
Expert Systems with Applications 40 (2013) 6283–6291
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Fisher’s decision tree
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.05.044

⇑ Corresponding author. Address: Universidad Autónoma del Estado de México,
Centro Universitario Zumpango. Tel.: +52 555919174140.

E-mail address: alchau@uaemex.mx (A. López-Chau).
Asdrúbal López-Chau a,⇑, Jair Cervantes b, Lourdes López-García a, Farid García Lamont b

a Centro Universitario UAEM Zumpango, Camino viejo a Jilotzingo continuación calle Rayón, Valle Hermoso. Zumpango, Estado de México C.P. 55600, Mexico
b Centro Universitario UAEM Texcoco, Av. Jardn Zumpango s/n, Fracc. El Tejocote, Texcoco, México C.P. 56259, Mexico

a r t i c l e i n f o
Keywords:
Oblique decision tree
Fisher’s linear discriminant
C4.5
a b s t r a c t

Univariate decision trees are classifiers currently used in many data mining applications. This classifier
discovers partitions in the input space via hyperplanes that are orthogonal to the axes of attributes, pro-
ducing a model that can be understood by human experts. One disadvantage of univariate decision trees
is that they produce complex and inaccurate models when decision boundaries are not orthogonal to
axes. In this paper we introduce the Fisher’s Tree, it is a classifier that takes advantage of dimensionality
reduction of Fisher’s linear discriminant and uses the decomposition strategy of decision trees, to come
up with an oblique decision tree. Our proposal generates an artificial attribute that is used to split the
data in a recursive way.

The Fisher’s decision tree induces oblique trees whose accuracy, size, number of leaves and training
time are competitive with respect to other decision trees reported in the literature. We use more than
ten public available data sets to demonstrate the effectiveness of our method.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Classification is an important task in pattern recognition, ma-
chine learning and data mining. It consists in predicting the cate-
gory, class or label of previously unseen objects. Methods that
implement this task are known as classifiers.

Decision trees (DT) are powerful classifiers widely used in many
applications such as intrusion detection (Li, 2005), stock trading
(Wu, Lin, & Lin, 2006), health (Cruz-Ramírez, Acosta-Mesa, Carril-
lo-Calvet, & Barrientos-Martínez, 2009; Fan, Chang, Lin, & Hsieh,
2011), fault detection of induction motors (Pomorski & Perche,
2001) and online purchasing behavior of users (Xiaohu, Lele, &
Nianfeng, 2012).

DT have some advantages over other methods such as to be tol-
erant to noise, support missing values and be able to produce mod-
els easily interpreted by human beings. In addition, the induction
of DT is not costly.

The general algorithm to induce decision trees from data works
separating or splitting the data recursively, in such way that parti-
tions are increasingly purer up to certain criterion is satisfied.

Classical DT such as CART (Breiman, Friedman, Olshen, & Stone,
1984) and C4.5 (Quinlan, 1993) split the data using hyperplanes
that are orthogonal to axes, this kind of trees is known as univar-
iate or axis-parallel DT. The splits are found testing every axis at
each possible splitting point.
They are two intrinsic characteristics of axis-parallel decision
trees: (a) The separating boundaries may result in complicated or
inaccurate trees if the decision boundary of data set is described
by hyperplanes not orthogonal to axes of features (Cantu-Paz & Ka-
math, 2003), (b) The computational cost increases whether the
attributes are of numeric type or there is a large number of
features.

The oblique (or multivariate) trees are DT whose separating
hyperplanes are not necessarily parallel to axes, in contrast, the
hyperplanes can have an arbitrary direction. The induced oblique
DT are usually smaller and in certain cases they achieve better clas-
sification accuracy than univariate DT, however the characteristic
to be interpretable vanishes.

Several algorithms to induce oblique DT have been proposed
before, they can be categorized according to the technique used
to create the decision boundaries. One type uses an optimization
step to determine separating hyperplanes (Murthy, Kasif, & Salz-
berg, 1994; Shah & Sastry, 1999; Menkovski, Christou, & Efremidis,
2008; Manwani & Sastry, 2009), usually these methods are costly
in terms of complexity. Other use heuristics (Iyengar, 1999) to
avoid the computational cost, the accuracy achieved is comparable
to univariate trees. Other methods apply genetic algorithms to pro-
duce more accurate trees (Cantu-Paz & Kamath, 2003; Shali, Kang-
avari, & Bina, 2007), an important remark with this approach is
that the efficiency of greedy methods to induce trees is not
preserved.

In our case we use projection on a vector that maximizes the
distance between the means, which corresponds to the vector of
Fisher’s linear discriminant. Similar methods such as (Henrichon

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.eswa.2013.05.044&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.05.044
mailto:alchau@uaemex.mx
http://dx.doi.org/10.1016/j.eswa.2013.05.044
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


6284 A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291
& Fu, 1969; Gama, 1997, 1999) follow this approach however they
need to add more attributes to the training set and they use the
first principal components.
1.1. Our contribution

In this paper we present the design, implementation and evalu-
ation of an oblique decision tree induction method that is designed
for binary classification problems.

