Molinar Solís, Jesús Ezequiel; Sánchez Gaspariano, Luis Abraham; García Lozano, Rodolfo Zolá; Ponce Ponce, Víctor; Ocampo Hidalgo, Juan J.; Molina Lozano, Herón; Díaz Sánchez, Alejandro

A Low-Complexity current-mode WTA circuit based on CMOS Quasi-FG Inverters

Instituto Politécnico Nacional
Distrito Federal, México

Available in: http://www.redalyc.org/articulo.oa?id=61520765004
A Low-Complexity current-mode WTA circuit based on CMOS Quasi-FG Inverters

Circuito WTA en Modo de Corriente y Baja Complejidad, Basado en Inversores Quasi-FG en CMOS

Jesús Ezequiel Molinar Solís,1 Luis Abraham Sánchez Gaspariano,2 Rodolfo Zolá García Lozano1, Víctor Ponce Ponce3, Juan J. Ocampo Hidalgo4, Herón Molina Lozano3 and Alejandro Díaz Sánchez.2

1Universidad Autónoma del Estado de México UAEM, Jose Revueltas 17, Tierra Blanca, 55020, Ecatepec, +52 (55) 57873626, MEXICO
jemolinars@uaemex.mx

2National Institute of Astrophysics, Optics and Electronics, INAOE Luis E. Erro 1, Tonantzintla, Puebla, +52 (222) 2663100, MEXICO.

3Centro de Investigación en Computación del IPN Av. Juan de Dios Batiz s/n, Col. Nueva Industrial Vallejo, C.P. 07738, Mexico D.F. +52 55 57296000

4Universidad Autónoma Metropolitana, UAM, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, C.P. 02200, México D.F. +52 55 43189000

Abstract. In this paper, a low-complexity current-mode Winner-Take-All circuit (WTA) of O(n) complexity with logical outputs is presented. The proposed approach employs a Quasi-FG Inverter as the key element for current integration and the computing of the winning cell. The design was implemented in a double-poly, three metal layers, 0.5µm CMOS technology. The circuit exhibits a good accuracy-speed tradeoff when compared to other reported WTA architectures.

Keywords. Winner-take-all, neural networks, analog circuits.

1 Introduction

A WTA is a circuit capable of identifying the highest value from a set of multiple input signals. Those circuits play an important role in the development of complex neural networks, fuzzy controllers and nonlinear systems. The first MOS WTA circuit introduced by Lazzaro (Lazzaro et al.), is shown in Figure 1. This compact circuit with current-mode inputs has a common connection, V_c, which causes the inhibitory behavior of those. The principle of operation can be explained as follows: for two different current inputs $I_1=I_m+\Delta I$ and $I_2=I_m$; the excess of current in I_1 causes a voltage increment of V_c in transistor T_2; this voltage rises until I_1 is totally sunk through T_1. Since transistors share a common gate voltage, the new V_c voltage origins that T_2 sinks ΔI more current than I_2 does, and therefore V_{o2} experiments a gradual decrease towards 0V approximately. This computation eventually produces a winner cell with a voltage output, V_o, different from zero.
The main drawback of Lazzaro’s approach lies on its low speed response. Many authors have proposed diverse improvements in order to obtain a higher processing rate; this is the case of (DeWeerth et al.), where a hysteresis loop is added and (Liu S. et al.), a common-source configuration stage improves the overall performance of the cell. Other Rank-Order Filters use voltage-mode WTA circuits of $O(n^2)$ complexity (Cilingiroglu U. et al.). In those approaches switched capacitor techniques and positive feedback are employed bringing interesting results. Nevertheless, large area and high power consumption, which must be avoided when implementing WTAs.

A voltage mode WTA of $O(n)$ complexity was proposed by Yamashita. (Yamashita et al.), Fig. 2.

For this WTA the potential at the Floating Gate (FG) inverter, F, is given by $V_{FG} = (C_1V_{in} + C_2V_{th})/C_T$, since $C_1 = C_2$ and $C_T = C_1 + C_2$, the V_{FG} potential can be reduced to $V_{FG} = (V_{in} + V_{th})/2$. The WTA cell requires two input voltages, a voltage ramp V_R and the voltage input V_{in}. This circuit works as follows, in the beginning when $V_R = 0$, the V_{FG} potential is lower than the threshold voltage V_{th} at F, in this case, every cell output voltage V_{out} is zero and the output of the NOR gate is a logic “high”. This condition leads to transistor T1 to a conducting state. When V_R starts to rise, the cell with the largest V_{in} will fulfill first the threshold voltage V_{th} at the floating gate bringing a V_{out} high. In this case, the NOR gate will be zero leading T1 to cutoff, which guarantees a single winner cell. Then, transistor T2 is turned on closing the positive feedback loop and in this way the “winner” cell is latched with a logic high at the output. However, for many applications it is desirable a WTA circuit with current mode inputs, since in this mode the different inputs can be easily manipulated using Kirchoff Current Law before the WTA. A typical example is a Hamming Network which is easier to be implemented in this mode (Li et al.). An important drawback of Yamashita’s WTA is the external voltage ramp requirement for proper operation, which inevitably leads to a more complex circuitry. Furthermore, it has been demonstrated recently that real “floating” structures present trapped charge, which inevitably lead to an offset voltage at the FG with a given scattering among structures, unless an UV erasing technique is employed (Molinar-Solis et al.). In this sense, the Quasi-FG structures present less scattering and do not need extra erasing steps.

