-Miner	225719	225434	200320	167143	128258	91194	63358	40803	21199	11148
	X-FSPMiner	110589	111646	106172	92077	77091	58944	41561	28913	15447	8351
Auto MPG	ObjectMiner	1376	1188	889	903	665	627	460	350	359	264
	STreeDC-Miner	539	449	394	337	304	281	301	230	234	192
	X-FSPMiner	421	332	285	241	223	205	204	188	178	137
AutoUniv au6	ObjectMiner	527636	314719	230808	148876	107343	68996	46281	31440	18273	11923
	STreeDC-Miner	78216	39737	21985	15110	11125	8952	7152	6524	6299	5349
	X-FSPMiner	58908	25660	13973	8178	5803	4090	3002	2298	1951	1561
Balance Scale	ObjectMiner	65	56	52	51	51	51	52	52	55	44
	STreeDC-Miner	131	111	121	106	123	114	106	121	100	92
	X-FSPMiner	78	89	85	82	66	82	81	82	80	56
Breast Cancer Wisconsin	ObjectMiner	244	236	187	142	136	127	131	118	106	105
	STreeDC-Miner	391	187	218	161	157	149	182	136	170	153
	X-FSPMiner	184	126	135	111	100	97	92	86	84	98
Liver disorders	ObjectMiner	720	520	487	368	363	299	270	253	238	233
	STreeDC-Miner	480	433	391	313	371	341	333	330	280	299
	X-FSPMiner	340	285	275	226	241	230	224	200	195	183
Car Evaluation	ObjectMiner	160	121	118	115	99	111	95	95	96	96
	STreeDC-Miner	201	164	174	126	148	153	120	148	150	148
	X-FSPMiner	128	136	110	102	97	118	98	104	95	95
Contraceptive Method Choice	ObjectMiner	461	267	262	183	198	145	131	148	122	117
	STreeDC-Miner	353	242	175	202	149	144	137	145	165	163
	X-FSPMiner	322	156	139	147	117	111	103	113	103	100
Credit Approval	ObjectMiner	1281021	624057	415166	311993	250827	209661	177787	164093	136431	125857
	STreeDC-Miner	837825	544999	450406	370530	325499	287746	260313	236854	214828	194065
	X-FSPMiner	678452	373450	275090	221493	178267	154294	123777	116761	102169	83839
Pima indians diabetes	ObjectMiner	9371	7211	6223	5362	4587	4104	3906	3254	3063	2564
	STreeDC-Miner	2025	1608	1361	1346	1113	993	986	893	815	778
	X-FSPMiner	1293	1168	918	903	673	794	619	586	480	459
Glass Identification	ObjectMiner	2164	1463	1381	1019	1069	925	812	737	635	675
	STreeDC-Miner	941	979	970	715	575	499	496	472	420	425
	X-FSPMiner	743	624	614	551	499	385	352	390	350	339
Heart Disease	ObjectMiner	5463	1941	1117	679	513	385	330	279	250	225
	STreeDC-Miner	2467	1241	882	613	605	329	383	307	315	328
	X-FSPMiner	2543	1165	760	578	429	284	306	249	180	186
Indian Liver Patient	ObjectMiner	42855	32181	28101	24652	22204	19950	18151	16279	14813	13426
	STreeDC-Miner		17437	15170	13819	12878	13505	13074	12133	11995	11087
	X-FSPMiner	8380	6694	5972	5547	5059	4481	4218	4006	3834	3131
Iris	ObjectMiner	93	77	65	58	54	49	46	43	42	41
	STreeDC-Miner	147	141	121	133	131	123	124	121	94	118
	X-FSPMiner	104	99	93	89	85	69	65	74	66	67
Metadata	ObjectMiner	3955160	4081705	20812	20643	10350	10327	7828	7852	7750	6518
	STreeDC-Miner	2631783	2480349	34449	33828	17647	17726	12216	12318	11682	9523
	X-FSPMiner	3518015	4005714	29263	29209	13777	13513	6793	6781	6376	4422
Poker Hand	ObjectMiner	142319	142200	136337	20451	20185	20285	20383	20526	20201	20770
	STreeDC-Miner	37795	33628	29391	13443	11859	10438	8960	9043	8682	8904
	X-FSPMiner	17638	16069	15341	4642	4568	4695	4706	4809	4563	4620
Teaching Assistant Evaluation	ObjectMiner	93	79	67	64	59	54	50	50	48	42
	STreeDC-Miner	138	107	125	132	99	127	101	94	118	119
	X-FSPMiner	102	76	88	84	64	77	76	59	69	67
Vehicle Silhouettes	ObjectMiner	263099	49099	20210	10916	6844	4586	3101	2350	1732	1349
	STreeDC-Miner	120438	30736	15141	10174	6593	5108	3699	3034	2130	2019
	X-FSPMiner	107173	28545	13560	8435	5859	4010	2399	1690	1282	998
Wine	ObjectMiner	2158	1442	1158	997	962	798	758	594	414	306
	STreeDC-Miner	789	452	366	342	300	307	303	267	277	199
	X-FSPMiner	671	404	320	229	255	238	229	164	190	147

