
X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining

ANSEL Y. RODRÍGUEZ-GONZÁLEZ, Unidad de Transferencia Tecnológica, Centro de Investigación

Cientíica y de Educación Superior de Ensenada, Tepic, México

RAMÓN ARANDA, Centro de Investigación en Matemáticas, A.C., Unidad Mérida, Mérida, México

MIGUEL Á. ÁLVAREZ-CARMONA, Centro de Investigación en Matemáticas, A.C., Unidad Monterrey,

Apodaca, México

ANGEL DÍAZ-PACHECO, Universidad de Guanajuato, División de Ingenierías, Campus Irapuato-Salamanca,

Salamanca, México

ROSA MARÍA VALDOVINOS ROSAS, Facultad de Ingeniería, Universidad Autónoma del Estado de

México, Toluca de Lerdo, México

Frequent similar pattern mining (FSP mining) allows found frequent patterns hidden from the classical approach. However,
the use of similarity functions implies more computational efort, becoming necessary to develop more eicient algorithms for
FSP mining. This work aims to improve the eiciency of mining all FSPs when using Boolean and non-increasing monotonic
similarity functions. A data structure to condense an object description collection named FV-Tree, and an algorithm for mine all
FSP from the FV-Tree, named X-FSPMiner, are proposed. The experimental results reveal that the novel algorithm X-FSPMiner

vastly outperforms the state-of-the-art algorithms for mine all FSP using Boolean and non-increasing monotonic similarity
functions.

CCS Concepts: · Information systems→ Data mining; · Theory of computation→ Sorting and searching.

Additional Key Words and Phrases: data mining, frequent patterns, similarity functions, mixed data

1 INTRODUCTION

In the last decade of the previous century, frequent pattern mining [14] emerged from the market basket analysis,
playing an essential role in other data mining tasks like association rule mining, classiication, clustering and
prediction [1, 8, 34]. Frequent itemsets were discovered in transactional data, in which each transaction is the set
of items purchased by a customer [2]. A frequent itemset is a set of items that occurs at least in the minimum
number of transactions. To prune the search space of frequent itemsets, a property named downward closure
property (i.e., all supersets of a non-frequent itemset are non-frequent itemsets) is used.
In collections of more complex objects described by numerical and not numerical features (e.g., electronic

medical records [19], crime databases [40], sociological databases [23] and educational data [43]) also frequent

Authors’ addresses: Ansel Y. Rodríguez-González, ansel@cicese.edu.mx, Unidad de Transferencia Tecnológica, Centro de Investigación
Cientíica y de Educación Superior de Ensenada, Tepic, Andador 10, 109, Nayarit, México, 63173; Ramón Aranda, arac@cimat.mx, Centro de
Investigación en Matemáticas, A.C., Unidad Mérida, Mérida, PCTY, Yucatán, México, 97302; Miguel Á. Álvarez-Carmona, miguel.alvarez@
cimat.mx, Centro de Investigación en Matemáticas, A.C., Unidad Monterrey, Apodaca, Alianza Centro 502, Nuevo León, México, 66629; Angel
Díaz-Pacheco, angel.diaz@ugto.mx, Universidad de Guanajuato, División de Ingenierías, Campus Irapuato-Salamanca, Salamanca, Carretera
Salamanca - Valle de Santiago km 3.5 + 1.8 , Guanajuato, México, 36885; Rosa María Valdovinos Rosas, rvaldovinosr@uaemex.mx, Facultad de
Ingeniería, Universidad Autónoma del Estado de México, Toluca de Lerdo, Instituto Literario 100, México, 50000.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1556-4681/2024/1-ART
https://doi.org/10.1145/3643820

ACM Trans. Knowl. Discov. Data.

HTTPS://ORCID.ORG/0000-0001-9971-0237
HTTPS://ORCID.ORG/0000-0001-8269-3944
HTTPS://ORCID.ORG/0000-0003-4421-5575
HTTPS://ORCID.ORG/0000-0002-5978-0377
HTTPS://ORCID.ORG/0000-0001-9954-0653
https://orcid.org/0000-0001-9971-0237
https://orcid.org/0000-0001-8269-3944
https://orcid.org/0000-0003-4421-5575
https://orcid.org/0000-0002-5978-0377
https://orcid.org/0000-0002-5978-0377
https://orcid.org/0000-0001-9954-0653
https://doi.org/10.1145/3643820
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643820&domain=pdf&date_stamp=2024-01-30

2 • Rodríguez-González et al.

patterns were mined in the subsequent years. However, commonly in a data preprocessing step, new features are
created from the existing ones, conversing each numerical feature into several nominal features. Then an itemset
mining algorithm is applied.

While the classical approach of frequent pattern mining counts object sub-descriptions using exact matching,
other similarity functions [7, 35, 36, 38] to compare objects are widespread in soft and hard sciences. For example,
in geology [15], medicine [4, 22] and sociology [31], two instances or objects can be considered similar, even
if they are not identical. In these problems, the similarity is used to compare object sub-descriptions, count
how many times an object sub-description appears in an object collection, and make decisions. From this fact,
[9] proposed complex mining objects (described by numerical and not numerical features) using comparison
criteria for each feature and a similarity function over the object sub-descriptions. Later [26] formalizes these
preliminary ideas, extending the concept of downward closure property to the use of similarity functions, linking
it to properties of similarity functions, and deining the frequent similar pattern mining (FSP mining) problem.
A frequent similar pattern is a combination of feature values of the study objects, such that the similarity

accumulation of its similar patterns is not less than a user-speciied frequency threshold. The FSP mining problem
discovers all FSP from an object description collection, given a user-speciied frequency threshold and a similarity
function.

The frequent similar pattern mining approach allows found frequent patterns hidden for the classical approach.
Several algorithms have been proposed to mine FSPs: ObjectMiner [9], STreeDC-Miner [26, 29], STreeNDC-
Miner [26, 29], RP-Miner [28], CFSP-Miner [25], STree∗DC-Miner [27, 30], STree∗NDC-Miner [30] and RP∗-

Miner [30]. Also, [29] shown that in tasks like classiication, the accuracy using the FSP is higher than the
accuracy using the frequent patterns obtained by the classical approach.
Developing more eicient algorithms is a research issue for both the classical and FSP mining approaches.

However, the use of similarity functions by the FSP mining approach carries more computational efort, which
requires additional attention.
This paper focuses on FSP mining using Boolean and non-increasing monotonic similarity functions. The

main contributions are i) a novel data structure, named FV-Tree, to condense an object description collection; ii) a
novel algorithm for mine all FSP that use FV-Tree, named X-FSPMiner. The experimental results show that the
proposed algorithm (X-FSPMiner) is faster than the state-of-the-art algorithms for mine all FSP using Boolean
and non-increasing monotonic similarity functions.
The outline of this paper is as follows. In Section 2 related work is reviewed. Section 3 provides the basic

concepts and notation of FSP mining. In Section 4 the FV-Tree data structure and the X-FSPMiner algorithm for
mining frequent similar patterns is proposed. Section 5 presents the experimental results and discussion, and
inally, in Section 6 some conclusions and future work are discussed.

2 RELATED WORK

Two related approaches for frequent pattern mining can be distinguished in the literature: the classical frequent
pattern mining, which uses exact matching, and the frequent pattern mining, based on the similarity. In this
section, the main studies about them are included.

2.1 Frequent Patern Mining

The irst work-related to frequent mining itemset was proposed by Agrawal et al. [2]. After that work, many
methods have been proposed, and in general, those methods can be mainly classiied into two groups: Aprioriślike
and Frequency Pattern growth (FPśgrowth) like methods [6]. Aprioriślike methods are based on the antiśmonotony
principle [20]. Thus, these methods generate candidate itemsets of length � + 1 from frequent itemsets of length

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 3

� by scanning the database iteratively. [3, 32, 33, 41, 42]. Some disadvantages of these methods are that they need
to scan the database many times and generate a large set of candidates [17].
Diferently to Aprioriślike methods, FPśgrowthślike methods, instead of generating candidate itemsets, use

strategies to recursively search frequent local patterns by dividing the dataset into sub-datasets. Then, the frequent
local patterns are assembled into more extended global frequent patterns. Thus, FPśgrowthślike methods reduce
search space and generate frequent itemsets without candidate generation. Some of those methods are based
on FP-Tree to encode the dataset, and then they extract the frequent itemsets from the tree [16, 18, 21, 24]. A
FP-Tree is represented by a frequentśitem header table and preix subtrees where each node consists of three ields:
itemśname (item this node represents), count (number of transactions obtained in the path portion reaching this
node), and the nodeślink (links to the next node in the FP-Tree with the same itemśname). FP-Tree has shown to
be a highly condensed data structure for storing the database. However, it has been observed that the generation
and use of the FP-Trees can be complex and ineicient in sparse dataset [39].
To overcome mentioned disadvantages, other FPśgrowthślike methods adopt a preix tree structure called

PreśPost Code tree (PPC-Tree) to store the dataset [5, 10ś13, 37]. Each node in the PPC-Tree includes 5 ields:
itemśname (item this node represents), count (number of transactions obtained in the portion of the path reaching
this node), childrenślist (it registers all children of the node), preśorder (preśorder traversal code), and postśorder

(postśorder traversal code). Note that although FP-Tree and PPC-Tree have similar structures, their main diference
is that PPC-Tree does not handle a header table, which makes it simpler than FP-Tree.

Inspired by the FP-Tree and the PPC-Tree, one of this work’s main contributions is the proposal of a novel data
structure for frequent similar pattern mining, named FV-Tree. This novel structure is described in detail in section
4.