The main characteristics of our method are the following: (a)
The Fisher’s Linear Discriminant Tree induces oblique trees from
data, using only one artificial attribute to split the data, recursively.
(b) The test of split points is realized on the artificial attribute, so
the number of tests is equal to the number of objects at each node.
(c) The supported attribute type is numeric, this common in most
oblique trees. (d) The method is designed for binary classification.

Our method is programmed using in Java programming lan-
guage and based on the Weka platform. An executable jar file of
Fisher’s decision tree is public available at http://www.media-
fire.com/?g1meq364bsvs18l.1

The Fisher’s decision tree works as follows:

1. A vector (x) that maximizes the distance between mean of two
classes is computed.

2. All objects in data set are projected on x.
3. An hyperplane that best splits the data is computed using the

entropy gain criterion.
4. A sub tree is grown in each partition.
5. The steps are recursively applied.

To the best of our knowledge this is the first time that a decision
tree method is implemented as presented here and also the com-
plete implementation and source code is made public available,
other proposals with a similar approach are shown in the next
section.

The rest of this paper is organized as follows. The related work
is shown in the Section 2. A brief review on decision trees and Fish-
er’s linear discriminant is presented in Section 3, the proposed
method is explained in Section 4. The results of experiments and
discussion are in Section 5, finally the conclusions and future work
are in Section 6.
2. Related work

The paper presented in Henrichon and Fu (1969) is the first in-
tent to induce models from data that resemble current decision
trees. In that work authors gave ‘‘examples of indications of some
methods which may be useful for improving recognition accuracies’’,
they propose to use ‘‘linear transgeneration units’’’ that can be seen
as linear combinations of inputs. In Henrichon and Fu (1969) it is
mentioned that observation points can be mapped into a line cor-
responding to the direction of the eigenvector associated with the
largest eigenvalue of an estimated covariance matrix, which is sim-
ilar to our work, however, there are some differences: first, some
features are added to the training set (maximum eigenvector, lin-
ear discriminant a Quadratic form), in our proposal this is not nec-
essary. Second, they use pre-prunning technique, whereas our
approach use post-pruning. Third, the other method uses the first
principal components.

The Robust Linear Decision Trees (John, 1994) is a method that
can induce oblique decision trees, the method is based on a soft-
ened linear discriminant function to discover best split points, such
1 For obtaining the complete source code, write a mail to alchau@uaemex.mx.
function has the form (1). They iteratively solve an optimization
problem using gradients.

gh ¼ 1=ð1þ expð�hT xÞÞ ð1Þ

Another idea to build oblique decision trees was presented in 1984
in the Classification and Regression Trees methodology (Breiman
et al., 1984), the method was called CART-LC (CART Linear Combi-
nation). In that work the set of allowable splits was extended to in-
clude all linear combinations splits, which have the form (2), this
model is currently used in many other decision trees.

The CART-LC was reported to achieve competitive accuracy
with respect to other classification methods (see Breiman et al.,
1984, p. 39), however solving the set of linear combinations using
deterministic heuristics search is computational costly.

Xm

i¼1

amxm 6 C? ð2Þ

The LMDT algorithm (Utgoff & Brodley, 1991) solves a set of R mul-
ti-class linear discriminant functions at each node, they are collec-
tively used to assign each instance to one of the R classes. A problem
with LMDT is that convergence can not be guaranteed, so a heuristic
must be used to determine when a node has stabilized.

The OC1 (Murthy et al., 1994) method combines hill climbing
with randomization to find good oblique separating hyperplanes
at each node of a decision tree, the key idea relies on perturbing
each of the parameters of the hyperplane split rules individually
several times to achieve the optimization. The OC1 computes both
the axis-parallel splits and then the separating hyperplanes to de-
cide which to use.

In Setiono and Liu (1999) an artificial neural network is used to
build an oblique decision tree as follows, the data is first used to
train a neural network having only one hidden layer. After that
the hidden unit activation values of the network are used to build
a decision tree. Then each test at the nodes of the tree is replaced
by a linear combination of initial attributes.

The APDT algorithm in Shah and Sastry (1999) uses the concept
‘‘degree of linear separability’’, it uses a function that minimizes
non separable patterns in children nodes. When a child node is lin-
early separable, the split that puts more patterns in that child node
is preferred, preserving linear separability.

The Linear Discriminant Trees presented in Yildiz and Alpaydin
(2000) resembles our method, but it uses the K main components
of PCA, and addition it requires to train a neural network for the
splits.

In the HOT heuristics (Iyengar, 1999) the projections on a vector
are used to create oblique splits. The vector is produced joining the
centroids of the two adjacent regions discovered by an axis-paral-
lel decision tree.

The Oblique Linear Tree and Discriminant Tree were proposed
in Gama (1997, 1999) respectively. The main differences with
our method is that they do not use the same discriminant function
that we apply and in their method the number of attributes can
change along the tree.

In Vadera (2005) an oblique decision tree is developed, that
algorithm uses the linear discriminant analysis to identify oblique
relationships between (continuous) attributes and then carries out
an appropriate modication to ensure that the resulting tree errors
on the side of safety. Because that algorithm is oriented to optimize
the cost of misclassification it searches in every attribute, produc-
ing an accurate classifier at expense of investing more time to in-
duce the tree.