The performance of algorithms in terms of the runtime is shown in Table 3. For each dataset and minFreq, the best runtime is marked in bold.

Although X-FSPMiner achieves the best runtime for all most cases, runtimes are not directly comparable for different combinations of minFreq and dataset. However, for each minFreq and dataset, how many standard deviations separate each algorithm runtime from the average runtime can be calculated. This measure, the
standardized performance $s p$ of an algorithm a for a minFreq b and a dataset c, is defined as:

$$
\begin{equation*}
s p_{a, b, c}=\frac{\text { avgRuntime }_{b, c}-\text { runtime }_{a, b, c}}{\text { stdRuntime }_{b, c}} \tag{6}
\end{equation*}
$$

where runtime $_{a, b, c}$ is the runtime of the algorithm a for minFreq b a and dataset $c, a v g R u n t i m e ~ e_{b, c}$ is the average runtime of all algorithms for minFreq b and dataset c, and stdRuntime ${ }_{b, c}$ is the standard deviation of all algorithms for minFreq b and dataset c. Notice that the more positive an algorithm's standardized performance is, the more efficient (relative to the others) the algorithm is.

The average of the standardized performance of an algorithm for a dataset overall explored minFreqs summarizes its performance for the dataset consistently (see Figure 4). Analogously, the average of the standardized performance of an algorithm for a minFreqs overall used datasets summarizes its performance for the minFreqs (see Figure 5). Finally, a global average of all standardized performance of an algorithm summarizes its performance (see Figure 6).

■ X-FSPMiner STreeDC-Miner ObjectMiner

Fig. 4. Average standardized performance of X-FSPMiner, STreeDC-Miner and ObjectMiner by dataset.

In Figure 4, it can be seen that for all datasets, the behavior of X-FSPMiner is better than average behavior. Also, for most datasets, X-FSPMiner achieves the best average standardized performance. For only four datasets (Balance Scale, Iris, Metadata, Teaching Assistant Evaluation), the best average standardized performance was obtained by another algorithm (ObjectMiner).

Fig. 5. Average standardized performance of X-FSPMiner, STreeDC-Miner and ObjectMiner by minFreq.

Figure 5 shows the average of the standardized performance of the algorithms for a minFreqs overall used datasets. From this point of view, it can be seen that the behavior of the ObjectMiner and STreeDC-Miner algorithms generally does stay behind the average performance. ObjectMiner shows a trend to improve its behavior when the minFreqs increases, while in contrast, STreeDC-Miner shows a trend to improve its behavior when the minFreqs decreases. However, STreeDC-Miner, unlike ObjectMiner, for the two smallest values of minFreqs, slightly outperforms average behavior. Differently, our proposed algorithm, X-FSPMiner, always outperforms the average behavior and is far superior to the other algorithms. Additionally, X-FSPMiner shows a slight tendency to improve its behavior with increasing minFreqs.

Fig. 6. Global average standardized performance of X-FSPMiner, STreeDC-Miner and ObjectMiner.

Finally, Figure 6 shows the global average of all standardized performance of each algorithm. It can be seen that both ObjectMiner and STreeDC-Miner have a general behavior below the average (-0.37 and -0.48 standard deviation from the average behavior, respectively). In contrast, the general behavior of X-FSPMiner is much higher (0.86 standard deviation from average behavior).