2.2 Frequent Similar Patern Mining

In the literature, there are several algorithms for mining FSP, which can be classiied in a two-dimensional space
taking into account the image and the monotony of the similarity functions allowed (See igure 1).
The image of similarity functions can be Boolean (in {0, 1}, 1 means that objects compared are similar and

0 means the opposed) or non-Boolean (in [0, 1] , where the closer the similarity is to 1, the more similar are
the objects compared). The monotony of similarity functions can be non increasing or increasing. A similarity
function is non-increasing monotonic if and only if, for any pair of an object, the similarity regarding a set
of features is greater than or equal to the similarity regarding any superset of features. The non-increasing
monotony of a similarity function is relevant property because it implies that all super-descriptions of a non-FSP
are also non FSPs. This property, known as �� -downward closure property, allows pruning the search space of
FSPs [29, 30].
This work aims to improve the eiciency of mining all FSPs using Boolean and non-increasing monotonic

similarity functions. The state-of-the-art algorithms for this kind of similarity function are ObjectMiner, STreeDC-
Miner and CFSP-Miner. However, CFSP-Miner does not mine all the FSPs, only a subset of them. Therefore, in the
rest of the work, we only focus on ObjectMiner and STreeDC-Miner.
ObjectMiner [9] was the irst algorithm for FSP mining. It was inspired on the Apriori algorithm [3]. The

algorithm starts identifying all FSPs with only one feature, next following a breadth-irst search strategy, for each
iteration, � (starting with � = 2), a set of candidates to FSPs with � features is obtained. For that, pairs of FSPs
with � − 1 features are merged to obtain FSPs with � − 2 features values exactly equal. For each � candidate to
FSP obtained by merging a pair (�1, �2) of FSP, a set of candidate objects that contains a sub-description similar
to � is obtained. The frequency of each candidate to FSP is computed, iterating only over its set of candidate
objects to contain similar sub-descriptions and using the similarity function. If the frequency is greater than the
minimum frequency threshold, then the candidate to FSP is an FSP. ObjectMiner inishes when an iteration �

ACM Trans. Knowl. Discov. Data.

4 • Rodríguez-González et al.

Fig. 1. Frequent similar patern mining algorithms

does not produce any FSP with � features. The main weakness of ObjectMiner is their high computational cost
for the FSP mining process and the storage cost of the repetitions of the FSP sub-descriptions.
STreeDC-Miner [29] solved the main weakness of ObjectMiner storing the sub-descriptions of objects into

groups of equals sub-descriptions. Consequently, never two equals sub-description are compared, and never
repetitions of diferent sub-descriptions are compared. To do this, STreeDC-Miner introduces a tree structure called
STree. For each set of features �, each leaf of the associated tree structure ������ represents a sub-description
concerning the set of features� and stores all its repetitions and the similarities with other sub-descriptions (other
leaves). The branches of the ������ contain the common preixes of the stored sub-descriptions. STreeDC-Miner

sets an explicit deinition of a total order over the feature set. From each set of only one feature�, and following a
depth-irst search strategy, a recursive procedure adds to � in each call, a new feature greater than the features in
�. Also, in each call, a tree structure ������ is built, the frequency of the sub-descriptions in ������ is computed,
and the FSPs are obtained. If the current set of features � contains only one feature, ������ is built from the
dataset. Otherwise, ������ is built from the tree structure built in the previous recursive call. The recursive
procedure’s base case is produced when there are no frequent similar patterns for the set of feature � or no
feature to add. In the STree building process, the similarity between two sub-descriptions is only computed if
their sub-descriptions in the tree structure built in the previous recursive call are similar, and almost one of them
is an FSP. Consequently, the number of similarity function evaluations is reduced, and the computational efort
to compute the frequency of each sub-description is reduced. Thus, the behavior of the STreeDC-Miner surpassed
the behavior of the ObjectMiner. However, the successive creation (and destruction) of tree structures, one tree
structure for each feature set, is time-consuming.
To address the weakness of the STreeDC-Miner, in this work, we propose a single tree structure to condense

the dataset and a novel FSP mining algorithm that uses it.

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 5

3 BASIC CONCEPTS AND NOTATION

This section provides the basic concepts and notation of FSP mining used in the rest of the work. We follow the
notations and deinitions reported in [29].

LetΩ = {�1,�2, . . . ,��} be an object collection. Each object�� is described by a set of feature� = {�1, �2, . . . , ��}

and represented as a tuple (�1, �2, . . . , ��), where � � ∈ � � (� � is the domain of the feature � � , 1 ≤ � ≤ �). A
subdescription of an object � for a subset of features � ⊆ � denoted by �� (�), is the description of � in terms of
the features in � ; � [�] denotes the value of the feature � ∈ � of � .

Also, �� : Ω × Ω → {0, 1} is a Boolean similarity function to compare two object descriptions regarding a set o
features � . Given two subdescriptions �� (�), �� (� ′), with �,� ′ ∈ Ω, �� (�,� ′) = 1 means that � is similar to � ′

with respect to � and �� (�,�
′) = 0 means that � is not similar to � ′ with respect to � . Two examples of Boolean

similarity functions [26, 28, 29] used in the FSP mining approach are:

�� (�,�
′) =

{
1 if ∀� ∈ �,�� (� [�],�

′ [�]) = 1
0 otherwise

(1)

�� (�,�
′) =

{
1 if | {� ∈� |�� (� [�],�

′ [�])=1} |
|� |

≥ �

0 otherwise
(2)

where�� : �� ×�� → {0, 1} is a comparison function between values of feature � , and � ∈ [0, 1]. Although other
comparison criteria can be used, the next two are the most commonly used on related works:

�� (�,�) =

{
1 if � = �

0 otherwise
(3)

�� (�,�) =

{
1 if |� − � | ≤ �

0 otherwise
(4)

Equation (3) compares non numerical features values and equation (4) compares numerical features values.
Now, the frequency of �� (�) in Ω for �� is deined as:

� ����� ,Ω (�) =
|{� ′ ∈ Ω : �� (�,� ′) = 1}|

|Ω |
. (5)

Using this frequency deinition, �� (�) is a �� -frequent subdescription (a frequent similar pattern) in Ω if
� ����� ,Ω (�) ≥ �������, where������� is a given minimum frequency threshold. Consequently, the frequent
similar pattern mining problem consists in inding all frequent similar patterns in Ω.

Analogously to the frequent itemset mining, where downward closure property was deined and used to prune
the search space, for similar frequent pattern mining, a downward class property was also deined [29]:

Property 1 (�� -downward closure). Given a dataset Ω, and a Boolean similarity function �� ; �� fulills

the �� -downward closure if and only if (if) ∀�, �1, �2; � ∈ Ω; ∅ ≠ �1 ⊆ �2 ⊆ � [��1 � ���(�) < �������] ⇒

[��2 � ���(�) < �������].

However, unlike the downward closure property for frequent itemset mining, property 1 is not always true. Its
fulillment depends on whether the frequency and the similarity function are monotonic. The monotony of the
frequency and the monotonic similarity function are deined below:

Property 2 (Monotony of the freqency). Given a dataset Ω and a Boolean similarity function �� ; �� fulills

the monotony of the frequency if ∀�, �1, �2; � ∈ Ω [∅ ≠ �1 ⊆ �2 ⊆ �] ⇒ [��1 � ���(�) ≥ ��2 � ���(�)].

Definition 1 (Monotonic similarity function). Given a dataset Ω and a Boolean similarity function �� ; ��
is non increasing monotonic if ∀�,�

′
, �1, �2; �,�

′
∈ Ω, [∅ ≠ �1 ⊆ �2 ⊆ �] ⇒ [��1 (�,�

′
) ≥ ��2 (�,�

′
)].

ACM Trans. Knowl. Discov. Data.

6 • Rodríguez-González et al.

The relationship between the monotony of the function, the monotony of the frequency and the �� -downward
closure property, shown in the following propositions 1, 2 and 3, was proofed in [29]:

Proposition 1. If �� is a non increasing monotonic similarity function, then �� fulills the monotony of the

frequency.

Proposition 2. If �� fulills the monotony of the frequency, then �� fulills the �� -downward closure.

Proposition 3. If �� is a non increasing monotonic similarity function, then �� satisies the �� -downward closure

For example, the similarity function (1) is a non-increasing monotonic similarity function; then it satisies the
�� -downward closure. While the similarity function (2) is not a non-increasing monotonic similarity function,
then it does not satisfy the �� -downward closure.
A concept used for pruning the search space of FSPs is:

Definition 2 (�� -non prunable pattern). Given a dataset Ω and a Boolean similarity function �� ; a subde-

scription �� (�), � ∈ Ω is an �� -non-prunable pattern if �� (�) is a frequent similar pattern or �� (�) is similar to

another frequent similar pattern.

In contraposition, a subdescription �� (�), � ∈ Ω is an �� -prunable pattern if �� (�) is not a frequent similar
pattern and �� (�) is not similar to any frequent similar pattern.

It is important to note that, when a subdescription �� (�) is similar to another subdescription �� (�
′
) then �� (�)

contributes with its repetitions in Ω to the frequency of �� (�
′
) (see equation (5)).

The following proposition, proofed in [29], allows pruning the search space by removing the subspace that
contains all super descriptions of prunable patterns, without suppressing contributions to the frequency of FSPs
and then without losing FSPs.

Proposition 4. Given a dataset Ω and a non increasing monotonic Boolean similarity function �� ; if a subde-

scription �� (�) is a �� -prunable pattern, then all superdescriptions of �� (�) are �� -prunable patterns

This paper focuses on mining all FSP using Boolean and non-increasing monotonic similarity functions. The
�� -downward closure and the Proposition 4 are used by our proposed algorithm, introduced in the next section.

