Efecto sensorial y bromatológico del empleo de utensilios tradicionales (molcajete) con respecto a utensilios contemporáneos (licuadora, mixer, procesador y mortero) en la preparación de salsa verde.
Tabla de contenido

I. Resumen .. 1

II. Introducción .. 3
 II.1. Antecedentes .. 3
 II. 2. Planteamiento del problema ... 3
 II. 3. Justificación ... 4
 II. 4. Preguntas de Investigación ... 5
 II. 5. Objetivos .. 5
 II. 5.1. General .. 6
 II. 5.2. Específicos .. 6
 II. 6. Hipótesis .. 7
 II. 7. Presentación de Capítulos ... 7

Capítulo 1. Salsa verde y sus ingredientes ... 9
 1. Salsa ... 9
 1. a. Salsa Verde ... 10
 1. a. 1. Ingredientes ... 10
 1. a. 2. Chile ... 10
 1. a. 3. Chile serrano ... 11
 1. a. 4. Tomate .. 12
 1. a. 5. Cebolla ... 12
 1. a. 6. Ajo ... 12
 1. a. 7. Sal ... 12
 2. Utensilios ... 13
 2. a. Molcajete .. 13
 2. b. Licuadora ... 14
 2. c. Mixer ... 14
 2. d. Procesador .. 15
 2. e. Mortero .. 15

Capítulo 2 Interacciones del alimento ... 16
 1. Transferencia de materia .. 16
 1. a. Operaciones unitarias de transferencia de materia .. 17
 1. b. Factores que influyen en el fenómeno de migración ... 17
 1. c. Factores que afectan la transferencia de materia ... 17
 1. d. Métodos para determinar la transferencia de materia .. 19
 1. e. Efecto a nivel toxicológico ... 20
 1. f. Efecto a nivel sensorial .. 21
 2. Métodos de cocción .. 23
 2. a. Principios fundamentales ... 23
 2. b. Estudios previos .. 23

Capítulo 3 Metodología ... 28
 1. Materiales ... 28
 1. a. Salsa ... 28
Índice de tablas

Tabla 1. Interpretación y escala de los parámetros de color (Trinderup, et al. 2015, p3)32
Tabla 2. Vaciado de datos, Prueba Dúo-Trío..37
Tabla 3. Vaciado de datos, prueba de ordenación. Color. ..38
Tabla 4. Diferencia absoluta. Atributo de color. ..38
Tabla 5. Vaciado de datos, prueba de ordenación. Consistencia. ...40
Tabla 6. Diferencia Absoluta. Atributo de consistencia. ...40
Tabla 7. Vaciado de datos, prueba de ordenación. Pungencia. ...41
Tabla 8. Diferencia Absoluta. Atributo de pungencia. ...41
Tabla 9. Diferencia Absoluta. Atributo de color, consistencia y pungencia.................................42
Tabla 10. Prueba de Nivel de agrado ...44
Tabla 11. Tabla de análisis de datos ...45
Tabla 12. Prueba de preferencia de salsa verde ...46
Tabla 13. Tabla de sumatoria ordinal absoluta. ...47
Tabla 14. Estabilidad día siete salsa verde..48
Tabla 15. Porcentaje de sinéresis en salsas..49
Tabla 16. Resultados prueba de cenizas en salsa verde con pulpa ..50
Tabla 17. Resultados colorímetro en salsa verde sin pulpa. ...52
Tabla 18. Resultados colorímetro en salsa verde con pulpa...53

Índice de Gráficas

Gráfica 1. Percepción del color..39
Gráfica 2. Análisis de Pungencia...41
Gráfica 3. Prueba de nivel de agrado en salsas...43
Gráfica 4. Análisis de la preferencia en salsas elaboradas con cinco diferentes utensilios...46
Gráfica 5. Comportamiento del porcentaje de cenizas en una salsa verde...............................51
Índice de Ilustraciones

Ilustración 1. Frascos de salsa verde para la prueba de estabilidad por separación de fases..30

Ilustración 2. Desecador con muestras de ceniza de licuadora (muestras claras) y cenizas de molcajete (muestras obscuras). ..31

Ilustración 3. Prueba sensorial de salsa verde..33

Ilustración 4. Hoja de respuesta prueba dúo-trío..34

Ilustración 5. Hoja de respuesta prueba de ordenación..35

Ilustración 6. Hoja de respuesta, prueba de preferencia..35

Ilustración 7. Hoja de respuesta, prueba de nivel de agrado. ..36

Ilustración 7. Hoja de respuesta, prueba de nivel de agrado. ..36
I. Resumen

Los alimentos tienen historias asociadas con el pasado de quienes los comen: las técnicas empleadas para encontrar, procesar, preparar, servir y consumir esos alimentos varían culturalmente. Con el paso del tiempo algunas de estas actividades se han ido perdiendo; la industrialización, la globalización, las nuevas tendencias de consumo y el nuevo estilo de vida pueden ser algunas causas. Un ejemplo de lo anterior es observar que en las cocinas mexicanas cada vez se usan menos utensilios de antaño, como el molcajete, desplazado por la licuadora.