The LST algorithm (He, Xu, & Chen, 2008) transforms local data
from its original attribute space to the singular vector space, it uses
linear independent combinations of the original attributes to build
a oblique tree. From the results in He et al. (2008), it can been

http://www.mediafire.com/?g1meq364bsvs18l
http://www.mediafire.com/?g1meq364bsvs18l


A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291 6285
observed that the local singular vector space constructed by LST
does not necessarily lead to the better classification result.

The algorithm in Menkovski et al. (2008) is based on a combina-
tion of support vector machine and C4.5 algorithm. This can be-
come a bottleneck because it requires to solve quadratic
programming problems, which computation has a complexity be-
tween O(n1.5) and O(n2).

Recently, other methods to induce oblique decision trees using
evolutionary algorithms have been proposed (Vadera, 2010), see
(Barros, Basgalupp, de Carvalho, & Freitas, 2011) for a survey on
these techniques. We think that comparison of greedy methods
to induce decision trees against evolutionary methods is not just,
because although the reported results in Barros et al. (2011) show
that the second methods produce better trees in terms of accuracy,
these methods explore the space of solutions in a different way,
usually using randomly procedures that allow to scape from local
optima at expense of increasing computational cost.

3. Preliminaries

The core of proposed method is based on a combination of clas-
sic univariate decision tree and the Fisher’s discriminant classifier,
before presenting our method, an overview of these two topics is
exposed.

3.1. Decision trees

Decision tree is a classifier method able to produce models that
can be comprehensible by human experts (Breiman et al., 1984).
Among the advantages of decision trees over other classification
methods are (Cios, Pedrycz, Swiniarski, & Kurgan, 2007): robust-
ness to noise, ability to deal with redundant attributes, generaliza-
tion ability via post-pruning strategy and a low computational
cost, this last is more notorious when decision trees are trained
using data sets with nominal attributes.

A trained decision tree is a tree structure that consists of a root
node, links or branches, internal nodes and leaves. The root node is
the topmost node in the tree structure, the branches connect the
internal nodes (root, internal and leaves), finally the leaves are ter-
minal nodes which have not further branches.

Classic decision tree algorithms such as CART, C4.5 and ID3, cre-
ate or grow trees using a greedy top-down recursive partitioning
strategy. In order to explain the general training process of decision
trees on numeric attributes, let’s represent the training data sets as
in (3).

X ¼ fðxi; yiÞ; i ¼ 1; ::;M: s:t: xi 2 Rd; yi 2 fC1; . . . ;CLgg ð3Þ

With
X
 Training set,

xi
 A vector that represents an example or object in X,

yi
 The category or class of xi,

M
 Number of examples in training set,

d
 Number of features,

L
 Number of classes.
The general methodology to build a decision tree is as follows:
beginning from root node (it contains X), split the data into two or
more smaller disjoint subsets, each subset should contain all or
most of its elements with the same class, however this is not nec-
essary. Each subset can be considered as a leaf whether certain cri-
terion is satisfied (usually a minimum number of objects within
the node or a level of impurity), in this case the partition process
is stopped and the node is labeled according majority class in that
node, otherwise the process is recursively applied on each subset.
A branch or link is created from a node to each one of its partitions.

The data in a node is split computing the attribute that pro-
duces the purer partitions. The test to determine best attribute typ-
ically takes the form (4). Among all possible values, the general
heuristic is to choose the attribute that decreases the impurity as
much as possible (Duda, Hart, & Stork, 2000).

There are different impurity measures, most common are infor-
mation impurity or entropy impurity (5), variance impurity for two
class problems (6), gini impurity (7) and miss classification impu-
rity (8).

xi;j 6 xk;j? ð4Þ

with
xi,j The value of jth feature (0 < j 6 d) of the ith object in X,
xk,j The value of jth feature of the kth object in X,k = 1, . . . N,N the

number of elements within the node.

iðNodeÞ ¼ �
XL

l¼1

Pðy ¼ clÞlog2ðPðy ¼ clÞÞ ð5Þ

with P(y = cl) the fraction of objects within the node that have class
cl.

iðNodeÞ ¼ Pðy ¼ c1ÞPðy ¼ c2Þ ð6Þ

iðNodeÞ ¼
XL

l¼1;m¼1;m–l

Pðy ¼ clÞPðy ¼ cmÞ ð7Þ

iðNodeÞ ¼ 1�maxcl
Pðy ¼ clÞ ð8Þ

Once a decision tree has been growth, the general methodology
suggests to (post) prune the tree to avoid over-fitting.

3.2. Fisher’s linear discriminant

Fisher linear discriminant can be considered as a method for
linear dimensionality reduction. The method is based on minimiz-
ing the projected class overlapping that maximizes the distance
between class means while minimizing the variance within each
class.

Considering a binary classification problem, the training data
set has same structure (3). Let’s separate X into two subsets X+

and X�.

Xþ ¼ fxi 2 X s:t: yi ¼ c1g ð9Þ
X� ¼ fxi 2 X s:t: yi ¼ c2g ð10Þ

The means l+ and l� for X+ and X� respectively are computed using
(11).

l� ¼ 1
jX�j

XjX�j

i¼1

x; x 2 X� ð11Þ

With

X± Represent X+ or X�,

l± Represent either l+ 2 Rd or l� 2 Rd

Let be x 2 Rd a vector used to project every example in X. The
mean of projections on x is given by (12).

m� ¼ 1
jX�j

XjX�j

i¼1

xi; x 2 X� ð12Þ

With

xi = xTx



Fig. 1. Splitting a set of points using the artificial attribute.