4 X-FSPMINER

The algorithm proposed in this paper, named X-FSPMiner (Algorithm 1), consists of three general blocks: i)
global variables initialization, i.e., feature value frequencies, similarities, and rank (lines 1 to 8); ii) build a novel
condensed tree structure, named FV-Tree that store the object description collection (lines 9 to 12); iii) obtain
the FSPs of only feature (1-FSPs) and mining all the frequent similar patterns from the 1-FSPs using the FV-Tree
structure (lines 13 to 30). Details of each block are presented in the following sections.

4.1 Initialization block

Initialization block (Algorithm 1, lines 1 to 8) scans the object description collection in order to set and to compute
the following global variables used by the subsequent blocks:

• � ′�� : Set of values in the domain of the feature �� (���), 1 ≤ � ≤ |� | that occurs in the dataset Ω. � ′�� ⊆ ��� ,
such that, � ∈ � ′�� if ∃� ∈ Ω, and � [��] = � .

Example 1. Given the object collection Ω = {�1, . . . ,�10}, described by a set of features � = {�1, �2, �3}, such

that �1, . . . ,�10 are deined as follows:

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 7

Algorithm 1: X-FSPMiner(Ω, �� , � ,�������)
Input: Ω - Object collection,

�� - Similarity function,
� - Comparison criteria,
������� - Minimum frequency threshold

Output: � - FSP set

// ***

// * Block 1: global variables initialization

// ***

1 � ′ ← initD’(Ω)

2 ������� ← initOccByFV(� ′)

3 �������� ← initSimsByFV(� ′ ,�)

4 ���������� ← initSimOccByFV(������� , ��������)

5 ������������� ← initNonPrunableFV(���������� ,�������)

6 �������� ← initRankByFV(������������� , �������)

7 � ������������ ← initFeatureFromId(��������)

8 ����������� ← initValueFromId(��������)

// ***

// * Block 2: build the tree structure

// ***

9 �� -���� ← empty �� -����

10 foreach� ∈ Ω do

11 �� -���� .addObject(� , ��������)

12 �� -���� .updateNodeLinks()

// ***

// * Block 3: mining the FSPs

// ***

13 � ← ∅

14 ������ ←������� ∗ |Ω |

15 ������ ← build1NonPPs(������������� , �������� , ������� , �������� , �� -����)

16 foreach � ∈ ������ do

17 if �.��� + �.���������� ≥ ������ then

18 � .add(�)

19 ���� ← empty array of size |�� -����.��������� |

20 ��� ← empty array of size |������������� |

21 while ������ ≠ ∅ do

22 ��� ← ∅

23 foreach � ∈ ������ do

24 addExpandedPsFrom(� , ��� , ���� , ��� , �� -����)

25 foreach � ∈ ��� do

26 updateSimilarsAndFrequencyOf(� , � ������������ , ����������� , �� ,�)

27 if �.��� + �.���������� ≥ ������ then

28 � .add(�)

29 ������ ← getNonPPsFrom(��� ,������)

30 return �

ACM Trans. Knowl. Discov. Data.

8 • Rodríguez-González et al.

�1 = (1, 10, 100)

�2 = (2, 20, 200)

�3 = (2, 20, 100)

�4 = (2, 10, 100)

�5 = (3, 30, 300)

�6 = (4, 40, 400)

�7 = (6, 60, 500)

�8 = (6, 50, 500)

�9 = (5, 50, 500)

�10 = (6, 60, 600)

Then,

� ′�1 = { 1, 2, 3, 4, 6, 5}

� ′�2 = { 10, 20, 30, 40, 60, 50}

� ′�3 = { 100, 200, 300, 400, 500, 600}

We put value 6 before value 5 in � ′�1 and value 60 before value 50 in � ′�2 in order to note that values 6 and 60

appears irst in �����.

The position of the values in each � ′�� is used in the following global variables deinitions.

• ������� [�, �]: the occurrences of each feature value pair (�� , � �), 1 ≤ � ≤ |� |, 1 ≤ � ≤ |� ′�� |.

Example 2. Given the object collection Ω and each � ′�� deined on example 1:

������� =

(
1 3 1 1 3 1

2 2 1 1 2 2

3 1 1 1 3 1

)

Note that, value 6 of feature �1, is the 5th value in �
′
�1
. Then the occurrences of the value 6 is ������� [1, 5] = 3.

• �������� [�, �]: the set of features values similar to � � given a similarity function �� , excluding itself, of
each feature �� , such that 1 ≤ � ≤ |� |, 1 ≤ � ≤ |� ′�� |.

Example 3. Given the object collection Ω, and each � ′�� deined on example 1, the Boolean similarity function

�� deined on eq. (1) and the following explicit deinitions of the comparison criteria ��1 , ��2 and ��3 :

��1 (�, �) 1 2 3 4 5 6

1 1 1 0 0 0 1

2 1 1 1 0 0 0

3 0 1 1 1 0 0

4 0 0 1 1 1 0

5 0 0 0 1 1 1

6 1 0 0 0 1 1

��2 (�, �) 10 20 30 40 50 60

10 1 1 0 0 0 1

20 1 1 1 0 0 0

30 0 1 1 1 0 0

40 0 0 1 1 1 0

50 0 0 0 1 1 1

60 1 0 0 0 1 1

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 9

��3 (�, �) 100 200 300 400 500 600

100 1 1 0 0 0 1

200 1 1 1 0 0 0

300 0 1 1 1 0 0

400 0 0 1 1 1 0

500 0 0 0 1 1 1

600 1 0 0 0 1 1

Then,

�������� =

©
«
{2, 5} {1, 3} {2, 4} {3, 6} {1, 6} {4, 5}

{2, 5} {1, 3} {2, 4} {3, 6} {1, 6} {4, 5}

{2, 6} {1, 3} {2, 4} {3, 5} {4, 6} {1, 5}

ª®
¬

Note that, for each feature value pair (�� , � �), �������� [�, �] stores the positions in � ′�� of the features values

similar to � � . For example, the feature value 10 which is represented by the pair (�2, �1) is similar to the feature

values 20 and 60, which are represented by the pairs (�2, �2) and (�2, �5) respectively. Then �������� [2, 1] =

{2, 5}.

• ���������� [�, �]: the occurrences, using the similarity function, of each feature value pair (�� , � �), 1 ≤ � ≤

|� |, 1 ≤ � ≤ |� ′�� |. ���������� [�, �] is computed eiciently from ������� and �������� accumulating
the occurrences of � � (������� [�, �]) and the occurrences of each �� similar to � � (������� [�, �] such that
�� ∈ �������� [�, �]).

Example 4. Given the object collection Ω, the similarity function �� , each �
′
��
, the ������� and the ��������

deined or resulted on examples 1, 2 and 3:

���������� =

(
7 5 5 3 5 5

6 5 4 4 6 5

5 5 3 5 5 7

)

Note that the occurrences, using the similarity function, of the feature value 10 (represented by the pair (�2, �1))

is:

���������� [2, 1] = ������� [2, 1] +︁
� ∈�������� [2,1]

������� [2, �]

Variable � takes values 2 and 5, which represent the feature values 20 and 60 of �2 similar to the feature value

10. Then,
���������� [2, 1] = ������� [2, 1] +

������� [2, 2] +

������� [2, 5]

= 2 + 2 + 2

= 6

• ������������� : Set of feature value pairs, such that, each feature value pair (�� , � �), 1 ≤ � ≤ |� |, 1 ≤ � ≤

|� ′�� |, is a non prunable pattern (i.e. it is a FSPs or similar to an FSPs).

Example 5. Given the object collection Ω, the similarity function �� , each � ′�� , the �������� and the

���������� deined or resulted on examples 1, 3 and 4. Also, given a frequency threshold������� = 0.6:

������������� =

{
(1, 1), (1, 2), (1, 5),

(2, 1), (2, 2), (2, 5), (2, 6),

(3, 1), (3, 5), (3, 6)

}

ACM Trans. Knowl. Discov. Data.

10 • Rodríguez-González et al.

Taking into account that the number of objects in Ω is 10, a pattern is considered and FSP for������� = 0.6

if its occurrences, using the similarity function is greater than or equals to 6. Consequently only the features

values 1 (represented by the pair (�1, �1)), 10 (represented by the pair (�2, �1)), 60 (represented by the pair

(�2, �5)) and 600 (represented by the pair (�3, �6)) are FSPs.

However, the set of non prunable pattern include both, the FSPs and the patterns similar to an FSPs. Then the

features values: 2 (represented by the pair (�1, �2)), 6 (represented by the pair (�1, �5)), 20 (represented by the

pair (�2, �2)), 50 (represented by the pair (�2, �6)), 100 (represented by the pair (�3, �1)) and 600 (represented by

the pair (�3, �5)) also are non prunable patterns.

• �������� [�, �]: the rank position of each feature value pair (�� , � �), such that the pair (�, �) ∈ ������������� ,
1 ≤ �������� [�, �] ≤ |������������� |. if (�, �) ∉ ������������� ,�������� [�, �] = ∅. The rank position
of a feature value pair (�� , � �) is used as its id.
We obtain the rank positions in two steps:

(1) The non-prunable feature value pairs are ranked utilizing the occurrences from ������� . The feature
value pair with more occurrences is the irst in the rank. If two feature value pairs have the same
occurrences, the feature value pair with a less feature index is irst in the rank. If there is still a tie (both
feature value pairs have the same feature index), the feature value pair with a lower index is irst in the
rank.

(2) The features are sorted by the sum of the rank position of its feature values. Then, the non-prunable
feature value pairs are ranked again, considering the feature order irst. Feature value pairs of the same
feature are ranked utilizing the rank established in step 1.

Considering only the feature values that are non-prunable patterns (i.e., are non-1-FSPs and are not similar
to 1-FSPs), reduce the search space of FSPs (i.e., to reduce the number of possible combinations of feature
values). Consequently, the values of the features that are prunable patterns are no longer used in successive
steps of the proposed algorithm.