The results presented summarize the broad superiority of X-FSPMiner in terms of runtime over ObjectMiner and STreeDC-Miner.

6 CONCLUSIONS

In this paper, we proposed X-FSPMiner, an efficient algorithm for mine all FSP using Boolean and non-increasing monotonic similarity functions. X-FSPMiner employs the also proposed FV-Tree data structure to condense a collection of objects described by numerical and non-numerical features and to fast compute the frequency of the FSPs.

The results show that X-FSPMiner outperforms the average behavior of the state-of-the-art algorithms (ObjectMiner and STreeDC-Miner) in term of runtime. For most datasets tested, X-FSPMiner achieves the best average standardized performance. On the other hand, for all minFreqs tested, the average standardized performance of X-FSPMiner is far superior to the other algorithms. Summarizing both points of view, the global average of all standardized performance of each tested algorithm reveals that the general behavior of our proposed algorithm, X-FSPMiner, is greater than the average behavior in 0.86 standard deviation. In comparison, the behavior of the other algorithms is lesser than the average behavior in -0.37 (STreeDC-Miner) and -0.48 (ObjectMiner) standard deviation.

Although our proposed algorithm, X-FSPMiner, vastly outperforms the state-of-the-art algorithms, some issues must be attended: I) There are real-world problems in which the study objects are compared using other types of similarity functions not supported by X-FSPMiner (e.g., non-boolean or increasing monotonic similarity functions). II) as the computation capabilities grow and information technologies are massively adopted, including the Internet of Things, the size of study object collections in terms of the number of objects and features also grows, implying that better computational performance is required. However, all the FSP mining algorithms (including X-FSPMiner) are designed for a single computation core. They do not take advantage of the current multiple CPU and GPU core capabilities. III) Although mining all FSP finds hidden knowledge, their main drawback is that many frequent similar patterns are mined, leading to expensive post-analysis and post-processing. As future work, we visualize addressing these issues as follows: I) Extend the FV-Tree data structure and X-FSPMiner algorithm for non-boolean similarity functions, and design a new FSP mining algorithm based on relaxed pruning for increasing monotonic similarity functions. II) Design a parallel FSP miner algorithm based on X-FSPMiner considering the capabilities of multicore CPU and GPU architectures. III) Developing a metaheuristic FSP miner algorithm for obtaining a representative subset of all FSP patterns.