Fig. 2. Fisher’s decision tree applied on a toy example.

6286 A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291
m± representing the mean of projections of objects either in X+ (m+)
or in X+ (m�).

Combining (12) and (11) we obtain (13).

m� ¼ 1
jX�j

XjX�j

i¼1

pi ¼
1
jX�j

XjX�j

i¼1

xT x ¼ xT 1
jX�j

XjX�j

i¼1

x ¼ xTl� ð13Þ

Fisher linear discriminant method search for a vector x that maxi-
mizes the separation between means m+ and m� and at the same
time that minimizes the scattering of subsets X+ and X�.

The distance between m+ and m� is

jmþ �m�j ¼ jxTlþ �xTl�j ð14Þ

In order to measure the scattering of X± the scatter for projected ob-
jects is defined as in (15), which is called the within-class variance
(Duda et al., 2000; Bishop, 2006).

~s2
� ¼

1
jX�j

XjX�j

i¼1

ðyi � l�Þ ð15Þ

The optimization problem becomes (16)

max JðxÞ
x
¼ jm

þ �m�j2
~s2
þ þ ~s2

�
ð16Þ

The denominator in (16) is known as total within-class variance. A
more useful form of (16) is given in (17)

max JðxÞ
x
¼ xT SBx

xT SWx
ð17Þ

With

SB=(l� � l+)(l� � l+)T called the between-class covariance matrix.

SW ¼
P

xi2Xþ ðxi � lþÞðxi � lþÞ
T þ

P
xj2X� ðxj � l�Þðxj � l�Þ

T called the
total within-class covariance matrix.

Solution of (17) is (18), which computation has complexity
O(d2jXj).

x ¼ S�1
W ðlþ � l�Þ ð18Þ

A problem with Fisher linear discriminant occurs when data distribu-
tion is multi-modal and when there exist overlapping between clas-
ses, under these situations the vector x is not enough to clearly
discriminate between classes (Li, 2005), this can be though as a weak
learning algorithm (Schapire, 1990). Based on the recursive strategy
of decision tree, we propose to come up with a stronger classifier.

4. Proposed method

The Fisher’s decision tree is a two class classifier that takes
advantage of dimensionality reduction of Fisher’s linear discrimi-
nant, which is able of perfectly classify objects that belong to data
sets that are linearly separable. Because most real world data sets
are not linearly separable, the method follows a decision tree’s phi-
losophy splitting the data, recursively. The splits are produced
using only one artificial attribute.

The projections of objects xi on the artificial attribute x eq. (see
Eq. (19)) are used to create the possible splitting points, each split
point is between two consecutive projections.

The splitting points ptest Eq. (20) are used to create two parti-
tions and then an impurity measure is used. The number of tests
that must be realized at each node of the tree is N � 1. Each ptest

creates a split which separates the data similar to a linear decision
boundary, this is completely determined: it is orthogonal to vector
x and passes through the point Eq. (20).

pi ¼
xT xi

kxkx; i ¼ 1; . . . ;N � 1 ð19Þ
with

pi the ith projection of object xi on x.
The Fig. 1 shows an example of the underlying idea of the split-

ting: All objects in a toy data set of Fig. 1 have been projected on
the optimal vector x, the splitting point shown in this figure cre-
ates two partitions, one of them (Partition1) is pure whereas the
other partition (Partition2) contains mixed objects. Impure parti-
tions can be recursively analyzed up to a criterion is satisfied.
The current implementation of Fisher’s decision tree uses the Infor-
mation gain (see Eq. (5)) criterion, however it is easy to implement



A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291 6287
the Gain ratio, Gini index or others. The maximum number of pos-
sible partitions is two in the current implementation of the
classifier.

ptest ¼
xTðpi þ piþ1Þ

2kxk x ð20Þ

The Fisher’s tree growing method is shown in Algorithm 1, it resem-
bles to traditional decision trees, however the main difference is in
how the splits are created; instead of testing every attribute only
the artificial attribute is used. Although it seems that Fisher’s tree
suffers from repetition, which is the phenomenon that occurs when
an attribute is repeatedly tested along a given branch of the tree,
this is different because there is only one attribute to split.

Algorithm 1: Fisher’s decision tree growing

Data:
S: a set of objects
Minobj: Minimum number of objects per leaf
Output:
T: a decision tree
Begin algorithm
Create a node N using S
if (all elements in N are in the same class C)

return N as leaf node, assign it class C;
else if (N contains less than Minobj objects)

return N as leaf node, assign it to majority class C;
else
Build X+ and X� according to (9) and (10).
Compute artificial attribute x using (18)
Compute best split point (Algorithm 2)
Split N according to best split point Eq. (21)
for each partition do

Grow a subtree on partition (a son of N)
end for
return Fisher’s decision tree
End algorithm

Algorithm 2: Compute split point

Data:
S: a set of objects
x: Artificial attribute
Output:
ptestOpt: The best split point (according to some criterion)
Begin algorithm
Project every object in S on x
Sort S in ascending order w.r.t projection
//Choose the projection that produce the best split

ptestOpt worst possible impurity value//e.g. �1
for each ptest (20) do

Compute impurities of partitions, use (5),
(6) or (7)

if ptest is better than ptestOptthen
//Update best split point (save the index and real

value)

ptestOpt ptest

end if
end for
return ptestOpt

End algorithm
The partitions are created according to Eq. (21).