Example 6. Given the object collection Ω, each � ′�� , the ������� and the ������������� deined or resulted

on examples 1, 2, and 5. A rank position of each feature value pair (�� , � �) after step 1 is:

�������� =

(
9 1 ∅ ∅ 2 ∅

5 6 ∅ ∅ 7 8

3 ∅ ∅ ∅ 4 10

)

Due sum by row (feature) is 12 for �1, 26 for �2 and 17 for �3, the feature order is �1, �3, �2. Then the rank

position of each feature value pair (�� , � �) after step 2 is:

�������� =

(
3 1 ∅ ∅ 2 ∅

7 8 ∅ ∅ 9 10

4 ∅ ∅ ∅ 5 6

)

• � ������������ [��]: the feature index � of the feature value pair (�� , � �), such that, �������� [�, �] = �� .
• ����������� [��]: the value index � of the feature value pair (�� , � �), such that, �������� [�, �] = �� .
� ������������ and ����������� are used to decode a feature value id into a feature value pair.

Example 7. Given the object collection Ω, the ������������� and the �������� deined or resulted on

examples 1, 5 and 6:

� ������������ =(
1 1 1 2 2 2 2 3 3 3

)
and,

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 11

����������� =(
2 5 1 1 5 6 1 2 5 6

)
Note that in the example the non prunable feature value 60 (represented by the pair (�2, �5)) has 9 as id

(�������� [2, 5] = 9). But also a decode operation can be done from the id 9, using � ������������ [9] and

����������� [9] to obtain 2 as feature index and 5 as value index.

4.2 Build the tree structure

To condense a collection Ω of objects described by numerical and non-numerical features and to compute the
frequency of the FSPs, we propose the FV-Tree structure, which is used by our novel algorithm X-FSPMiner
(Algorithm 1).

FV-Tree is a tree structure in which each branch from the root to a leaf represents an object � ∈ Ω. Each node
(�� -����) in a branch (except the root node) represents a feature value� [��] = (�� , � �), 1 ≤ � ≤ |� |, 1 ≤ � ≤ |� ′�� |,
(�, �) ∈ ������������� . Only non prunable feature values are considered and objects with one o more prunable
feature values are represented in a branch from the root but not necessarily to a leaf.

Each �� -���� contains:

• � ��� : Identiier of the feature value. � ��� = �������� [�, �].
• ���: Number of occurrences in Ω of the subdescription that contains all ancestor feature values and itself
(i.e., all feature values in the branch from the root to itself).
• ������� : Pre-order of the FV-Node in the FV-Tree.
• ������ : link to the parent FV-Node in the FV-Tree.
• �ℎ������: Set of links to the children �� -����� in the FV-Tree.

To quickly know if an �� -���� is a child, and to quickly access it, we use a Self-balancing binary search tree
(SBBST) as the set of children. The � ��� of each �� -���� child is used as the key of the nodes of the SBBST.

The root of an FV-Tree is an special �� -���� , without � ��� , ���� , ������� , �������� and ������ . It only
contains �ℎ������. FV-Tree also includes an array ���������� with links to the all the �� -����� .
Starting from an empty FV-Tree, the special root FV-Node is created. Later, each object � ∈ Ω is added to the

FV-Tree. The method to add an object to the FV-Tree (Procedure �� -���� .addObject) irst puts the ids of the feature
values of the object that there are in the rank (i.e., �� -frequent feature values or non �� -frequent feature values
similar to an �� -frequent feature value) into the list � ���� (lines 1 to 5). Also, the list � ���� is sorted according to
the rank (line 6). Besides, an auxiliary �� -���� , ��������� , is positioned at the root of the FV-Tree (line 7).
��������� is used to move (following the rank order) over the branch containing the object’s feature values
to add (lines 8 to 19). If there is an �� -���� in the branch with the same � ��� that the �� of the corresponding
feature value of the object, the occurrences of this �� -���� is increased by 1 (lines 9 to 11). Otherwise, a new
�� -���� , for the corresponding feature value of the object, is created, initialized, and inserted in the branch
(lines 12 to 18).

After all objects in Ω are added to the FV-Tree, ������� of each �� -���� in FV-Tree (except for the root �� -
����) is set by traversal the FV-Tree in pre-order. Later, the ���������� array is created and each ���������� [�]
is updated with a link to the �� -���� , such that, �� -����.������� = � .

Example 8. Given the object collection Ω, the ������������� and the �������� deined or resulted on examples

1, 5 and 6.

Figure 2 show the FV-Tree structure after insert each object. �� -����� are represented by rectangles that contains

� ��� and ��� . Links to parent and children are represented by black arrows and dashed arrows, respectively. Dark

gray �� -����� represent the �� -����� created or updated at the insertion of the object. The bold ��� value indicates

ACM Trans. Knowl. Discov. Data.

12 • Rodríguez-González et al.

Procedure �� -���� .addObject(� , ��������)
Input:� - Object ∈ Ω,

�������� - Rank by feature value

1 � ���� ← empty List

2 for � ← 1 to |� | do

3 �� = � [��]

4 if ∃ �������� [�, �] then

5 � ���� .add(�������� [�, �])

6 sort(� ����)

7 ��������� ← root ������

8 foreach �� ∈ � ���� do

9 if ���������.�ℎ������.contains(��) then

10 �ℎ��� ← ���������.�ℎ������.get(��)

11 �ℎ���.��� ← �ℎ���.��� + 1

12 else

13 �ℎ��� ← empty ������

14 �ℎ���.� ��� ← ��

15 �ℎ���.������ ← ���������

16 �ℎ���.��� ← 1

17 �ℎ���.�ℎ������ ← empty �����

18 ���������.�ℎ������.add(�ℎ���)

19 ��������� ← �ℎ���

that the associated �� -����� already existed before the insertion of an object, and then only the occurrence of the

node was updated.

After insert into the FV-Tree the 10 objects in Ω, ������� is set for each �� -���� and the ��������� array is

created. Figure 3 show the inal FV-Tree structure.

4.3 Mining the frequent similar paterns

The general idea for mine all FSPs (Algorithm 1, lines 13 to 30) follows a breadth-irst search strategy, which starts
from 1-non prunable patterns, i.e., non-prunable patterns with only one feature value (line 15), and the 1-FSPs are
extracted (lines 16 to 18). On subsequent steps (lines 19 to 30): expanding the non-prunable patterns by adding
1-non prunable patterns (lines 22 to 24), computing the frequency of the generated patterns (lines 25 to 26), and
The FSPs (lines 27 to 28) and the non-prunable patterns (line 29) are extracted from the set of generated patterns.

The FV-Tree structure built on the previous block and a novel structure named ��-���� to represent each
pattern are used in the expansion process and the computation of the frequency of the generated patterns.
��-���� is a structure representing a pattern and includes other relevant information to achieve a fast expansion
process and the computation of its frequency. An ��-���� contains:

• � ����: array of the ids of the feature values that compound the pattern. Using the global variables
� ������������ and ����������� can be decoded each id into a feature value pair (�� , � �). � ���� follows
the reverse rank order.

Example 9. Given the object collection Ω, the �������� and the FV-Tree deined or resulted on examples 1,

6 and 8. The pattern (10, 100) in Ω is represent by an ��-���� , such that:

�� -����.� ���� = (7 4)

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 13

Fig. 2. FV-Tree ater insert each object of the collection Ω defined in example 1

Remember that the feature value 100 is represented by the feature value pair (3, 1) whose id is�������� [3, 1] =

4; and the feature value 10 is represented by the feature value pair (1, 1) whose id is �������� [1, 1] = 7.

• ���������������: array of pairs (�������, ���). Each ������� represents the �� -���� in FV-Tree, such
that, �� -����.� ��� = � ���� [|� ���� |], and the subtree from �� -���� contains at least 1 occurrence of the

ACM Trans. Knowl. Discov. Data.

14 • Rodríguez-González et al.

Fig. 3. Final FV-Tree that contains the objects of the collection Ω defined in example 1

pattern. Each ��� of a pair (�������, ���) is the number of occurrences of the patterns in the subtree from
�� -���� .

Example 10. From previous example 9:

�� -����.��������������� = ((2, 1) (13, 1))

Note that there are only two �� -����� in FV-Tree, such that, �� -����.� ��� = 4 (equal to the last component

of the � ����). These �� -����� have �������� 2 and 13. Also, each one is the root of a subtree that contains at

least 1 occurrence of the pattern.

• ���: number of repetitions of the pattern. It is the sum all occurrences from the pairs (�������, ���) in
��������������� .
• ���������������: an array of links to the similar patterns represented as ��-�����

• ����������: number of repetitions of similar patterns, but not the same pattern.
Note that ���+����������

|Ω |
is the frequency of the pattern.

• �������� : link to another pattern represented as an ��-���� from which the pattern was generated by
adding a 1-non prunable pattern.
• ���������� : Set of links to patterns represented by ��-����� produced by adding a 1-non-prunable pattern.
To quickly know if an ��-���� is in ���������� , but also quickly know if there is at least one ��-���� in
���������� with a particular last feature, and to access it quickly, we use a bi-level tree of Self-balancing

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 15

binary search tree (SBBST) as the set of expansions. The root is an SBBST that uses as the keys, the feature
id of the last feature of each �� − ���� in ���������� (� ������������ [�� − ����.� ���� [|� ���� |]]). The
content of the nodes of the SBBST are SBBSTs that use as the keys the value id of the last feature of each
�� − ���� in ���������� (����������� [�� − ����.� ���� [|� ���� |]]). This structure is used to obtain the
��������������� of the ��-����� produced by adding a 1-non prunable pattern.