REFERENCES

[1] Charu C Aggarwal. 2014. Applications of frequent pattern mining. In Frequent pattern mining. Springer, 443-467.
[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data. 207-216.
[3] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, Vol. 1215. 487-499.
[4] Nathalie Alemán-García and Martha R. Ortiz-Posadas. 2021. Evaluation of Hepatic Fibrosis Stages Using the Logical Combinatorial Approach. In Progress in Artificial Intelligence and Pattern Recognition, Yanio Hernández Heredia, Vladimir Milián Núñez, and José Ruiz Shulcloper (Eds.). Springer International Publishing, Cham, 158-166.
[5] Nader Aryabarzan, Behrouz Minaei-Bidgoli, and Mohammad Teshnehlab. 2018. negFIN: An efficient algorithm for fast mining frequent itemsets. Expert Systems with Applications 105 (2018), 129-143.
[6] Vyacheslav Busarov, Natalia Grafeeva, and Elena Mikhailova. 2016. A Comparative Analysis of Algorithms for Mining Frequent Itemsets. In Databases and Information Systems, Guntis Arnicans, Vineta Arnicane, Juris Borzovs, and Laila Niedrite (Eds.). Springer International Publishing, Cham, 136-150.
[7] Sung-Hyuk Cha. 2007. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International fournal of Mathematical models and Methods in Applied Sciences 1, 4 (2007), 300-307.
[8] Yangming Chen, Philippe Fournier-Viger, Farid Nouioua, and Youxi Wu. 2021. Sequence Prediction using Partially-Ordered Episode Rules. In 2021 International Conference on Data Mining Workshops (ICDMW). 574-580.
[9] Roxana Danger, José Ruíz-Shulcloper, and Rafael Berlanga Llavori. 2004. Objectminer: A New Approach for Mining Complex Objects. In ICEIS (2). Citeseer, 42-47.
[10] ZhiHong Deng, ZhongHui Wang, and JiaJian Jiang. 2012. A new algorithm for fast mining frequent itemsets using N-lists. Science China Information Sciences 55, 9 (Sept. 2012), 2008-2030.
[11] Zhi-Hong Deng. 2014. Fast mining Top-Rank-k frequent patterns by using Node-lists. Expert Systems with Applications 41, 4, Part 2 (2014), 1763-1768.
[12] Zhi-Hong Deng. 2016. DiffNodesets: An efficient structure for fast mining frequent itemsets. Applied Soft Computing 41 (2016), 214-223.
[13] Zhi-Hong Deng and Sheng-Long Lv. 2015. PrePost+: An efficient N-lists-based algorithm for mining frequent itemsets via Children-Parent Equivalence pruning. Expert Systems with Applications 42, 13 (2015), 5424-5432.
[14] Philippe Fournier-Viger, Wensheng Gan, Youxi Wu, Mourad Nouioua, Wei Song, Tin Truong, and Hai Duong. 2022. Pattern Mining: Current Challenges and Opportunities. In Database Systems for Advanced Applications. DASFAA 2022 International Workshops, Uday Kiran Rage, Vikram Goyal, and P. Krishna Reddy (Eds.). Springer International Publishing, Cham, 34-49.
[15] J Gómez, O Rodríguez, S Valladares, J Ruiz-Shulcloper, et al. 1994. Prognostic of Gas-oil deposits in the Cuban ophiological association, applying mathematical modeling. Geofisica Internacional 33, 3 (1994), 447-467.
[16] G. Grahne and J. Zhu. 2005. Fast algorithms for frequent itemset mining using FP-trees. IEEE Transactions on Knowledge and Data Engineering 17, 10 (2005), 1347-1362.
[17] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery 15, 1 (Aug. 2007), 55-86.
[18] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without Candidate Generation. SIGMOD Rec. 29, 2 (May 2000), 1-12.
[19] Hieu Hanh Le, Tatsuhiro Yamada, Yuichi Honda, Takatoshi Sakamoto, Ryosuke Matsuo, Tomoyoshi Yamazaki, Kenji Araki, and Haruo Yokota. 2022. Methods for Analyzing Medical-Order Sequence Variants in Sequential Pattern Mining for Electronic Medical Record Systems. ACM Trans. Comput. Healthcare (sep 2022). Just Accepted.
[20] Carson Kai-Sang Leung. 2009. Anti-monotone Constraints. Springer US, Boston, MA, 98-98.
[21] Guimei Liu, Hongjun Lu, Wenwu Lou, Yabo Xu, and Jeffrey Xu Yu. 2004. Efficient Mining of Frequent Patterns Using Ascending Frequency Ordered Prefix-Tree. Data Mining and Knowledge Discovery 9, 2 (Nov. 2004), 249-274.
[22] Martha R. Ortiz-Posadas. 2017. The Logical Combinatorial Approach Applied to Pattern Recognition in Medicine. In New Trends and Advanced Methods in Interdisciplinary Mathematical Sciences, Bourama Toni (Ed.). Springer International Publishing, Cham, 169-188.
[23] Zhiwen Pan, Jiangtian Li, Yiqiang Chen, Jesus Pacheco, Lianjun Dai, and Jun Zhang. 2019. Knowledge discovery in sociological databases. International fournal of Crowd Science (2019).
[24] J. Pei, Jiawei Han, Hongjun Lu, S. Nishio, S. Tang, and Dongqing Yang. 2001. H-mine: hyper-structure mining of frequent patterns in large databases. Proceedings 2001 IEEE International Conference on Data Mining (2001), 441-448.