La ciencia ha demostrado que diferentes métodos de cocción (v. gr. horno de microondas vs horno de convección) afectan a las características de los alimentos. Sin embargo, no se encontraron estudios que digan cuáles son las aportaciones de los utensilios tradicionales mexicanos al sabor, e incluso a la composición de los alimentos. Por lo anterior se propuso una investigación en la que se estudiara cuál es el impacto del uso del molcajete de piedra negra en las características de sabor, color, textura y contenido de minerales de una salsa verde. Para ello, se elaboraron salsas con ayuda de diferentes utensilios: molcajete, mortero de mármol, licuadora, mixer y procesador. Se aplicaron pruebas sensoriales para determinar diferencias de atributos de sabor, color y textura por jueces entrenados; asimismo se determinó el nivel de agrado de cada una de las muestras por jueces consumidores. Adicionalmente, se determinaron cenizas (NMX-F-066-S-1978) y mediciones de estabilidad y color en las salsas elaboradas en licuadora y molcajete para determinar si este último tiene algún efecto.

Los resultados mostraron que sensorialmente hay diferencias en los atributos de color y pungencia, además que existe una mayor preferencia de la salsa elaborada en molcajete con respecto a la elaborada en licuadora, ocupando un segundo y tercer lugar respectivamente, siendo la salsa elaborada con mixer la de mayor preferencia. Los valores de estabilidad, expresados en % de sinéresis son de 66.46 ± 1.85 y de 71.46 ± 1.53, en molcajete y licuadora respectivamente. Por su parte, los valores de ceniza en las muestras fueron de 2.97 ± 0.29 % y de 2.06 ± 0.24%, en molcajete y licuadora respectivamente, mostrando una mayor cantidad de cenizas la salsa de molcajete. Los hallazgos muestran diferencias significativas en las características sensoriales y fisicoquímicas de la salsa dependiendo del utensilio usado para su elaboración, lo cual a su vez contribuye a la valorización de métodos y utensilios tradicionales ya que aportan a
los sabores originales de México. Es así que si el utensilio repercute en las características fisicoquímicas y sensoriales de los alimentos, entonces su abandono ocasionaría una pérdida importante en la gastronomía.

Palabras clave: Transferencia de materia, molcajete, licuadora, salsa verde, características sensoriales.
II. Introducción

II.1. Antecedentes

La gastronomía mexicana es un ejemplo de tradición y diversidad, en sus ingredientes, técnicas de elaboración, utensilios, etc. Se dice que en Mesoamérica al ocurrir la domesticación del maíz a partir del “teocintle”, aparecen también instrumentos de piedra apropiados para la molienda de semillas (Anon., 2010), dentro de estos utensilios tradicionales se encuentra el metate con su metlapil, el molcajete y su complemento el tejolote, cucharas de madera, prensa de madera o metal; el comal, la cazuela y la olla, estos últimos elaborados de barro, los cuales son característicos de la cocina mexicana (Rämibühl & Bucher, 2008).

En los últimos años las prácticas tradicionales han disminuido considerablemente, los utensilios, las recetas y los ingredientes poco a poco han sido desplazados por otros; esto se ha dado por una parte debido a la carga de trabajo que representaba esta labor, lo que llevó a la invención de nuevos artefactos que facilitaran su elaboración (Wilson, 2012). Los artefactos utilizados para la molienda como lo es la licuadora, el molino, etc., ahora se conocen en el mundo entero debido a este fenómeno llamado globalización.

II. 2. Planteamiento del problema

La globalización ha sido un fenómeno fundamental en la pérdida de prácticas tradicionales de cualquier tipo, trayendo como consecuencia el desempleo en México, generado por la pérdida del papel productivo de los campesinos, que ocasionó su incorporación a la clase obrera (Rubio, 2006). Este cambio económico observado en los últimos años ha trastornado la economía a escala nacional y rural, provocando un crecimiento demográfico y modificando los sistemas sociales, percepciones y usos existentes en las ciudades (Hiernaux, 1999). Con la incorporación de la gente a la industria, se deja a un lado los oficios tradicionales que antiguamente les daban sustento, como lo es el tallado de la piedra con la que se elaboran los molcajetes, metates y otros utensilios propios de la cocina mexicana. En los años de 1982-1988 Miguel de la Madrid emprende una política donde deja que el comercio internacional se inserte libremente e invada el mercado por productos extranjeros, ocasionando que la industria mexicana tradicional se vea afectada por la pérdida de subsidios (Hiernaux, 1999).
Estos cambios hicieron que la modernización fuese avanzando, lo que fortaleció el mejoramiento de obras públicas y la incorporación de los servicios para todos, como el agua potable, correo y electricidad. Es así como la incorporación de electrodomésticos fue parte de la transformación; se sustituyen las planchas de lavado público o privado por lavadoras, los molcajetes y metates por la licuadora y el molino que formaban parte fundamental de las tradiciones, costumbres y rituales mexicanos (Cárdenas et al. 2000). Fue así que cambió la situación económica mexicana en el siglo XX, cobrando vigor el modelo de sustitución de importaciones, con el fin de incentivar las industrias que aumentaran el crecimiento interno, cuyo fin era resolver necesidades inmediatas, convirtiéndose en el eje prioritario del modelo de desarrollo (González, 2012). La aparición de los electrodomésticos en México entre las décadas de 1940-1970, marcó una pauta en la cocina, pues agilizó los tiempos de producción. Este cambio fue gradual debido a que no todas las personas tenían acceso a los mismos, se tenía temor de su utilización y afirmaban que los sabores que se percibían eran diferentes (López, 2005). Debido a esta industrialización, los utensilios tradicionales se han visto desplazados, poniendo en riesgo parte de lo que nos da identidad como mexicanos. A medida que aumenta el mercado de consumo de los electrodomésticos se ven afectados artesanos productores de este tipo de utensilios, teniendo como consecuencia la baja en sus ventas o su total abandono del oficio (Rosas, 2013), provocando así una disminución de su capital.