The proposed algorithm (Algorithm 1) delegates the build of the 1-non prunable patterns set to the Function
build1NonPPs. It starts creating an empty array����� of size |������������� | to put the ��-���� that represents
the 1 non prunable patterns (line 1). In a irst Loop (lines 2 to 9), for each feature value pair (�, �) ∈ �������������
an ��-���� is build and putted in ����� , initializing the most of the attributes (� ���� , ��� , �������� , ����������
and ���������������) using the global variables. In a second loop (lines 10 to 16), the ��-����� built are revisited
and the attributes ���������� and ��������������� are initialized. Finally (lines 17 to 18), the FV-Tree is traversed
to add to the ��������������� attribute of the corresponding ��-����� the pair (�������, ���) of each �� -����

in FV-Tree by means of the recursive Procedure updatePsSubTrees.

Function build1NonPPs(������������� , �������� , ������� , �������� , �� -����)
Input: ������������� - Non prunable feature values,

�������� - Rank by feature value,
������� - Occurrence by feature value,
�������� - Similars by feature value,
�� -���� - Tree structure

Output: ������ - 1-non prunable patterns set

1 ������ ← empty array of size |������������� |

2 for (�, �) ∈ ������������� do

3 � ← empty ��-����

4 �.� ���� ← (�������� [�, �])

5 �.��� ← ������� [�, �]

6 �.�������� ← ∅

7 �.���������� ← empty �����

8 �.��������������� =← ∅

9 ������ [�������� [�, �]] ← ��

10 for (�, �) ∈ ������������� do

11 � ← ������ [�������� [�, �]]

12 �.���������� ← 0

13 for �� ∈ �������� [�, �] do

14 �� ← ������ [�������� [�, ��]]

15 �.���������������.��� (��)

16 �.���������� ← �.���������� + �� .���

17 foreach �ℎ��� ∈ �� -����.���� do

18 updatePsSubTrees(������ , �ℎ���)

19 return ������

After building the 1-non-prunable patterns, the Algorithm 1 ilters the FSPs from ����� into � (lines 16 to 18).
Also, two large arrays (���� and ���) systematically used during the expansion process are initialized to avoid
multiple inner initializations (lines 19 and 20). The main loop of the proposed algorithm (Algorithm 1 lines 21 to
29), is executed while there are new non prunable patterns (������ ≠ ∅). On each iteration, the expansions by
adding one more feature value of the currents non-prunable patterns are generated (lines 22 to 24). The expansion

ACM Trans. Knowl. Discov. Data.

16 • Rodríguez-González et al.

Procedure updatePsSubTrees(������ , ����)
Input: ���� - �� -���� ∈ �� -���� ,

������ - array of �� − �����

1 foreach �ℎ��� ∈ ���� .�ℎ������ do

2 � ← ������ [�ℎ���.� ���]

3 �.��������������� .add((�ℎ���.�������, �ℎ���.���))

4 updatePsSubTrees(������ , �ℎ���)

of each non-prunable pattern is delegated to the Procedure addExpandedPsFrom. When all expanded patterns
(���) are generated, for each one (lines 25 to 28), the set of links to its similar patterns(���������������), and its
number of repetitions of similar patterns ���������� is updated. Also, each expanded pattern, that is an FSP, is
added to � . The update of the ��������������� and ���������� attributes of each expanded pattern is delegated to
the Procedure updateSimilarsAndFrequencyOf. The last step in an iteration is to ilter the non-prunable patterns
from the expanded patterns (line 29), which is delegated to the Function getNonPPsFrom, and to substitute the old
set of non-prunable patterns (�����) by the newest set. Finally, after the main loop, the mined FSP are returned
(line 30).

The way to generate the expansions of a pattern (Procedure addExpandedPsFrom) and how to calculate its
frequency (Procedure updateSimilarsAndFrequencyOf) are the two critical processes of the proposed algorithm
� -�������� that make the diference in terms of execution time respect to the related work algorithms that
mine all the FSPs.

The process to generate the expansions of a pattern (Procedure addExpandedPsFrom) follows two main ideas.
The irst one is that each possible expansion generated is a valid expansion in Ω. That is, to generate directly,
without candidate expansions generation and iltering the ones in Ω. The second one is to add only features
values that are non-prunable patterns to the pattern. This idea reduces the number of candidates to frequent
similar patterns because if the new feature value is a prunable pattern, the expanded pattern will also be. The use
of the FV-Tree built on block 2 allows developing both ideas. FV-Tree only contains in its branches patterns that
appear in Ω, but also it does not contain prunable features values.
Given a pattern � , Procedure addExpandedPsFrom starts from an empty set (�������) of ids of �� -�����

(line 1). In a irst Loop (lines 2 to 11), the nodes in FV-Tree which represent the root of a subtree that contains
at least one occurrence of the pattern � are obtained. The ������� to obtain each ���� is extracted from the
pairs (�������, ���) ∈ � .��������������� (line 3). The ancestors of each ���� are traversed (lines 4 − 10). Each
ancestor node represents a feature value that, together with the features values of the � , will make up a new valid
expanded pattern. Since two o more ����� can have the same ancestor node, an ancestor node represents the
root of a subtree that contains exactly the sum of the occurrences of the pattern � in the corresponding subtrees
whose root is ���� , as the occurrences of the pattern expanded pattern. In order to directly identify if an ancestor
node was previously visited and to update the occurrences of the expanded pattern that it represents, the ����
array is used (lines 7 to 10). Also the ������� of the ancestor nodes visited are added to the set ������� (line 11).

From an empty set (� ����) of ids of features values (line 12), in a second loop (lines 13 to 31), the feature value
id (� ���) of each ancestor node (with ��� as �������) is obtained. Two o more ancestor nodes can have the same
� ��� (i.e., two o more ancestor nodes can represent the same expanded pattern). In order to directly identify if
an � ��� was previously visited and the corresponding expanded pattern was built, the ��� array is used (line
15). If the � ��� was previously visited, the expanded pattern �� is recovered and the id of each ancestor node
(���) and the occurrences of the expanded pattern in the corresponding ancestor node subtree (���� [���]) are
added to the attribute ��������������� of the expanded pattern (lines 15 to 18). Otherwise (lines 19 to 31), the

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 17

Procedure addExpandedPsFrom(� , ��� , ���� , ��� , �� -����)
Input: � - a non prunable pattern,

��� - expanded patterns set,
���� - empty array of size |�� -����.��������� | ,
��� - empty array of size |������������� | ,
�� -���� - Tree structure

1 ������� ← ∅

2 foreach (�������, ���) ∈ �.��������������� do

3 ���� ← �� -����.��������� [�������]

4 while ����.������ ≠ �� -����.���� do

5 ���� ← ����.������

6 ��� ← ����.�������

7 if ∃ ���� [���] then

8 ���� [���] ← ���� [���] + ���

9 else

10 ���� [���] ← ���

11 ������� .add(���)

12 � ���� ← ∅

13 foreach ��� ∈ ������� do

14 � ��� ← ��������� [���] .� ���

15 if ∃ ��� [� ���] then

16 �� ← ��� [� ���]

17 ��.��� ← ��.��� + ���� [���]

18 ��.��������������� .add((���, ���� [���]))

19 else

20 �� ← empty ��-����

21 ��.� ���� ← empty array of size |�.� ���� | + 1

22 for � = 1 to |�.� ���� | do

23 ��.� ���� [�] ← �.� ���� [�]

24 ��.� ���� [|��.� ���� |] ← � ���

25 ��.��� ← ���� [���]

26 ��.�������� ← �

27 �.���������� .add(��)

28 ��.���������� ← empty �����

29 ��.��������������� ← {(���, ���� [���]) }

30 ��� [� ���] ← ��

31 ��� .add(��)

32 foreach ��� ∈ ������� do

33 ���� [���] ← ∅

34 foreach � ��� ∈ � ���� do

35 ��� [� ���] ← ∅

expanded pattern is built and the most of its attributes (� ���� , ��� , �������� , ���������� and ���������������)
are initialized. Also, the expanded pattern �� is assigned to ��� [� ���] and added to the set of expanded patterns.

Since few positions of the arrays ���� and ��� are used in each call to the algorithm, and they are large arrays,
these arrays are not initialized each time but a single time by the caller (i.e., by the X-FSPMiner algorithm).

ACM Trans. Knowl. Discov. Data.

18 • Rodríguez-González et al.

Consequently, the positions used by the procedure in the arrays ���� and ��� are cleared for using it by subsequent
procedure calls (lines 32 to 35).

Procedure updateSimilarsAndFrequencyOf(� , � ������������ , ����������� , �� , �)
Input: � - expanded pattern,

� ������������ - Array of the feature id for each feature value id,
����������� - Array of the value id for each feature value id,
�� - Similarity function,
� - Comparison criteria

1 ����������������� ← ∅

2 � ��� ← �.� ���� [|�.� ���� |]

3 � �� ← � ������������ [� ���]

4 ��� ← ����������� [� ���]

5 foreach ������ ∈ �.�������� .��������������� do

6 if ������ .���������� ≠ ∅ then

7 ��� ← ������ .���������� .getSubset(� ��)

8 foreach �� ∈ ��� do

9 � ����� ← �� .� ���� [|�� .� ���� |]

10 ����� ← ����������� [� �����]

11 if �� � �� (���� , ������) = 1 then

12 ����������������� .add(��)

13 ��� ← �.�������� .���������� .getSubset(� ��)

14 foreach �� ∈ ��� do

15 � ����� ← �� .� ���� [|�� .� ���� |]

16 if � ����� ≠ � ��� then

17 ����� ← ����������� [� �����]

18 if �� � �� (���� , ������) = 1 then

19 ����������������� .add(��)

20 �.���������� ← 0

21 foreach �� ∈ ����������������� do

22 if �� (�, ��) = 1 then

23 �.���������� ← �.���������� + �� .���

24 �.��������������� .add(��)

Given a pattern � , the process to update the set of its similar patterns and to calculate its frequency (Procedure
updateSimilarsAndFrequencyOf) takes advantage of the following two consequences of the non-increasing
monotonic similarity function deinition. The irst one is that only expansions of patterns similar to the pattern
expanded to obtain � can be similar to � . The second one is that only patterns that have similar values of the last
features can be similar patterns.