Partition1 ¼ fðxi; yiÞ 2 N; s:t: pi <¼ ptestg ð21Þ
Partition2 ¼ fðxi; yiÞ 2 N; s:t: pi > ptestg

In order to efficiently split N in Algorithm 1, the Algorithm 2 actu-
ally returns the index of the best split point and the real value (Eq.
(22)) which is used in the prediction phase.

ptestOpt ¼
xTðpi þ piþ1Þ

2kxk ð22Þ

When a node can not be split any more because it is pure or there
are not enough objects, the node becomes a leaf of the tree. The leaf
is assigned to the class having the highest probability.

The Fisher’s decision tree avoids to model anomalies in the
training data due to noise or outliers by pruning the tree. Among
several options such as pre pruning, the use of training set to esti-
mate error rates and pessimistic post pruning, Fisher’s decision
tree uses the last. We adopt an implementation similar to C4.5.

The Fig. 2 shows an example of an induced decision tree from a
toy data set using the proposed method. The Fig. 2(a) shows the
decision boundaries and the Fig. 2(b) shows the tree structure.
The boundaries discovered by the Fisher’s decision tree are less
complicated than the obtained with a univariate decision tree,
the size of the tree is also smaller.

Once the tree has been induced each non terminal node con-
tains the vector x and the optimal split point, the label of unseen
examples is predicted by following down the tree down to a leaf as
follows:

(1) If current node is a leaf then the label of the example is the
class associated to the leaf, stop.

(2) Otherwise, project the new example on x, and go to left or
right node according to the following rule

(a) If projection is greater than split point go to right node,
(b) otherwise go to left node,
(3) recursively repeat this process.

The proposed method involves the following steps to induce the
tree: (a) Separate in positive and negative class, (b) compute vector
x, (c) compute split point and split a set of examples.

At each non terminal node, the step (a) runs in O(jSj) time with
jSj the size of set being partitioned. The step (b) is the most costly.
The vector x is computed in O(d2jSj) time, with d the number of
dimensions. The step (c) requires resorting the data at each recur-
sive call, which adds O(S log(jSj)) time. An advantage of our method
with respect to other decision trees is that it is not necessary to use
any discretization either test every attribute.

5. Experiments and discussion

We study the performance of the Fisher’s decision tree using 12
public available data sets.

Two experiments were conduced. In the first experiment, we
explore how the performance of our classifier is affected by chang-
ing the parameters. In the second experiment we compare our
method against C4.5, a well known univariate decision tree The
accuracy, size and training time of produced trees is presented.

5.1. Data sets

In order to test the effectiveness of the proposed method, it was
tested on data sets commonly used for classification, the Table 1
shows the main characteristics of them. Because some of the data



Table 1
Data sets for experiments.

Data set Size Dim Class 1 Class 2

Iris-setosa 100 4 50 50
Iris-versicolor 100 4 50 50
Iris-virginica 100 4 50 50
Wine-1 119 13 71 48
Wine-2 107 13 59 48
Wine-3 130 13 59 71
Heart 270 13 120 150
Ionosphere 351 34 126 225
Breast cancer 683 10 444 239
Diabetes 768 8 500 268
Svmguide3 1243 22 296 947
Waveform-0 3308 40 1653 1655
Waveform-1 3347 40 1692 1655
Waveform-2 3347 40 1692 1653
Ijcnn1 35,000 22 3415 31,585
Bank full 45,211 16 39,922 5289
Cod rna 59,535 8 19,845 36,690

Fig. 3. Effect of parameter Minobj on the induced tree for svmguide3 data set.

6288 A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291
sets are for multi-class problems, we created binary versions of
them by retaining two classes, the class that was removed from
original data set is indicated as -class, for example in Table 1 the
data set Iris-setosa means that class setosa has been removed from
Iris data set. A total number of 18 training sets are used in the
experiments.2

5.2. Experiments setup

The Fisher’s decision tree was implemented on Java as program-
ming language and Weka as base platform.

All the experiments were run on a Laptop with Intel core i7
2670QM CPU at 2.2 GHz 8 GB RAM, Windows 7 Operating System
installed. We used 100 fold cross validation in order to validate
the results. The amount of memory available for the Java Virtual
Machine is 500 MB.

5.3. Experiment 1: effect of parameters

The main parameters of Fisher’s decision tree are the minimum
number of objects in leaves (Minobj), the confidence factor, subtree
raising, pruned and MDL correction. Among these parameters the
Minobj one affects considerably the size of the tree and the
accuracy.

It can be seen in the Fig. 3 that for the svmguide3 data set that
in general the accuracy of our Fisher’s decision tree outperforms
the accuracy of C4.5 tree. The number of leaves and the size of
the induced tree using our method is significantly smaller than
the produced with the C4.5 algorithm when the number of objects
in the leaves in lesser than 50. For more than 50 objects in each
leaf, the algorithms converge to the same size and number of
leaves.