II. 3. Justificación

Así como ha cambiado la tecnología en la cocina, tal parece que también afectará las características sensoriales de los alimentos, por esa razón se cree necesario hacer un estudio acerca de la aportación sensorial que tienen los utensilios tradicionales sobre dichos alimentos. En la actualidad la tecnología nos aporta numerosos utensilios que sirven para el mismo fin, que se diferencian ya sea por la forma, tamaño o estilo, como es el caso de la licuadora, el mixer, el procesador y el molino, cuya función principal es la molienda. Con tanta tecnología rodeando a los utensilios tradicionales como lo son el molcajete y metate, es natural que no se tome en cuenta para la elaboración de platos, ya que los utensilios contemporáneos ofrecen eficacia y eficiencia, frente a lo que se podría llamar una vida acelerada; siendo los utensilios contemporáneos una opción más viable, sin embargo no se está tomando en cuenta que gran parte de nuestro patrimonio se está perdiendo, y que eso no sólo está englobando un utensilio antiguo, sino también los sabores que aporta, y que por consiguiente son parte de la cocina mexicana.
Sí, la modernización ha sido parte fundamental y benéfica en la historia de nuestro país, sin embargo ha logrado también que se pierda parte importante de nuestra identidad como los utensilios de cocina, desplazando tanto a productores como a las recetas que se hacían con el mismo. Es cierto que se pueden seguir elaborando, sin embargo su aporte organoléptico y sensorial puede no ser igual, debido a que la variante del tiempo no es la única que está presente en su manipulación, sino la forma de la molienda y el material con el que está en contacto la comida.

El presente estudio evalúa el efecto que tiene el uso del molcajete, particularmente en una salsa verde, propia de la cocina mexicana, sobre las características sensoriales y bromatológicas de este alimento. La temática no ha sido abordada, por lo que para la presentación del presente trabajo se requirió consultar estudios previos acerca del efecto de los alimentos usando diferentes tipos de cocción o bien trabajos que mencionan la existencia de una interacción entre envases y los alimentos contenidos en ellos y que se presenta en el capítulo número dos del documento.

Demostrando que se obtienen características diferentes al momento de procesar un alimento con diferentes utensilios, sean tradicionales o contemporáneos, se puede contribuir en la valoración de los métodos y utensilios tradicionales, con la premisa de que, si se tienen tan buenas características en el producto, se debe conservar dentro de las prácticas culinarias mexicanas.

Esa ha sido la razón por la que se quiere llevar a cabo la presente investigación, cuyo propósito es responder a las siguientes incógnitas:

II. 4. Preguntas de Investigación.

- ¿Cambian las características organolépticas y bromatológicas de la salsa, con respecto al utensilio que se emplea para su elaboración (tradicional o contemporáneo)?
- ¿Cuál es la aportación en sabor de los utensilios sobre los alimentos?
- ¿Qué preferencia se tiene de un producto elaborado tradicionalmente, sobre otro elaborado de forma “contemporánea”?

II. 5. Objetivos
De las preguntas anteriores se presentan los siguientes objetivos:

II. 5. 1. General

Determinar si existe diferencia bromatológica y sensorial en la elaboración de un alimento procesado con utensilios tradicionales en relación con aquél preparado con utensilios contemporáneos.

II. 5. 2. Específicos

1. Determinar si existe diferencia en la consistencia, color y pungencia de una salsa elaborada en molcajete, mortero de mármol, licuadora, mixer y procesador, mediante una prueba sensorial de ordenación.

2. Cuantificar las cenizas en la salsa elaborada en tres molcajetes diferentes en comparación con la salsa elaborada en tres licuadoras diferentes, para asociarlo a la aportación de minerales que el molcajete pueda proporcionar a alimento.

3. Determinar si existe diferencia significativa en la preferencia de una salsa elaborada con molcajete y una elaborada con mortero, licuadora, mixer y procesador mediante una prueba sensorial de preferencia.