In the present work, authors introduce a current-mode WTA cell based on a similar principle, in this proposed approach, the input of the WTA cell is a sampled current I_{in} and each WTA cell generates a voltage ramp by means of a coupling capacitance connected to a Quasi-FG inverter and this condition will produce an eventually winning cell. The paper is organized as follows: the operation of the proposed WTA cell is described in section 2; PSpice simulations of a five cells array and their corresponding experimental results are presented in section 3 and 4, respectively; finally, the conclusions are established in section 5.

2 WTA Cell proposed

The key element of the WTA cell is the Quasi-FG Inverter F, Figure 3. The transistor $M1$ acts as a switch and combined with a Nand gate $N1$ is the inhibition part of the circuit. By means of the...
potential V_{pre} through diode $D1$ the initial condition on the floating gate, $V_{FG}(0)$, is established. This diode $D1$ is implemented with a P+ diffusion and an N-well.

The FG potential, V_{FG}, for the capacitive inputs $C1$ and $C2$, is given by:

$$V_{FG} = V_{FG}(0) + \frac{V_X \cdot C_2 + V_F \cdot C_1}{C_T}$$

(1)

Where V_X is the potential at node X; $C1$ and $C2$ exhibit a value of 0.3pF for this particular case and C_T is the total FG capacitance including parasitics. The value of C_T is related with the parasitic capacitance calculation of the NMOS and PMOS transistors, commonly, $C_T \approx 0.9C_F$ must be fulfilled in order to neglect the parasitic capacitance contribution in (1).

The cell works in the following manner: a clock signal sets the initial condition, when it is “high”, $M1$ is on through the Nand gate $N1$ and eventually sinks the input current, I_{in}, Figure 4. $SW1$ is closed and the $V_{n}(0)$ potential is fixed to GND. On the other hand, when the clock signal is ‘low’, $M1$ is off through $N1$ and the sampled current I_{in} begin its integration. At the same time, $SW1$ is opened fixing $V_{FG}(0)$ to a potential given by V_{pre} through $D1$. The total capacitance at node X neglecting parasitics is $C_X = C_2 || C_F = 0.15pF$ and following the typical expression for a capacitor, the V_X at this node can be calculated as $\int I_{in} dt/C_X$. For the constant current I_{in}, $V_{FG}(t)$ can be expressed as:

$$V_{F}(t) = I_{in} t$$

(2)

This denotes a ramp voltage whose slope is proportional to the magnitude of the sampled current. Using (2) in (1) the slope of V_{FG} will be given by:

$$\frac{dV_{FG}}{dt} = \frac{I_{in}}{C_1}$$

(3)

Thus, as the input current is integrated, the V_{FG} potential will increase until the inverter threshold voltage V_{th} is reached, when this happens V_F will be turned to a logic “high” and a positive feedback loop through $C1$ will latch this logic value at V_F, even if V_X is lowered afterwards by $M1$.

Fig. 4. A WTA with n inputs and the inhibition mechanism
When connecting an N-cells array, as illustrated in Figure 4, there will be a winning cell whose potential \(V_{fa} \) has locked its output with a “high” value. The rest of the cells remain inhibited and thus a single winner is attained. The inhibition mechanism is achieved through the use of the transistor \(M1 \) in the cell and the Nand gate \(N1 \). When a given cell has won, the output “low” from \(F \) activates the Nand gate, which, turns on the \(M1 \) transistor of every cell. This transistor act as a current sink for every constant input current \(i_{in2}, i_{in3} \) etc. and in this way, the voltage \(V_x \) of these cells do not rise any longer and consequently the latched cell with the “high” output at \(V_f \) will be the absolute winner.