Procedure updateSimilarsAndFrequencyOf starts from an empty set (�����������������) of candidate patterns
to be similar to � (line 1). Later (lines 2 to 4), the feature value id (� ���), the feature id (� ��) and the value id
(���) of the last feature value of the pattern � is obtained. In a irst loop (lines 5 to 12), the expansions of patterns
that are similar to the pattern that was expanded to build � and have the last feature similar to the last feature
of � are added to the set ����������������� . Since the attribute, ���������� of a pattern is a bi-level tree of the
Self-balancing binary search tree, the expanded patterns with the same last feature are eiciently obtained from

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 19

each pattern, similar to the pattern that was expanded to build � (line 7). In a second loop (lines 14 to 19), the
expansion patterns of the pattern that was expanded to build � have the same last feature that � and their values
of the last feature are similar, are added to the set ����������������� .

In a second loop (lines 14 to 19), the expansion patterns of the pattern that was expanded to build � *and* have
the same last feature that � , *with* their values are similar, are added to the set ����������������� .

Finally (lines 20 to 24), in a third loop, the similarity between � and each candidate patterns to be similar to � is
evaluated. Then, patterns similar to � are added to � .��������������� and the attribute � .���������� is updated.

Function getNonPPsFrom(��� ,������)
Input: ��� - expanded patterns set,

������ - Minimum occurrence threshold
Output: ������ - non prunable patterns set

1 ������ ← ∅

2 foreach � ∈ ��� do

3 if �.��� + �.���������� ≥ ������ then

4 ������ .add(�)

5 else

6 foreach �� ∈ �.��������������� do

7 if �� .��� + �� .���������� ≥ ������ then

8 ������ .add(�)

9 break

10 return ������

The iltering of the non prunable patterns from the expanded patterns (Function getNonPPsFrom) starts from
an empty new non prunable pattern set ����� (line 1) and simply adds to the expanded patterns that are FSPs
(lines 2 to 4) or have a least one similar patterns that is an FSP (lines 5 to 9). The resulted ����� is returned (line
10).

The exclusion of the prunable patterns saves time consumed to generate expanded patterns that will not be
FSP, nor will they contribute to the frequency of the FSP and compute their frequencies. A prune is done without
losing possible FSPs.

5 EXPERIMENTS AND RESULTS

In this section, the performance of the proposed algorithm X-FSPMiner is evaluated and compared with the
state-of-the-art algorithms that mine all FSPs using Boolean and non-increasing monotonic similarity functions
(i.e., ObjectMiner and STreeDC-Miner). Since these algorithms mine the same set of FSPs, the comparison was
made in terms of the eiciency of the algorithm measuring their runtimes. The less runtime of an algorithm is,
the more eicient the algorithm is.
Table 1 describes the datasets used in the experiment. These datasets proceed from the UC Irvine Machine

Learning Repository1.
The X-FSPMiner algorithm was implemented in Java. The Java implementations of ObjectMiner and STreeDC-

Miner provided by their authors were used. The experiment was done on a workstation with an Intel(R) Xeon(R)
CPU E5-2603 v3 at 1.60 GHz and 96Gb of RAM.

1https://archive.ics.uci.edu/ml/index.php

ACM Trans. Knowl. Discov. Data.

20 • Rodríguez-González et al.

Table 1. Description of datasets.

Datasets Objects Non-numerical Features Numerical Features

Abalone 4177 2 7

Auto MPG 392 3 5

AutoUniv au6 1000 4 36

Balance Scale 576 1 4

Breast Cancer Wisconsin 683 1 9

Liver disorders 345 1 6

Car Evaluation 1728 5 2

Contraceptive Method Choice 1473 9 1

Credit Approval 690 9 7

Pima indians diabetes 768 1 8

Glass Identiication 146 1 9

Heart Disease 270 1 13

Indian Liver Patient 579 2 9

Iris 150 1 4

Metadata 528 2 17

Poker Hand 1000000 11 0

Teaching Assistant Evaluation 151 3 3

Vehicle Silhouettes 846 1 18

Wine 178 1 13

Table 2. Number of FSPs by varying the������� from 0.02 to 0.20 with step 0.02 for each dataset.

Datasets 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Abalone 1233035 795360 492615 305439 187624 106475 62088 32168 15542 8724

Auto MPG 17422 7884 4290 2489 1622 1105 853 569 396 250

AutoUniv au6 657525 148507 54242 24580 13162 7313 4359 2837 1839 1369

Balance Scale 342 142 54 46 42 38 30 26 22 10

Breast Cancer Wisconsin 6080 3329 1991 1535 1311 1039 722 466 329 277

Liver disorders 14493 8466 5529 3908 2764 2040 1529 1170 896 703

Car Evaluation 1606 403 303 220 86 44 44 40 36 31

Contraceptive Method Choice 8573 2588 1211 727 475 326 233 185 145 121

Credit Approval 11000118 6623427 4624674 3429405 2678886 2081617 1642501 1306608 1043208 852004

Pima indians diabetes 45392 21941 12474 7974 5181 3483 2580 1938 1415 1094

Glass Identiication 75282 50310 36861 27445 20326 15456 11842 8935 6811 5297

Heart Disease 216199 71701 28352 14805 8434 4633 2966 1808 1231 882

Indian Liver Patient 391910 244431 174912 131207 103625 82719 67913 56948 47468 41623

Iris 1905 1011 549 320 207 109 82 54 44 41

Metadata 62535248 60037634 1107573 1107565 307308 307308 149632 149632 138858 89130

Poker Hand 739 288 247 62 62 42 22 22 22 22

Teaching Assistant Evaluation 1840 847 497 330 221 167 113 78 53 35

Vehicle Silhouettes 3360285 499974 158384 69829 34244 18681 10730 6777 5079 3756

Wine 33042 8761 4369 2298 1559 1021 783 566 411 285

For all dataset as a non-Boolean and non-increasing monotonic similarity function, we use the similarity
function (1) of section 3. For each numerical feature � , we use the comparison criteria (4) with � = � × (���� −

����), where���� is the maximum � ∈ �� ,���� is the minimum � ∈ �� and � = 0.05. In the particular case of
numerical features where���� −���� ≤ 5 we use � = 0.20. For non-numerical features, we use the equality (3)
as comparison criteria.

The experiment carried out consisted on the execution of the proposed algorithm X-FSPMiner and the state-of-
the-art algorithms ObjectMiner and STreeDC-Miner by varying the������� from 0.02 to 0.20 with step size of
0.02 for each dataset. In each execution of an algorithm, the number of FSPs mined and the runtime was measured
2.
The compared algorithms, including the proposed X-FSPMiner algorithm, mine the same FSPs (the set of all

FSPs given a minFreq threshold). The number of mined FSPs is shown in Table 2. The less the������� threshold
is, the greater the set of all FSPs is. But also, the runtime consumed by each algorithm (albeit diferent) is greater.

2The datasets, the algorithms, a script to exec the experiment, and the raw results are available on https://drive.google.com/drive/folders/
1XxZtayzcsZdVZRO8QzoJo30ntYBs-ZV_

ACM Trans. Knowl. Discov. Data.

https://drive.google.com/drive/folders/1XxZtayzcsZdVZRO8QzoJo30ntYBs-ZV_
https://drive.google.com/drive/folders/1XxZtayzcsZdVZRO8QzoJo30ntYBs-ZV_

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 21

Table 3. Runtimes (in millisecs) of the algorithms ObjectMiner, STreeDC-Miner, and X-FSPMiner by varying the�������

from 0.02 to 0.20 with step 0.02 for each dataset.

Datasets Algorithms 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

ObjectMiner 1321836 1112347 921384 782100 680862 569590 486949 419882 349935 195390

Abalone STreeDC-Miner 225719 225434 200320 167143 128258 91194 63358 40803 21199 11148

X-FSPMiner 110589 111646 106172 92077 77091 58944 41561 28913 15447 8351

ObjectMiner 1376 1188 889 903 665 627 460 350 359 264

Auto MPG STreeDC-Miner 539 449 394 337 304 281 301 230 234 192

X-FSPMiner 421 332 285 241 223 205 204 188 178 137

ObjectMiner 527636 314719 230808 148876 107343 68996 46281 31440 18273 11923

AutoUniv au6 STreeDC-Miner 78216 39737 21985 15110 11125 8952 7152 6524 6299 5349

X-FSPMiner 58908 25660 13973 8178 5803 4090 3002 2298 1951 1561

ObjectMiner 65 56 52 51 51 51 52 52 55 44
Balance Scale STreeDC-Miner 131 111 121 106 123 114 106 121 100 92

X-FSPMiner 78 89 85 82 66 82 81 82 80 56

ObjectMiner 244 236 187 142 136 127 131 118 106 105

Breast Cancer Wisconsin STreeDC-Miner 391 187 218 161 157 149 182 136 170 153

X-FSPMiner 184 126 135 111 100 97 92 86 84 98

ObjectMiner 720 520 487 368 363 299 270 253 238 233

Liver disorders STreeDC-Miner 480 433 391 313 371 341 333 330 280 299

X-FSPMiner 340 285 275 226 241 230 224 200 195 183

ObjectMiner 160 121 118 115 99 111 95 95 96 96

Car Evaluation STreeDC-Miner 201 164 174 126 148 153 120 148 150 148

X-FSPMiner 128 136 110 102 97 118 98 104 95 95

ObjectMiner 461 267 262 183 198 145 131 148 122 117

Contraceptive Method Choice STreeDC-Miner 353 242 175 202 149 144 137 145 165 163