4. Determinar el nivel de agrado de una salsa verde, elaborada con molcajete y una elaborada con mortero, licuadora, mixer y procesador mediante una prueba sensorial de nivel de agrado.

5. Determinar si un panel de jueces puede identificar la diferencia entre una salsa elaborada con licuadora a una salsa elaborada con molcajete mediante una prueba dúo-trío.

6. Comparar la estabilidad de una salsa elaborada con molcajete en relación con las elaboradas en mortero, licuadora, mixer, molcajete y procesador mediante una prueba de separación de fases, así como una prueba de sinéresis.

7. Determinar el color de las salsas elaboradas con tres diferentes molcajetes y tres diferentes licuadoras mediante el uso de un colorímetro.
II.6. Hipótesis

Las hipótesis que se pretenden comprobar dentro del presente trabajo es:

- Dado que el molcajete está hecho de un material rico en minerales, entonces se espera que el contenido de cenizas en la salsa sea mayor con respecto a la salsa elaborada en licuadora.
- Dado que el molcajete es utilizado como recipiente para algunas salsas, entonces se espera que su interacción con la piedra afecte en las características sensoriales, con respecto a las salsas elaboradas en licuadora, mixer y procesador.
- Debido a que la licuadora es el utensilio mayormente utilizado para la elaboración de salsas, se espera que su preferencia sea mayor en comparación con la salsa de molcajete.

II.7. Presentación de Capítulos

El presente documento está conformado por cuatro capítulos; el primero titulado “Alimentos ancestrales” que explica a detalle lo que es una salsa y los ingredientes que lleva, siendo un alimento importante en la dieta mexicana, que desde la antigüedad es consumida, de los chiles y tomates, propios de la cultura mexicana, así como de aquellos ingredientes que una vez llegados los españoles, enriquecieron la gastronomía mexicana, sin dejar a un lado la importancia de los utensilios con que se elaboraban. Estos utensilios que con los cambios tecnológicos han llegado a ser sustituidos, quizá no en su totalidad, pero sí de forma muy importante. El segundo capítulo lleva por nombre “Interacciones envase-alimento”, donde se abarcan dos dinámicas, la primera llamada transferencia de materia, donde se explica la transferencia de materia, los factores que pueden influir en ésta, los métodos de medición y sus efectos ya sean toxicológicos o sensoriales y que afectan a los alimentos en su composición, textura, percepción y preferencia. El capítulo es presentado para que se entienda mejor el objeto de estudio, debido que a pesar de no haber encontrado fenómenos relacionados con el efecto de los utensilios en los alimentos, se ve relacionado con transferencia de materia y métodos de cocción, que explican que hay una diferencia sensorial y físicoquímica al elaborar los alimentos con diferentes técnicas o someterlos a diferente empaque.
El capítulo tres explica la metodología seguida a través del estudio, presentando la elaboración del producto y los diferentes estudios realizados, de nivel sensorial e instrumental.

El capítulo cuatro contiene los resultados de cada uno de los análisis, dónde se cumplieron los objetivos establecidos, determinando las diferencias entre el color, consistencia y pungencia, de una salsa verde elaborada con cinco diferentes utensilios así como el nivel de agrado y la preferencia de las mismas. También se muestran los resultados de pruebas instrumentales entre la salsa de molcajete y licuadora como lo es el porcentaje de cenizas, sinéresis y el color de cada una de las muestras.

Finalmente se presenta un apartado de conclusiones y perspectivas de la investigación.
Capítulo 1. Salsa verde y sus ingredientes

La cocina mexicana fue reconocida como patrimonio cultural inmaterial de la humanidad en el año 2010 por parte de la Unesco (Conservatorio de la Cultura Gastronómica Mexicana S.C., Artes de México, 2012), con el fin de salvaguardar los productos autóctonos que la rodean, las costumbres culinarias, instrumentos, artefactos y los procesos que son considerados como ancestrales y que forman parte de un dinamismo cultural y de la identidad de los mexicanos (CONACULTA, 2005). Se resalta que el mantener los saberes tradicionales junto con su economía a pequeña escala hacen posible una gastronomía sustentable (Conservatorio de la Cultura Gastronómica Mexicana S.C., Artes de México, 2012). Si internacionalmente la cocina mexicana ha sido reconocida como patrimonio cultural inmaterial de la humanidad, es importante resaltar aquellos beneficios que las prácticas ancestrales aportan, así como los utensilios que se ven involucrados en el proceso de elaboración.

Un ejemplo de estas prácticas es el consumo de la salsa en México, que ha sido importante para la identidad y ritmo de vida de los mexicanos, representando un alimento importante y que llegó a tener un 72% de consumo en la población a finales de los 70’s (Peña et al. s.f.). El uso de máquinas tortilladoras llevó a la industria de los tacos a otro nivel, pasando de ser un alimento de casa, a ser un alimento típico de la calle, dónde la salsa es compañera indiscutible de los mismos, ya que contribuye a su disfrute (García, 2011).