[25] Ansel Y Rodríguez-González, Fernando Lezama, Carlos A Iglesias-Alvarez, José Fco Martínez-Trinidad, Jesús A Carrasco-Ochoa, and Enrique Munoz de Cote. 2018. Closed frequent similar pattern mining: Reducing the number of frequent similar patterns without information loss. Expert Systems with Applications 96 (2018), 271-283.
[26] Ansel Y Rodríguez-González, José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, and José Ruiz-Shulcloper. 2008. Mining frequent similar patterns on mixed data. In Iberoamerican Congress on Pattern Recognition. Springer, 136-144.
[27] Ansel Y Rodríguez-González, José Fco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, and José Ruiz-Shulcloper. 2010. Using non boolean similarity functions for frequent similar pattern mining. In Canadian Conference on Artificial Intelligence. Springer, 374-378.
[28] Ansel Yoan Rodríguez-González, José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, and José Ruiz-Shulcloper. 2011. RP-Miner: a relaxed prune algorithm for frequent similar pattern mining. Knowledge and information systems 27, 3 (2011), 451-471.
[29] Ansel Y. Rodríguez-González, José Fco. Martínez-Trinidad, Jesús A. Carrasco-Ochoa, and José Ruiz-Shulcloper. 2013. Mining frequent patterns and association rules using similarities. Expert Systems with Applications 40, 17 (2013), 6823-6836.
[30] Ansel Y Rodríguez-González, José F Martínez-Trinidad, Jesús A Carrasco-Ochoa, José Ruiz-Shulcloper, and Matías Alvarado-Mentado. 2019. Frequent similar pattern mining using non Boolean similarity functions. Journal of Intelligent \& Fuzzy Systems 36, 5 (2019), 4931-4944.
[31] J Ruiz-Shulcloper and A Fuentes-Rodrguez. 1981. A cybernetic model to analyze juvenile delinquency. Revista Ciencias Matemáticas 2 , 1 (1981), 123-153.
[32] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. 1995. An Efficient Algorithm for Mining Association Rules in Large Databases. In Proceedings of the 21th International Conference on Very Large Data Bases (VLDB '95). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 432-444.
[33] Pradeep Shenoy, Jayant R. Haritsa, S. Sudarshan, Gaurav Bhalotia, Mayank Bawa, and Devavrat Shah. 2000. Turbo-Charging Vertical Mining of Large Databases. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (Dallas, Texas, USA) (SIGMOD '00). Association for Computing Machinery, New York, NY, USA, 22-33.
[34] Akbar Telikani and Asadollah Shahbahrami. 2018. Data sanitization in association rule mining: An analytical review. Expert Systems with Applications 96 (2018), $406-426$.
[35] José Fco. Martínez Trinidad, José Ruiz Shulcloper, and Manuel S. Lazo Cortés. 2000. Structuralization of universes. Fuzzy Sets and Systems 112, 3 (2000), 485 - 500.
[36] Amos Tversky. 1977. Features of similarity. Psychological review 84, 4 (1977), 327.
[37] Bay Vo, Sang Pham, Tuong Le, and Zhi-Hong Deng. 2017. A novel approach for mining maximal frequent patterns. Expert Systems with Applications 73 (2017), 178-186.
[38] Michael Weisberg. 2012. Getting serious about similarity. Philosophy of Science 79, 5 (2012), 785-794.
[39] Y. . Woon, W. . Ng, and E. . Lim. 2004. A support-ordered trie for fast frequent itemset discovery. IEEE Transactions on Knowledge and Data Engineering 16, 7 (2004), 875-879.
[40] Jin Soung Yoo. 2019. Crime Data Warehousing and Crime Pattern Discovery. In Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems (Dubai, United Arab Emirates) (DATA '19). Association for Computing Machinery, New York, NY, USA, Article 40, 6 pages.
[41] M. J. Zaki. 2000. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering 12, 3 (2000), 372-390.
[42] Mohammed J. Zaki and Karam Gouda. 2003. Fast Vertical Mining Using Diffsets. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Washington, D.C.) (KDD '03). Association for Computing Machinery, New York, NY, USA, 326-335.
[43] Shuling Zhu. 2019. Research on data mining of education technical ability training for physical education students based on Apriori algorithm. Cluster Computing 22 (2019), 14811-14818.

[^0]: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 © 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
 ACM 1556-4681/2024/1-ART
 https://doi.org/10.1145/3643820

[^1]: ${ }^{1}$ https://archive.ics.uci.edu/ml/index.php

[^2]: ${ }^{2}$ The datasets, the algorithms, a script to exec the experiment, and the raw results are available on https://drive.google.com/drive/folders/ 1XxZtayzcsZdVZRO8QzoJo30ntYBs-ZV_