A similar behavior was observed with the other data sets, but
svmguide3 set was chosen to be presented because both C4.5
and Fisher’s decision tree obtain the lowest accuracy.

5.4. Experiment 2: performance with respect to number of dimensions
and size of data set

In order to observe the performance of our method with respect
to the number of dimensions and the size of training set, we cre-
ated a synthetic linearly inseparable data set. This data set consists
of groups of examples that form hyper spheres containing all its
examples with the same class, we called it ‘‘Spheres’’. The number
2 Data sets are available at http://www.mediafire.com/?43u8tl9h21y1c7q.
of dimensions and the number of examples are after the name. The
Fig. 4 shows the Spheres3D1K data set, it has three features
(dimensions) and 1000 examples. The blue squares correspond to
examples with positive label while the red circles correspond to
examples with negative label.

We first test how our method behaves with the number of fea-
tures. The Table 2 shows the results. With a few number of fea-
tures, the Fisher’ Decision Tree is slower than C4.5. This can be
explained because for our method the computation of artificial
attribute (vector x) is O(d2jXj) and in addition it is necessary to
search the split point which takes almost linear time. The C4.5 tree
only searches in a small number of features and finds the best split
point also in linear time. As the number of features becomes high-
er, our method becomes more efficient than C4.5. This is because
the later needs to search the split point in every feature for each
point, which is a time consuming task. For the Fisher’s Decision
Tree the training time is only slightly increased due to the compu-
tation of artificial attribute, however our method does not need to
search the split point in every attribute.

http://www.mediafire.com/?43u8tl9h21y1c7q


Fig. 4. Example of synthetic data set in three dimensions.

Table 2
Performance of the method with respect to number of features.

Data set/Method Minobj Treesize Time (ms) Acc (%)

Spheres2D40K
Fisher’s Tree 2 61 1186 90.76
C4.5 2 159 690 91.07

Spheres3D40K
Fisher’s Tree 2 351 1790 97.95
C4.5 2 283 900 98.61

Spheres4D40K
Fisher’s Tree 2 343 1360 98.15
C4.5 2 301 1100 98.42

Spheres6D40K
Fisher’s Tree 2 377 1810 98.85
C4.5 2 253 2130 99.49

Spheres10D40K
Fisher’s Tree 2 27 1005 99.96
C4.5 2 47 1720 99.94

Spheres15D40K
Fisher’s Tree 2 75 1260 99.94
C4.5 2 91 3270 99.85

Spheres20D40K
Fisher’s Tree 2 49 1230 99.93
C4.5 2 83 5200 99.89

Spheres40D40K
Fisher’s Tree 2 15 1790 99.96
C4.5 2 85 13,030 99.91

Table 3
Performance of the method with respect to size.

Data set/Method Minobj Treesize Time (ms) Acc (%)

Spheres10D1K
Fisher’s Tree 2 11 10 99.30
Fisher’s Tree 20 6 10 98.40
C4.5 2 17 50 98.60
C4.5 20 17 50 93.80

Spheres10D2K
Fisher’s Tree 2 29 30 99.10
Fisher’s Tree 20 11 30 97.70
C4.5 2 27 80 99.20
C4.5 20 13 30 97.15

Spheres10D10K K
Fisher’s Tree 2 67 200 99.69
Fisher’s Tree 2 31 120 99.14
C4.5 2 37 470 99.73
C4.5 2 25 330 99.30

Spheres10D40K K
Fisher’s Tree 2 27 1005 99.96
Fisher’s Tree 20 19 900 99.93
C4.5 2 47 1720 99.94
C4.5 20 23 1450 99.90

Spheres10D80K K
Fisher’s Tree 2 99 4650 99.94
Fisher’s Tree 20 57 4140 99.82
C4.5 2 201 6790 99.85
C4.5 20 105 4910 99.68

Table 4
Values of parameters used in experiment 3.

Parameter Fisher’s Tree C4.5

Binary splits N/A true
Collapse Tree true true
Confidence factor 0.25 0.25
Num Folds NA 3
Subtree raising true true
Pruned true true
Use Laplace false false
use MDL Correction false false

A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291 6289
Now we explore how the proposed method behaves with re-
spect to the size of training data set. We chose the Sphere10D
and we vary the number of examples from 1000 up to 80,000.
The Table 3 shows the training times and accuracy for several sizes
of the synthetic data set. It can be observed that in general the Fih-
ser’s Decision Tree produces more accurate results and the training
time is better than the other method.

We can say that our method scales better than C4.5, with re-
spect to the number of attributes. Our method scales similar to
the other method with respect to the size of training set.

5.5. Experiment 3: accuracy, tree size and training time

For the third experiment, we fixed the parameters of Fisher’s
decision tree. The values used are shown in the Table 4.
The Fisher’s decision tree is compared with C4.5 classifier, the
former produces oblique trees and the last one produces parallel-
axis partitions.



Table 5
Results for real world data sets (a).