X-FSPMiner 322 156 139 147 117 111 103 113 103 100

ObjectMiner 1281021 624057 415166 311993 250827 209661 177787 164093 136431 125857

Credit Approval STreeDC-Miner 837825 544999 450406 370530 325499 287746 260313 236854 214828 194065

X-FSPMiner 678452 373450 275090 221493 178267 154294 123777 116761 102169 83839

ObjectMiner 9371 7211 6223 5362 4587 4104 3906 3254 3063 2564

Pima indians diabetes STreeDC-Miner 2025 1608 1361 1346 1113 993 986 893 815 778

X-FSPMiner 1293 1168 918 903 673 794 619 586 480 459

ObjectMiner 2164 1463 1381 1019 1069 925 812 737 635 675

Glass Identiication STreeDC-Miner 941 979 970 715 575 499 496 472 420 425

X-FSPMiner 743 624 614 551 499 385 352 390 350 339

ObjectMiner 5463 1941 1117 679 513 385 330 279 250 225

Heart Disease STreeDC-Miner 2467 1241 882 613 605 329 383 307 315 328

X-FSPMiner 2543 1165 760 578 429 284 306 249 180 186

ObjectMiner 42855 32181 28101 24652 22204 19950 18151 16279 14813 13426

Indian Liver Patient STreeDC-Miner 17958 17437 15170 13819 12878 13505 13074 12133 11995 11087

X-FSPMiner 8380 6694 5972 5547 5059 4481 4218 4006 3834 3131

ObjectMiner 93 77 65 58 54 49 46 43 42 41
Iris STreeDC-Miner 147 141 121 133 131 123 124 121 94 118

X-FSPMiner 104 99 93 89 85 69 65 74 66 67

ObjectMiner 3955160 4081705 20812 20643 10350 10327 7828 7852 7750 6518

Metadata STreeDC-Miner 2631783 2480349 34449 33828 17647 17726 12216 12318 11682 9523

X-FSPMiner 3518015 4005714 29263 29209 13777 13513 6793 6781 6376 4422

ObjectMiner 142319 142200 136337 20451 20185 20285 20383 20526 20201 20770

Poker Hand STreeDC-Miner 37795 33628 29391 13443 11859 10438 8960 9043 8682 8904

X-FSPMiner 17638 16069 15341 4642 4568 4695 4706 4809 4563 4620

ObjectMiner 93 79 67 64 59 54 50 50 48 42
Teaching Assistant Evaluation STreeDC-Miner 138 107 125 132 99 127 101 94 118 119

X-FSPMiner 102 76 88 84 64 77 76 59 69 67

ObjectMiner 263099 49099 20210 10916 6844 4586 3101 2350 1732 1349

Vehicle Silhouettes STreeDC-Miner 120438 30736 15141 10174 6593 5108 3699 3034 2130 2019

X-FSPMiner 107173 28545 13560 8435 5859 4010 2399 1690 1282 998

ObjectMiner 2158 1442 1158 997 962 798 758 594 414 306

Wine STreeDC-Miner 789 452 366 342 300 307 303 267 277 199

X-FSPMiner 671 404 320 229 255 238 229 164 190 147

The performance of algorithms in terms of the runtime is shown in Table 3. For each dataset and�������, the
best runtime is marked in bold.
Although X-FSPMiner achieves the best runtime for all most cases, runtimes are not directly comparable for

diferent combinations of������� and ������� . However, for each������� and ������� , how many standard
deviations separate each algorithm runtime from the average runtime can be calculated. This measure, the

ACM Trans. Knowl. Discov. Data.

22 • Rodríguez-González et al.

standardized performance �� of an algorithm � for a������� � and a ������� � , is deined as:

���,�,� =
�����������,� − ��������,�,�

�����������,�
(6)

where ��������,�,� is the runtime of the algorithm � for������� � a and dataset � , �����������,� is the average
runtime of all algorithms for������� � and dataset � , and �����������,� is the standard deviation of all algorithms
for������� � and dataset � . Notice that the more positive an algorithm’s standardized performance is, the more
eicient (relative to the others) the algorithm is.

The average of the standardized performance of an algorithm for a dataset overall explored�������� summa-
rizes its performance for the dataset consistently (see Figure 4). Analogously, the average of the standardized
performance of an algorithm for a�������� overall used datasets summarizes its performance for the��������

(see Figure 5). Finally, a global average of all standardized performance of an algorithm summarizes its performance
(see Figure 6).

Fig. 4. Average standardized performance of X-FSPMiner, STreeDC-Miner and ObjectMiner by dataset.

In Figure 4, it can be seen that for all datasets, the behavior of X-FSPMiner is better than average behavior.
Also, for most datasets, X-FSPMiner achieves the best average standardized performance. For only four datasets
(Balance Scale, Iris, Metadata, Teaching Assistant Evaluation), the best average standardized performance was
obtained by another algorithm (ObjectMiner).

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 23

Fig. 5. Average standardized performance of X-FSPMiner, STreeDC-Miner and ObjectMiner by�������.

Figure 5 shows the average of the standardized performance of the algorithms for a�������� overall used
datasets. From this point of view, it can be seen that the behavior of theObjectMiner and STreeDC-Miner algorithms
generally does stay behind the average performance. ObjectMiner shows a trend to improve its behavior when
the �������� increases, while in contrast, STreeDC-Miner shows a trend to improve its behavior when the
�������� decreases. However, STreeDC-Miner, unlike ObjectMiner, for the two smallest values of �������� ,
slightly outperforms average behavior. Diferently, our proposed algorithm, X-FSPMiner, always outperforms the
average behavior and is far superior to the other algorithms. Additionally, X-FSPMiner shows a slight tendency to
improve its behavior with increasing�������� .

Fig. 6. Global average standardized performance of X-FSPMiner, STreeDC-Miner and ObjectMiner.

Finally, Figure 6 shows the global average of all standardized performance of each algorithm. It can be seen
that both ObjectMiner and STreeDC-Miner have a general behavior below the average (−0.37 and −0.48 standard
deviation from the average behavior, respectively). In contrast, the general behavior of X-FSPMiner is much
higher (0.86 standard deviation from average behavior).
The results presented summarize the broad superiority of X-FSPMiner in terms of runtime over ObjectMiner

and STreeDC-Miner.

ACM Trans. Knowl. Discov. Data.

24 • Rodríguez-González et al.

6 CONCLUSIONS

In this paper, we proposed X-FSPMiner, an eicient algorithm for mine all FSP using Boolean and non-increasing
monotonic similarity functions. X-FSPMiner employs the also proposed FV-Tree data structure to condense a
collection of objects described by numerical and non-numerical features and to fast compute the frequency of the
FSPs.

The results show that X-FSPMiner outperforms the average behavior of the state-of-the-art algorithms (Object-
Miner and STreeDC-Miner) in term of runtime. For most datasets tested, X-FSPMiner achieves the best average
standardized performance. On the other hand, for all�������� tested, the average standardized performance of
X-FSPMiner is far superior to the other algorithms. Summarizing both points of view, the global average of all
standardized performance of each tested algorithm reveals that the general behavior of our proposed algorithm,
X-FSPMiner, is greater than the average behavior in 0.86 standard deviation. In comparison, the behavior of the
other algorithms is lesser than the average behavior in −0.37 (STreeDC-Miner) and −0.48 (ObjectMiner) standard
deviation.

Although our proposed algorithm, X-FSPMiner, vastly outperforms the state-of-the-art algorithms, some issues
must be attended: I) There are real-world problems in which the study objects are compared using other types of
similarity functions not supported by X-FSPMiner (e.g., non-boolean or increasing monotonic similarity functions).
II) as the computation capabilities grow and information technologies are massively adopted, including the
Internet of Things, the size of study object collections in terms of the number of objects and features also grows,
implying that better computational performance is required. However, all the FSP mining algorithms (including
X-FSPMiner) are designed for a single computation core. They do not take advantage of the current multiple
CPU and GPU core capabilities. III) Although mining all FSP inds hidden knowledge, their main drawback
is that many frequent similar patterns are mined, leading to expensive post-analysis and post-processing. As
future work, we visualize addressing these issues as follows: I) Extend the FV-Tree data structure and X-FSPMiner

algorithm for non-boolean similarity functions, and design a new FSP mining algorithm based on relaxed pruning
for increasing monotonic similarity functions. II) Design a parallel FSP miner algorithm based on X-FSPMiner

considering the capabilities of multicore CPU and GPU architectures. III) Developing a metaheuristic FSP miner
algorithm for obtaining a representative subset of all FSP patterns.

REFERENCES
[1] Charu C Aggarwal. 2014. Applications of frequent pattern mining. In Frequent pattern mining. Springer, 443ś467.
[2] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large databases. In

Proceedings of the 1993 ACM SIGMOD international conference on Management of data. 207ś216.
[3] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data

bases, VLDB, Vol. 1215. 487ś499.
[4] Nathalie Alemán-García and Martha R. Ortiz-Posadas. 2021. Evaluation of Hepatic Fibrosis Stages Using the Logical Combinatorial

Approach. In Progress in Artiicial Intelligence and Pattern Recognition, Yanio Hernández Heredia, Vladimir Milián Núñez, and José
Ruiz Shulcloper (Eds.). Springer International Publishing, Cham, 158ś166.

[5] Nader Aryabarzan, Behrouz Minaei-Bidgoli, and Mohammad Teshnehlab. 2018. negFIN: An eicient algorithm for fast mining frequent
itemsets. Expert Systems with Applications 105 (2018), 129ś143.