It is important to address that \(V_{fa} \) must fulfill a value between \(0 \leq V_{fa} < V_{th} + V_{drop} \) where \(V_{drop} \approx 0.5V \) is a voltage drop present in \(DT \) (Molinar-Solis et al). This range for \(V_{fa} \) initial condition bounded within \(0 \leq V_{fa}(0) < V_{th} \). Ideally the maximum contribution of \(V_F \) to \(V_{fa} \) is \(\frac{1}{2} V_{DD} \) and for this design, \(V_F = 1.2V \), so, a \(V_{fa}(0) \geq 0 \) is necessary in order to \(V_{fa} \) be able to reach \(V_{th} \), in this case a \(V_{fa} = 1V \) was considered. Also, \(V_{fa}(0) \) must lie below \(V_{in} \) in order to guarantee that the output voltage, \(V_f \), is initially at zero volts. Note that by switching SW1 to GND, the circuit breaks the positive feedback loop and reset the latches. The switch is implemented by means of an NMOS transistor.

The WTA response time is related to the input current magnitude, this is, the time it takes to \(V_{fa} \) to reach \(V_F \) from the initial condition \(V_{fa}(0) \). According to (3), this is:

\[
V_{th} - V_{FG}(0) = \frac{I_{in}}{C_1} (t_1 - t_0)
\]

Where \(t_0 \) is the time when the integration is started, so if \(t_0=0 \), the response time is given by \(t_1 \), this is:

\[
t_1 = \frac{V_{th} - V_{FG}(0)}{I_{in}} = \frac{V_{dif}}{I_{in}}
\]

With \(V_{dif} = V_{fa} - V_{FG}(0) \).

The WTA accuracy is related to the Quasi-FG inverter and Nand gate time response and when a given cell has won, the time associated to turn on \(M1 \) is crucial. If another cell also reaches \(V_n \) before \(M1 \) is turned on, the WTA will latch more than one single winner. The time response of the Quasi-FG inverter and the Nand gate is around 3ns, so, a difference in time of \(-8ns \) between de winning cell and the second closest cell must be fulfilled for proper operation.

This difference of 8ns has implications on the magnitude of the input currents, if \(i_i \) is considered the magnitude of the input current of the winning cell, the second closest input current \(i_i \) must hold:

\[
i_i \leq \frac{1}{1 + \frac{8ns}{C_1 V_{dif}}}
\]

From equation (5) and (6) can be noticed that the WTA accuracy and speed are inversely proportional.

3 WTA simulations on PSpice

Simulations with PSpice were realized using 0.5µm technology parameters from MOSIS AMI foundry. A biasing voltage of 1.8V was employed. Different time domain simulations were performed. Here, a case with the following input currents values: cell1=1.05µA, cell2=1µA, cell3=1.32µA, cell4=1.2µA and cell5=1.45µA, is presented. The different simulated cell outputs are presented in Figure 5a). All the \(V_{fa} \) potentials are plotted such that the different slopes can be distinguished, Figure 5b), the transistors aspect ratio is presented in Table 1.

According to the results obtained in simulation, an accuracy of 50nA, and a time response nearly to 183ns, with a power consumption of 3.2µW per cell are achieved. Note that in our proposal, the voltage ramp at \(V_F \) is function of the input current and the \(C_1 \) capacitance, so the input current ranges for the circuit are limited by these two factors. The time response is also bounded by the input current, for small values, a larger time is necessary to overpass the threshold voltage \(V_n \) of the Quasi-FG inverter.
A Low-Complexity current-mode WTA circuit based on CMOS Quasi-FG Inverters

4 Experimental Results

A prototype chip was fabricated on AMI 0.5µm through MOSIS, five cells were fabricated and tested. Figure 6. The input currents were introduced to each cell by using a cascade current mirror with aspect ratio 44:1, so, reducing the input current by the same factor. Thus, input currents can be easily handled outside the chip and introduced with an external current source.

In order to reduce the charge effects due to the oscilloscope probes and PCB parasitic capacitances, a digital output buffer was also included in the cell. This buffer consists of a chain of four inverters, where the first stage is aspect ratio is PMOS 3.6µm/0.6µm and the NMOS 1.5µm/0.6µm, each subsequent inverter has a larger channel width multiplied by a factor of three with respect the previous inverter. Exhaustive measurements were made; the WTA circuit presents a good performance. One of the measurements was considered with the same conditions as the simulation presented: I1=1.05µA, I2=1µA, I3=1.32µA, I4=1.2µA, I5=1.45µA. The circuit was tested as simulations with VDD=1.8V with a Clock signal of 1MHz. From all input currents, the winning cell should be the number five. The output response of cell5 measured with a digital oscilloscope is presented in Figure 7a).

The output response of cell1 after input I5, I4 and I3 are disabled, i.e. I5=I4=I3=0µA, is shown in Figure 7b). The cell1 brings correctly an output high, and cell2 is inhibited, afterwards I1 is disabled also, and cell2 brings a logic high as the new winner, Figure 7c). The difference between cell1 and cell2 is as in simulations of about 50nA.