Data set/Method Minobj Treesize Time (ms) Acc (%)

Iris-setosa
Fisher’s Tree 2 3 30 96
C4.5 2 7 20 93

Iris-versicolor
Fisher’s Tree 2 3 1 100
C4.5 2 3 1 100

Iris-virginica
Fisher’s Tree 2 3 1 100
C4.5 2 3 1 99

wine-1
Fisher’s Tree 2 3 1 98.32
C4.5 2 5 1 92.44

wine-2
Fisher’s Tree 2 3 1 100
C4.5 2 3 1 99.07

wine-3
Fisher’s Tree 2 3 20 99.23
C4.5 2 9 20 94.62

Heart
Fisher’s Tree 2 33 50 75.56
C4.5 2 47 20 71.48

Ionosphere
Fisher’s Tree 2 15 50 88.604
C4.5 2 35 60 91.45

Breast cancer
Fisher’s Tree 2 15 50 95.90
C4.5 2 25 60 96.05

Breast cancer
Fisher’s Tree 2 15 50 95.90
C4.5 2 25 60 96.05

Table 6
Results for real world data sets (b).

Data set/Method Minobj Treesize Time (ms) Acc (%)

Diabetes
Fisher’s Tree 2 133 140 70.96
Fisher’s Tree 10 37 90 74.09
C4.5 2 141 20 71.75

svmguide3
Fisher’s Tree 2 105 200 76.11
Fisher’s Tree 15 9 160 80.61
C4.5 2 119 30 80.69

Waveform-0
Fisher’s Tree 2 55 230 92.92
C4.5 2 189 380 89.72

Waveform-1
Fisher’s Tree 2 79 340 88.52
C4.5 2 199 390 86.71

Waveform-2
Fisher’s Tree 2 79 200 89.08
C4.5 2 263 440 86.37

ijcnn1
Fisher’s Tree 2 849 3600 94.65
C4.5 2 797 12,870 96.96

Bank full
Fisher’s Tree 2 439 3990 88.87
C4.5 2 2671 8300 89.31

cod rna
Fisher’s Tree 2 793 3550 94.26
C4.5 2 2273 19,640 94.71

6290 A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291
The performance comparative between the methods can be
seen in Tables 5 and 6 which show the results obtained with the
Fisher’s decision tree and C4.5 classifier.
The accuracy of Fisher’s decision tree is comparable with C4.5.
For some training sets, our classifier is trained in lesser time than
C4.5. The number of attributes of training set seems to have a neg-
ligible effect on the training time, e.g., Diabetes and cod rna sets
have both 8 attributes, in the former the C4.5 is faster but in the
second set it is not. This happens because oblique partitions are
more appropriate for some training sets and parallel-axis parti-
tions for other sets.

In general both classifiers achieve similar accuracies, the train-
ing times are smaller for our classifier specially with large data
sets, however the size of the Fisher’s tree is smaller in practically
all cases.

The minimum number of objects per partition (Minobj) affects
the performance of the induced tree. The default value of Minobj = 2
is not always a good choice, increasing this number produces a
smaller number of partitions.
6. Conclusions

In this paper we introduced a novel method to induce oblique
trees called the Fisher’s Decision Tree. Our method uses an artificial
attribute created with the vector computed by the Fisher’s linear
analysis, and the objects in training data set are projected on it.
This creates a unique artificial attribute to split the data set. The
Fisher’s decision tree method was compared against C4.5, one of
the most effective induction tree algorithms using public available
data sets.

We explored the performance of the proposed method through
a number of experiments with synthetic and real world data sets.
In general the accuracy obtained with our method is not worst
than the obtained with a univariate decision tree, however the size
of the tree and the training time are both better.

The Fisher’s Decision Tree is efficient when the number of attri-
butes and the size of data set are both high, this is because it only
searches for the optimal split point on the artificial attribute, other
methods need to search in every attribute. We provide a complete
implementation of our method in the Java language and the source
code is also available. Currently we are studying how to improve
the performance using Graphical Processing Units.
References

Barros, R. C., Basgalupp, M. P., de Carvalho, A. C. P. L. F., & Freitas, A. A. (2011). A
survey of evolutionary algorithms for decision-tree induction. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews (99), 1–10.

Bishop, C. M. (2006). Pattern recognition and machine learning (Information science
and statistics). Secaucus, NJ, USA: Springer -Verlag New York, Inc..

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and
regression trees. Wadsworth.

Cantu-Paz, E., & Kamath, C. (2003). Inducing oblique decision trees with
evolutionary algorithms. Transactions on Evolutionary Computation, 7(1),
54–68<http://dx.doi.org/10.1109/TEVC.2002.806857>.

Cios, K.J., Pedrycz, W., Swiniarski, R.W., & Kurgan, L.A. (2007). Data mining: a
knowledge discovery approach (pp. 391–393). Springer.

Cruz-Ramírez, N., Acosta-Mesa, H.-G., Carrillo-Calvet, H., & Barrientos-Martínez, R.-
E. (2009). Discovering interobserver variability in the cytodiagnosis of breast
cancer using decision trees and bayesian networks. Applied Soft Computing, 9(4),
1331–1342.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pattern classification (2nd ed.). Wiley-
Interscience.

Fan, C.-Y., Chang, P.-C., Lin, J.-J., & Hsieh, J. (2011). A hybrid model combining case-
based reasoning and fuzzy decision tree for medical data classification. Applied
Soft Computing, 11(1), 632–644.

Gama, J. (1997). Oblique linear tree. In Proceedings of the 2nd international
symposium on advances in intelligent data analysis. Reasoning about Data IDA
’97 (pp. 187–198). London, UK: Springer-Verlag.