A pesar de los esfuerzos que se han hecho por enriquecer las salsas (Mendoza et al. 2002), la falta de conocimiento de algunos chiles regionales ha hecho que se vea disminuido su consumo y por ende su comercialización, muy a pesar de ser un ingrediente esencial de diversos platillos, como lo es el mole y salsas que por su distinto sabor y grados de pungencia que tienen entre ellos (Castellón-Martínez et al. 2012).

1. Salsa

La salsa se define como una mezcla obtenida de la molienda de alguna fruta, verdura con especias o hierbas de olor, utilizada principalmente para acompañar un platillo (Muñoz-Zurita, 2000). En el caso de las salsas mexicanas la especia utilizada principalmente es el chile, que puede ser fresco, seco y se puede mezclar más de uno. El fruto utilizado con
más frecuencia es el jitomate o tomate ya sea de forma cruda o cocida, de las hierbas aromáticas, la más utilizada es el epazote y cilantro acompañándolo con pimienta negra y pimienta de tabasco, comino o clavo. Según la combinación de ingredientes, se puede obtener una gama muy amplia de salsas mexicanas (Muñoz-Zurita, 2000), y que actualmente se han enriquecido gracias a la aportación de ingredientes y sazón obtenida de distintas partes del mundo (Sánchez, 2006).

Están agrupadas según su color en rojas, verdes y obscuras. Las salsas verdes están hechas por tomate verde, chiles verdes y alguna hierba de olor. Dependiendo también si se sometió a alguna cocción, se puede agrupar en crudas o cocidas (Muñoz-Zurita, 2000).

Sahagún hace referencia a la gran variedad de salsas que vendían en los tianguis. Las había con chile ahumado, chile picante, con chile amarillo, con chile suave, con chile verde...Incluso, su picocidad en tono superlativo; muy picante, brillantemente picante, picantísima… (Sánchez, 2006, p. 108).

1. a. Salsa Verde

Nombre recibido de un gran número de salsas color verde hechas principalmente con tomate, ajo, cebolla, chile verde y cilantro. Se puede hacer cruda, asada o cocida. Es consumida principalmente en estados de la parte central de México como lo es el Estado de México, Morelos, Distrito Federal, Tlaxcala, Michoacán, Puebla e Hidalgo. Para la salsa cocida, se cuecen los ingredientes en agua, moliéndose y posteriormente son freídos en aceite o manteca (Muñoz-Zurita, 2000).

1. a. 1. Ingredientes

Del latín *ingrediens*, *de ingrédi* que significa entrar en. Es aquella cosa que entra con otras en alguna bebida, remedio, guisado etc. (Real academia española, 2015). A continuación son presentados los ingredientes con los cuales la salsa es elaborada.

1. a. 2. Chile

Del género de las *solanáceas*, es un fruto picante originario de México, Centroamérica y Sudamérica; existen diferentes variedades, dónde los tamaños, formas y colores son diferentes. Las familias principales son *Capsicum annum* y *Capsicum Frutescens*; son consumidos secos y frescos (Muñoz-Zurita, 2000).
Durante muchos años ha sido la base prácticamente de las salsas mexicanas y de nuestros antepasados. Ingrediente muy apreciado por los mexicas, que cobraban tributo a los pueblos sometidos por ellos, esto continuó aún con la llegada de los españoles después de la conquista y cuyas contribuciones se encuentran representadas en los *Códices Mendocinos* (Sánchez, 2006).

En los países hispanoamericanos lo llaman ají. Este nombre viene del azteca *tzilli*, que a su vez deriva del vocablo maya *tzir*, que significa picar o irritar (García-Rivas, 2009). Por su sabor los chiles son clasificados como dulces o picosos, frescos y secos, y se les asigna un nombre diferente a cada uno de ellos aunque cambie su estado (fresco o seco). De los chiles frescos, los más picosos son el habanero y el manzano, posterior a ellos el jalapeño, serrano, el chile de árbol, el chile de agua y chilaca. Considerados moderadamente picantes están el chile poblano y verde del norte, finalmente se encuentra el chile dulce, que como lo indica su nombre no es piconso y es originario del sureste. De los chiles secos, el más pico es el chipotle, mora, morita y piquín, le siguen en pico al chile pasilla y el cascabel (Muñoz-Zurita, 2000).

En la forma ordinaria, el chile se classifica con los siguientes nombres: ancho, bola, cascabel, cuaresmeño, chicateco, chilaco, chilacate, chilhuacle, chipotle o chipocle, guajilo, habanero, jalapeño, mora, moritas, mulato, pasilla, pimiento o chile dulce, piquín, poblano, serrano, tornachil o tomachil y xaltique…(García-Rivas, 1991, p. 36)

1. a. 3. Chile serrano

Capsicum annuum L. Chile verde de tamaño pequeño, forma cilíndrica que termina en punta. Mide de tres a cinco centímetros, su diámetro es de un centímetro aproximadamente. De cáscara tersa y brillante, su color va de verde a rojo, dependiendo su estado de maduración.