Fig. 6. Microphotograph of the five WTA cells

Tabla 1. Transistor sizes for a WTA cell

<table>
<thead>
<tr>
<th>WTA cell</th>
<th>Transistor</th>
<th>Aspect Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>PMOS</td>
<td>3µm/1.5µm</td>
</tr>
<tr>
<td></td>
<td>NMOS</td>
<td>1.5µm/1.5µm</td>
</tr>
<tr>
<td>INV1</td>
<td>PMOS</td>
<td>6µm/1.5µm</td>
</tr>
<tr>
<td></td>
<td>NMOS</td>
<td>6µm/1.5µm</td>
</tr>
<tr>
<td>M1</td>
<td>NMOS</td>
<td>2.1µm/1.5µm</td>
</tr>
<tr>
<td>SW1</td>
<td>NMOS</td>
<td>1.5µm/1.5µm</td>
</tr>
</tbody>
</table>

Fig. 5. Time domain simulations of a five cells array using PSpice, a) The logic cell outputs, b) The Vce slopes
Comparisons among recent different current-mode WTAs previously reported are shown in Table 2. Of those, the structures of Fish and Chieng-Cheng exhibit a good accuracy and response time. However, the proposed cell presents a good accuracy-speed trade-off and it is able to work in low-voltage applications.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>(Massari et al.)</th>
<th>(Fish et al.)</th>
<th>(Chieng-Cheng et al.)</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Supply</td>
<td>3.3V</td>
<td>3.3V</td>
<td>3.3V</td>
<td>1.8V</td>
</tr>
<tr>
<td>Accuracy</td>
<td>200pA(sim.)</td>
<td>30nA(meas.)</td>
<td>20nA(sim.)</td>
<td>50nA(meas.)</td>
</tr>
<tr>
<td>Response Time</td>
<td>~2.5µs</td>
<td>8-32ns</td>
<td>-</td>
<td>~480ns</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>16.5µW array</td>
<td>87.5µW per cell</td>
<td>-</td>
<td>3.2µW per cell</td>
</tr>
<tr>
<td>Technology</td>
<td>-</td>
<td>0.35µm</td>
<td>0.35µm</td>
<td>0.5µm</td>
</tr>
</tbody>
</table>
5 Conclusion

A novel current-mode WTA circuit for low-voltage applications has been introduced. Since the WTA core is a Quasi-FG CMOS push-pull inverter, the circuit is allowed to work with voltages near to the sum of the complementary threshold voltages $V_{TN} + V_{TP}$, in this case 1.8V.

The approach makes use of a small transistor count per cell and the experimental measurements show an accuracy of 50nA despite the slow response. This condition could be related to parasitic capacitances from the printed circuit board, since an important difference exists when is compared with the simulations. The obtained electrical features can be compared with other recent WTA circuits reported.

Acknowledgments

Authors would like to thank to the MEP MOSIS research program.

References

Rodolfo Zolá García Lozano

Was born in Mexico City, Mexico in 1973. He received the electronics engineering degree from Technologic of Advanced Studies from Ecatepec (TESE), Mexico in 1996. He obtained the Ph.D degree in Electrical Engineering at the Center of Research and Advanced Studies (CINVESTAV-IPN), Mexico City, in 2005. He is currently working as a Titular Professor with the Mexico State Autonomous University (UAEM) at Ecatepec, Estado de Mexico. His research interests are related to electronics circuits and thin film devices applications.

Víctor Hugo Ponce Ponce

Received the B. Tech. degree in electronics engineering from the Superior School of Mechanical and Electrical Engineering (ESIME) of the National Polytechnic Institute (IPN) of Mexico, in 1993, and the M. of Sc. and Ph.D. degrees in electrical engineering from Center for Research and Advanced Studies (CINVESTAV-IPN) at Mexico City, in 1994 and 2005, respectively. Since 1995 he has worked as an associate professor at the IPN, and since 1997 he joined to the Interdisciplinary School of Engineering and Advanced Technologies (UPIITA-IPN), where he is currently working as a Titular Professor at the Graduate School. His research interests include CMOS design circuits and vision sensors.

Juan J. Ocampo Hidalgo

Herón Molina Lozano

Received the electrical engineering degree from the Superior School of Mechanical and Electrical Engineering (ESIME) of the National Polytechnic Institute (IPN) in Mexico City. He obtained the Ph. D. degree from the Center for Research and Advanced Studies (CINVESTAV-IPN) and he is currently working as a titular professor in the Computing Research Centre (CIC-IPN). His interests are related to Fuzzy Systems and Artificial Neural Networks.

Alejandro Díaz Sánchez

Received the B.E. from the Madero Technical Institute and the M.Sc. from the National Institute for Astrophysics, Optics and Electronics, both in México, and the Ph.D. in Electrical Engineering from New Mexico State University at Las Cruces, NM. He is actually working as Full Professor at the National Institute for Astrophysics, Optics and Electronics, in Tonantzintla, Mexico. His research concerns analog and digital integrated circuits, high performance computer architectures and signal processing.