[6] Vyacheslav Busarov, Natalia Grafeeva, and Elena Mikhailova. 2016. A Comparative Analysis of Algorithms for Mining Frequent Itemsets.
In Databases and Information Systems, Guntis Arnicans, Vineta Arnicane, Juris Borzovs, and Laila Niedrite (Eds.). Springer International
Publishing, Cham, 136ś150.

[7] Sung-Hyuk Cha. 2007. Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions. International
Journal of Mathematical models and Methods in Applied Sciences 1, 4 (2007), 300ś307.

[8] Yangming Chen, Philippe Fournier-Viger, Farid Nouioua, and Youxi Wu. 2021. Sequence Prediction using Partially-Ordered Episode
Rules. In 2021 International Conference on Data Mining Workshops (ICDMW). 574ś580.

[9] Roxana Danger, José Ruíz-Shulcloper, and Rafael Berlanga Llavori. 2004. Objectminer: A New Approach for Mining Complex Objects. In
ICEIS (2). Citeseer, 42ś47.

ACM Trans. Knowl. Discov. Data.

X-FSPMiner: A Novel Algorithm for Frequent Similar Patern Mining • 25

[10] ZhiHong Deng, ZhongHui Wang, and JiaJian Jiang. 2012. A new algorithm for fast mining frequent itemsets using N-lists. Science China
Information Sciences 55, 9 (Sept. 2012), 2008ś2030.

[11] Zhi-Hong Deng. 2014. Fast mining Top-Rank-k frequent patterns by using Node-lists. Expert Systems with Applications 41, 4, Part 2
(2014), 1763ś1768.

[12] Zhi-Hong Deng. 2016. DifNodesets: An eicient structure for fast mining frequent itemsets. Applied Soft Computing 41 (2016), 214ś223.
[13] Zhi-HongDeng and Sheng-Long Lv. 2015. PrePost+: An eicient N-lists-based algorithm formining frequent itemsets via ChildrenśParent

Equivalence pruning. Expert Systems with Applications 42, 13 (2015), 5424ś5432.
[14] Philippe Fournier-Viger, Wensheng Gan, Youxi Wu, Mourad Nouioua, Wei Song, Tin Truong, and Hai Duong. 2022. Pattern Mining:

Current Challenges and Opportunities. In Database Systems for Advanced Applications. DASFAA 2022 International Workshops, Uday Kiran
Rage, Vikram Goyal, and P. Krishna Reddy (Eds.). Springer International Publishing, Cham, 34ś49.

[15] J Gómez, O Rodríguez, S Valladares, J Ruiz-Shulcloper, et al. 1994. Prognostic of Gas-oil deposits in the Cuban ophiological association,
applying mathematical modeling. Geoisica Internacional 33, 3 (1994), 447ś467.

[16] G. Grahne and J. Zhu. 2005. Fast algorithms for frequent itemset mining using FP-trees. IEEE Transactions on Knowledge and Data

Engineering 17, 10 (2005), 1347ś1362.
[17] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. 2007. Frequent pattern mining: current status and future directions. Data Mining

and Knowledge Discovery 15, 1 (Aug. 2007), 55ś86.
[18] Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining Frequent Patterns without Candidate Generation. SIGMOD Rec. 29, 2 (May 2000),

1ś12.
[19] Hieu Hanh Le, Tatsuhiro Yamada, Yuichi Honda, Takatoshi Sakamoto, Ryosuke Matsuo, Tomoyoshi Yamazaki, Kenji Araki, and Haruo

Yokota. 2022. Methods for Analyzing Medical-Order Sequence Variants in Sequential Pattern Mining for Electronic Medical Record
Systems. ACM Trans. Comput. Healthcare (sep 2022). Just Accepted.

[20] Carson Kai-Sang Leung. 2009. Anti-monotone Constraints. Springer US, Boston, MA, 98ś98.
[21] Guimei Liu, Hongjun Lu, Wenwu Lou, Yabo Xu, and Jefrey Xu Yu. 2004. Eicient Mining of Frequent Patterns Using Ascending

Frequency Ordered Preix-Tree. Data Mining and Knowledge Discovery 9, 2 (Nov. 2004), 249ś274.
[22] Martha R. Ortiz-Posadas. 2017. The Logical Combinatorial Approach Applied to Pattern Recognition in Medicine. In New Trends and

Advanced Methods in Interdisciplinary Mathematical Sciences, Bourama Toni (Ed.). Springer International Publishing, Cham, 169ś188.
[23] Zhiwen Pan, Jiangtian Li, Yiqiang Chen, Jesus Pacheco, Lianjun Dai, and Jun Zhang. 2019. Knowledge discovery in sociological databases.

International Journal of Crowd Science (2019).
[24] J. Pei, Jiawei Han, Hongjun Lu, S. Nishio, S. Tang, and Dongqing Yang. 2001. H-mine: hyper-structure mining of frequent patterns in

large databases. Proceedings 2001 IEEE International Conference on Data Mining (2001), 441ś448.
[25] Ansel Y Rodríguez-González, Fernando Lezama, Carlos A Iglesias-Alvarez, José Fco Martínez-Trinidad, Jesús A Carrasco-Ochoa, and

Enrique Munoz de Cote. 2018. Closed frequent similar pattern mining: Reducing the number of frequent similar patterns without
information loss. Expert Systems with Applications 96 (2018), 271ś283.

[26] Ansel Y Rodríguez-González, José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, and José Ruiz-Shulcloper. 2008. Mining
frequent similar patterns on mixed data. In Iberoamerican Congress on Pattern Recognition. Springer, 136ś144.

[27] Ansel Y Rodríguez-González, José Fco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, and José Ruiz-Shulcloper. 2010. Using non
boolean similarity functions for frequent similar pattern mining. In Canadian Conference on Artiicial Intelligence. Springer, 374ś378.

[28] Ansel Yoan Rodríguez-González, José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, and José Ruiz-Shulcloper. 2011. RP-Miner:
a relaxed prune algorithm for frequent similar pattern mining. Knowledge and information systems 27, 3 (2011), 451ś471.

[29] Ansel Y. Rodríguez-González, José Fco. Martínez-Trinidad, Jesús A. Carrasco-Ochoa, and José Ruiz-Shulcloper. 2013. Mining frequent
patterns and association rules using similarities. Expert Systems with Applications 40, 17 (2013), 6823ś6836.

[30] Ansel Y Rodríguez-González, José F Martínez-Trinidad, Jesús A Carrasco-Ochoa, José Ruiz-Shulcloper, and Matías Alvarado-Mentado.
2019. Frequent similar pattern mining using non Boolean similarity functions. Journal of Intelligent & Fuzzy Systems 36, 5 (2019),
4931ś4944.

[31] J Ruiz-Shulcloper and A Fuentes-Rodrguez. 1981. A cybernetic model to analyze juvenile delinquency. Revista Ciencias Matemáticas 2, 1
(1981), 123ś153.

[32] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. 1995. An Eicient Algorithm for Mining Association Rules in Large
Databases. In Proceedings of the 21th International Conference on Very Large Data Bases (VLDB ’95). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 432ś444.

[33] Pradeep Shenoy, Jayant R. Haritsa, S. Sudarshan, Gaurav Bhalotia, Mayank Bawa, and Devavrat Shah. 2000. Turbo-Charging Vertical
Mining of Large Databases. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (Dallas, Texas,
USA) (SIGMOD ’00). Association for Computing Machinery, New York, NY, USA, 22ś33.

[34] Akbar Telikani and Asadollah Shahbahrami. 2018. Data sanitization in association rule mining: An analytical review. Expert Systems

with Applications 96 (2018), 406 ś 426.

ACM Trans. Knowl. Discov. Data.

26 • Rodríguez-González et al.

[35] José Fco. Martínez Trinidad, José Ruiz Shulcloper, and Manuel S. Lazo Cortés. 2000. Structuralization of universes. Fuzzy Sets and

Systems 112, 3 (2000), 485 ś 500.
[36] Amos Tversky. 1977. Features of similarity. Psychological review 84, 4 (1977), 327.
[37] Bay Vo, Sang Pham, Tuong Le, and Zhi-Hong Deng. 2017. A novel approach for mining maximal frequent patterns. Expert Systems with

Applications 73 (2017), 178ś186.
[38] Michael Weisberg. 2012. Getting serious about similarity. Philosophy of Science 79, 5 (2012), 785ś794.
[39] Y. . Woon, W. . Ng, and E. . Lim. 2004. A support-ordered trie for fast frequent itemset discovery. IEEE Transactions on Knowledge and

Data Engineering 16, 7 (2004), 875ś879.
[40] Jin Soung Yoo. 2019. Crime Data Warehousing and Crime Pattern Discovery. In Proceedings of the Second International Conference on

Data Science, E-Learning and Information Systems (Dubai, United Arab Emirates) (DATA ’19). Association for Computing Machinery,
New York, NY, USA, Article 40, 6 pages.

[41] M. J. Zaki. 2000. Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering 12, 3 (2000), 372ś390.
[42] Mohammed J. Zaki and Karam Gouda. 2003. Fast Vertical Mining Using Difsets. In Proceedings of the Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (Washington, D.C.) (KDD ’03). Association for Computing Machinery, New York,
NY, USA, 326ś335.

[43] Shuling Zhu. 2019. Research on data mining of education technical ability training for physical education students based on Apriori
algorithm. Cluster Computing 22 (2019), 14811ś14818.

ACM Trans. Knowl. Discov. Data.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Frequent Pattern Mining
	2.2 Frequent Similar Pattern Mining

	3 Basic concepts and notation
	4 X-FSPMiner
	4.1 Initialization block
	4.2 Build the tree structure
	4.3 Mining the frequent similar patterns

	5 Experiments and Results
	6 Conclusions
	References