Su nombre se debe a que su cultivo empezó en la amplitud de la sierra de Puebla, Hidalgo y México. Es llamado de muchas formas debido a su amplia utilización, adopta diferentes nombres, generalmente refiriéndose a la región en el que es cultivado como lo es chile Pánuco, Altamira, Cuauhtémoc, etc. Se come crudo, cocido o frito. Cuando se usa crudo, se pica y se mezcla con otros ingredientes para hacer diferentes salsas entre ellas la llamada salsa mexicana, guacamole, verde, etc. (Muñoz-Zurita, 2000).
1. a. 4. Tomate

*Physaluss*ssp. (*Solanáceas*). *Nombre aplicado a diversas plantas del género Physalis*, son llamados también tomates de fresadilla (Coahuila). Se desarrolla el cáliz junto con el fruto envolviéndolo en forma de cáscara. Fruto globoso, verde y amarillo al madurar; llega a medir de dos a cuatro centímetros de diámetro, tiene numerosas semillas comestibles, y su sabor es ácido agradable. Se cree que es originaria de América del Sur, su nombre proviene del náhuatl “tómatl”, es usado para diversas preparaciones en la cocina mexicana, especialmente es usado como base de las salsas verdes o de platillos como chilaquiles, enchiladas verdes o entomatado, esto en el centro del país (Muñoz-Zurita, 2000). El aguacate y el tomate fueron siempre los dos productos vegetales que acompañaron al chile, en diversos platillos elaborados por los indígenas prehispánicos y después por los mestizos mexicanos (García-Rivas, 1991).

1. a. 5. Cebolla

Allium cepa L. Bulbo compuesto por varias capas foliares engrosadas, carnosas, cubierta por una delgada capa de piel, cuyo color cambia según la variedad. Introducida por los españoles a México, es utilizada como un ingrediente básico en la cocina mexicana en compañía del chile, jitomate y cebolla (Muñoz-Zurita, 2000).

1. a. 6. Ajo

Allium sativum L. Planta de flores pequeñas y blancas, el bulbo es utilizado como especia en la cocina; a este bulbo se le conoce como cabeza de ajo y sus pequeños bulbillos se denominan dientes de ajo. Fue introducido a México durante la conquista; se utiliza fresco, entero, picado como ingrediente para aromatizar y saborizar los platillos. El más común es el ajo blanco, mide aproximadamente cinco centímetros de diámetro, su sabor es fuerte, sin embargo si su tamaño es mayor, su sabor disminuye (Muñoz-Zurita, 2000).

1. a. 7. Sal

Condimento usado por excelencia en la preparación de casi todas las comidas. Es utilizado debido a que produce una excitación moderada de la mucosa bucal, aumentando la secreción de la saliva que aviva el apetito. Constituyó antiguamente un artículo de canje y comercio, transportándose a gran escala a lugares lejanos. En la época prehispánica,
Los pueblos del imperio Azteca formaron caminos de comercio gracias al cacao y la sal (Muñoz-Zurita, 2000).

2. Utensilios

Los utensilios han formado parte muy importante de la gastronomía (Sánchez, 2006), los primeros en ser utilizados fueron las armas empleadas por el cazador al igual que los diferentes implementos que aseguraban su subsistencia (García-Rivas, 1991). En la época prehispánica fueron utilizados primero la piedra, la madera y posteriormente el barro que al descubrir la forma de prepararlo y cocerlo al fuego fue utilizado para elaborar diferentes utensilios (Sánchez, 2006).

...había cazos más abiertos, más hondos, más anchos, más angostos, y cada uno era ocupado por un platillo diferente. En este sentido, tiene mucho que ver el material con que está hecho el recipiente y la forma que tiene… (Sánchez, 2006, p. 149)

Para moler los granos duros tenían los indígenas prehispánicos el metate, y para hacer las salsas suaves el molcajete, ambos utensilios de piedra porosa (García-Rivas, 1991).

2. a. Molcajete

Su nombre se deriva del náhuatl mollí que significa salsa y cáxitl que significa taza o cajete. Utensilio mexicano de la cocina indígena parecido a un mortero de piedra con tres patas cortas, utilizado principalmente para moler productos blandos como lo es el jitomate, chiles, cebollines, condimentos, hierbas (García-Rivas, 1991) y la preparación de algunas salsas, en ocasiones servidas en el mismo recipiente (Muñoz-Zurita, 2000). “Se muele con la ayuda del tejolote o temolchin, especie de almirez, forjado de la misma piedra gris (García-Rivas, 1991, p. 26)”. La piedra forma parte importante de la cocina, así lo menciona Sánchez (2006, p.149) dónde resalta que los sabores percibidos en los alimentos elaborados con molcajete o metate son mejores.