Gama, J. (1999). Discriminant trees. In Proceedings of the 16th international
conference on machine learning. ICML ’99 (pp. 134–142). San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc..

He, P., Xu, X.-H. & Chen, L. (2008). Tree classifier in singular vertor space. In 2008
International Conference on Machine Learning and Cybernetics (Vol. 3, pp. 1801–
1806).

http://refhub.elsevier.com/S0957-4174(13)00342-4/h0005
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0005
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0005
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0010
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0010
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0015
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0015
http://dx.doi.org/10.1109/TEVC.2002.806857
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0030
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0030
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0030
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0030
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0035
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0035
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0040
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0040
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0040
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0045
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0045
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0045
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0050
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0050
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0050


A. López-Chau et al. / Expert Systems with Applications 40 (2013) 6283–6291 6291
Henrichon, E. G., & Fu, K.-S. (1969). A nonparametric partitioning procedure for
pattern classification. IEEE Transactions on Computers, 18(7), 614–624.

Iyengar, V. (1999). Hot: Heuristics for oblique trees. In Proceedings of the 11th IEEE
international conference on tools with artificial intelligence (pp. 91–98).

John, G. H. (1994). Robust linear discriminant trees. AI& Statistics-95 (Vol. 7).
Springer-Verlag [pp. 285–291].

Li, X.-B. (2005). A scalable decision tree system and its application in pattern
recognition and intrusion detection. Decision Support Systems, 41(1), 112–130.

Manwani, N., & Sastry, P. (2009). A geometric algorithm for learning oblique
decision trees. In Pattern recognition and machine intelligence. In S. Chaudhury, S.
Mitra, C. Murthy, P. Sastry, & S. Pal (Eds.). Lecture notes in computer science (Vol.
5909, pp. 25–31). Berlin Heidelberg: Springer.

Menkovski, V., Christou, I. & Efremidis, S. (2008). Oblique decision trees using
embedded support vector machines in classifier ensembles. In 7th IEEE
international conference on cybernetic intelligent systems CIS 2008 (pp. 1–6).

Murthy, S. K., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique
decision trees. Journal of Artificial Intelligence Research, 2(1), 1–32.

Pomorski, D., & Perche, P. (2001). Inductive learning of decision trees: Application to
fault isolation of an induction motor. Engineering Applications of Artificial
Intelligence, 14(2), 155–166.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan
Kaufmann.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2),
197–227<http://dx.doi.org/10.1023/A:1022648800760>.
Setiono, R., & Liu, H. (1999). A connectionist approach to generating oblique
decision trees. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 29(3), 440–444.

Shah, S., & Sastry, P. (1999). New algorithms for learning and pruning oblique
decision trees. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 29(4), 494–505.

Shali, A., Kangavari, M. & Bina, B. (2007). Using genetic programming for the
induction of oblique decision trees. In 6th International conference on machine
learning and applications ICMLA 2007 (pp. 38–43).

Utgoff, P.E. & Brodley, C.E. (1991). Linear machine decision trees. Tech. rep.,
Amherst, MA, USA.

Vadera, S. (2005). Inducing safer oblique trees without costs. Expert Systems, 22(4),
206–221.

Vadera, S. (2010). Csnl: A cost-sensitive non-linear decision tree algorithm. ACM
Transactions on Knowledge Discovery from Data, 4(2), 6:1–6:25<http://
doi.acm.org/10.1145/1754428.1754429>.

Wu, M.-C., Lin, S.-Y., & Lin, C.-H. (2006). An effective application of decision tree to
stock trading. Expert Systems with Applications, 31(2), 270–274.

Xiaohu, W., Lele, W., & Nianfeng, L. (2012). An application of decision tree based on
id3. Physics Procedia, 25, 1017–1021.

Yildiz, O. T., & Alpaydin, E. (2000). Linear discriminant trees. In Proceedings of the
17th international conference on machine learning. ICML ’00 (pp. 1175–1182). San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.<http://dl.acm.org/
citation.cfm?id=645529.657979>.

http://refhub.elsevier.com/S0957-4174(13)00342-4/h0055
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0055
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0060
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0060
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0065
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0065
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0070
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0070
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0070
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0070
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0075
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0075
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0080
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0080
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0080
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0085
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0085
http://dx.doi.org/10.1023/A:1022648800760
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0100
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0100
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0100
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0105
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0105
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0105
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0110
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0110
http://doi.acm.org/10.1145/1754428.1754429
http://doi.acm.org/10.1145/1754428.1754429
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0125
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0125
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0130
http://refhub.elsevier.com/S0957-4174(13)00342-4/h0130
http://dl.acm.org/citation.cfm?id=645529.657979
http://dl.acm.org/citation.cfm?id=645529.657979

	Fisher’s decision tree
	1 Introduction
	1.1 Our contribution

	2 Related work
	3 Preliminaries
	3.1 Decision trees
	3.2 Fisher’s linear discriminant

	4 Proposed method
	5 Experiments and discussion
	5.1 Data sets
	5.2 Experiments setup
	5.3 Experiment 1: effect of parameters
	5.4 Experiment 2: performance with respect to number of dimensions and size of data set
	5.5 Experiment 3: accuracy, tree size and training time

	6 Conclusions
	References