Algo debe tener la piedra, porque todo lo que es molido con ella sabe diferente, sabe mejor. Aunque no puede ser cualquier piedra. Tiene que ser volcánica, porosa, pero muy dura. Solamente mirándola uno reconoce a una piedra que no suelte tierra. Todavía, para machacar, se usa en todo México el tecolote, que en muchos lugares llaman mortero; y para moler, el metate y el molcajete.
El tipo de roca con la que se fabrican los molcajetes se denomina basalto; roca ígnea sumamente pesada de tonos de color grises y negros cuya dureza es de 5-6 en la escala de Mohs. Sahagún menciona en el códice florentino que ésta roca era denominada por los nahuas “metlátet” (piedra metate), pues era considerado apropiado para tallar (Luján et al., 2003).

Los basaltos son rocas con alto índice de permeabilidad, con alto contenido de silicatos, magnesio y hierro, siendo bajos en silicio. Estudios en diferentes suelos volcánicos muestran que existen los siguientes compuestos, SiO$_2$ (óxido de silicio), Al$_2$O$_3$ (óxido de aluminio), Fe$_2$O$_3$ (óxido de hierro), MnO (óxido de manganeso), CaO (óxido de calcio), Na$_2$O (óxido de sodio), K$_2$O (óxido de potasio), TiO$_2$ (óxido de titanio), P$_2$O$_5$ (óxido de fósforo), MgO (óxido de magnesio), etc. Todos ellos en diferentes porcentajes, según sea el caso. Los elementos encontrados ahí son P (fósforo), V (vanadio), N (nitrógeno), Cu (cobre), Zn (cinc), Rb (rubidio), Sr (estroncio), Y (itrio), Zr (circonio), Nb (Niobio), Ba (Bario), Ce (cerio), Pb (plomo), etc. (Silva Mora, 1988, Bastida, et al. 1989).

2. b. Licuadora

Electrodoméstico utilizado en la cocina para triturar alimentos y conseguir purés o mezclas semi-líquidas. Es inventado por J. Popawski, quien tiene una fijación por los instrumentos de mezcla en alimentos. En 1922 Popawski patentó el invento, que en sus inicios es potencialmente utilizado en el área médica, debido a que con ella se mezclaban medicamentos con la comida. La licuadora consta de un motor eléctrico, a través de un eje, el motor se conecta al vaso, dónde se encuentran cuchillas en forma de hélice. La marca determina la velocidad de las aspas, pudiendo ser de 2000 revoluciones por minuto (Revista del Consumidor, 2010; Bustamante Prieto, 2012; Mejía Sacramento, 2012).

2. c. Mixer

Licuadora de mano utilizada para la molienda de ingredientes en el mismo recipiente de su preparación (Bustamante Prieto, 2012; Mejía Sacramento, 2012).
2. d. Procesador

Llamado también robot de cocina, es un aparato eléctrico muy parecido a la licuadora pero con cuchillas intercambiables. Fue creada en 1963 por Pierre Verdun de origen Francés, tras analizar el duro trabajo en las cocinas. En el año de 1973 llega a Estados Unidos con la marca de Cuisinart, siendo un producto de uso exclusivo debido a su alto costo (Wilson, 2012).

2. e. Mortero

De origen Tailandés, es un cuenco de tres patas que se utiliza para moler, comúnmente elaborado con diversos materiales, como granito rugoso, mármol, cerámica, etc., además de moler, se utiliza para mezclar (Wilson, 2012).
Capítulo 2 Interacciones del alimento

1. Transferencia de materia

Para hablar de transferencia de materia, se tiene que hablar de los envases y embalajes. Los envases son contenedores que se encuentran en contacto directo con el producto, su función principal es guardar, identificar, conservar, proteger y facilitar la manipulación del producto y su comercialización, básicamente es el promotor de su contenido. Sin embargo los embalajes son las coberturas que protegen el producto para su mejor manipulación de las mercancías que se envasaron. De las funciones de ambos, se encuentran las prácticas cuyo objetivo radica en contener, preservar, conservar, proteger, distribuir, transportar y dosificar el producto. Las funciones de tipo comunicativas son aquellas que brindan información del producto y son la carta de presentación del mismo (Mathon, 2012).

En el caso del molcajete, no sólo cumple la función de instrumento de elaboración, además es contenedor de algunas salsas, por lo que su interacción en muchas ocasiones es prolongada en comparación con la licuadora.

La transferencia de materia está definida como el desplazamiento de un constituyente de un fluido o del componente de una mezcla, el cual se produce por la diferencia de concentraciones dentro de una o diferentes fases. Este fenómeno juega un papel importante al crear condiciones favorables para permitir a los reactantes aproximarse físicamente, produciendo la transferencia de materia; esta reacción (transferencia de materia) está limitada por el movimiento de los reactantes hacia el lugar de reacción, los productos que van hacia el exterior y la transformación de la materia (Singh & Heldman, 2014).

La transferencia de materia se puede entender también como la migración de un componente en una mezcla, ocurrida por el cambio físico de un sistema que tiene diferentes concentraciones (Singh & Heldman, 2014) y/o de una fase a otra, siendo de carácter irreversible (Jung, 2014), que se ve favorecida por el calor transmitido gracias al material (Valentas et al. 1997) y cuyo movimiento es producido gracias a la diferencia de concentraciones (Singh & Heldman, 1998).

1 Elementos, moléculas o iones que intervienen en una reacción química y dan lugar a un producto.
1. a. Operaciones unitarias de transferencia de materia

Hay algunas operaciones que están relacionadas con la transferencia de materia y que se controlan por la difusión de componentes en el centro de una mezcla, éstas son: destilación, absorción, extracción, adsorción e intercambio iónico; todas ellas relacionadas con la interacción y separación de componentes (Ibarz & Barbosa-Cánovas, 2005). Podría decirse que en los alimentos ocurre algo similar, debido a la interacción de éstos en los diferentes métodos de cocción o utensilios existentes.

Hay también otras operaciones denominadas “complementarias” que engloban la trituración, el tamizado, la molienda, mezclado de sólidos, pastas, etc. (Ibarz & Barbosa-Cánovas, 2005), y durante el presente estudio se empleará la operación complementaria denominada “molienda”.

1. b. Factores que influyen en el fenómeno de migración

La migración es aquella donde las características diferenciales de los flujos salen o entran a otra unidad espacial, estos flujos cambian las características tanto cuantitativas como cualitativas del producto o población del producto original (Macadar, 2010).

Esta migración se ve influida por la concentración que tiene la sustancia migrante, la composición del alimento, el procesamiento del envase (por ejemplo, plástico), los componentes del migrante, condiciones de tiempo y temperatura, distribución y almacenamiento; los más importantes son la densidad del material, la concentración del migrante, el tiempo de contacto, la temperatura, la naturaleza de la fase de contacto, el espesor del material, la superficie de materia de contacto y los factores mecánicos (Galotto et al. 2003). En el caso del presente estudio se analizará la interacción de la salsa con el molcajete, en combinación con la molienda tenga características sensoriales que la diferencien de las elaboradas con diferentes utensilios.

1. c. Factores que afectan la transferencia de materia

La humedad es un elemento que puede afectar la transferencia de materia en los alimentos, ya sea en una fase, o de una fase a otra; como el estudio realizado a dos empaques de diferentes tipos de papel y la transferencia existente de cuatro componentes
volátiles (etil butirato, etilhexonato, cis-3-hexenol y benzaldehído), que fungieron como la sustitución del alimento. La permeabilidad se analizó con vapor de agua a 25°C y tres gradientes de humedad diferentes, obteniendo como resultados que la permeabilidad es menor en el papel codificado con el No. 2 que el No. 1 y cuya permeabilidad dependía de las características de los compuestos estudiados. El agua está en constante competencia con la sorción del papel o crea un efecto plástico en su estructura facilitando así la difusión de los aromas, sin embargo el revestimiento acrílico reduce esta transferencia de agua y los compuestos existentes (Hantelys et al. 2012). El sólo hecho de que el molcajete sea un material permeable, hace que la humedad sea un factor que afecte al producto final (en este caso las salsas), si las condiciones de almacenamiento del molcajete no son correctas, pudiendo afectar en el sabor de la salsa, puesto que con el contacto del molcajete, la salsa se vería afectada en el sabor.

Kaya et al. (2008) plantean una situación similar que se enfoca en el kiwi (Actinidia Deliciosa Planch) donde la humedad relativa, la temperatura, la velocidad en la deshidratación son algunos de los factores que pueden o no favorecer la transferencia de materia en la fruta y el “CFD package2”, afectando el contenido de antioxidantes vitaminas y fitonutrientes contenidos en ella. Una reacción que depende de las otras es lo que se puede observar en este caso, debido a que al incrementar la velocidad del secado, el aire resultante del ahorro de tiempo, incrementa la convección del calor y el coeficiente de transferencia de materia entre aire seco y la fruta. Al incrementar la transferencia de materia, hay una disminución de la humedad relativa en el tiempo de secado. Este caso demuestra la estrecha relación existente entre los factores internos y externos en la manipulación de algunos alimentos y las consecuencias existentes de la transferencia de materia con efectos agradables y desagradables en los mismos.

Otro caso en el que la temperatura es importante es el presentado por Simpson et al. (2004) cuyo estudio está dirigido a la interacción en empaques de atmósferas modificadas, comprobando en el mismo que son una buena opción para evitar que los gases escapen del alimento, minimizando la transferencia de microorganismos del exterior hacia el alimento a pesar de las temperaturas utilizadas para su cocción, obteniendo así un beneficio adicional como lo es la maximización del tiempo de vida. Aunque las atmósferas modificadas ayudan a la prolongación del tiempo de vida, también llegan a perder sabor, y

2 *Computational Fluid Dinamics Package*: Empaques computacionales de dinámica de fluidos.
cuyo fenómeno podemos encontrar en las salsas comerciales y que en las salsas de molcajete no se presentan.

Otro ejemplo que muestra las repercusiones del empaque en las características del alimento es el presentado por Khoshakhlagh et al. (2014). Los autores analizan el contenido del gas en el empaque que aumenta a medida que la temperatura lo hace, aumentando así el contenido microbiano y afectando sus características sensoriales. Muchas veces los métodos de conservación no son los más idóneos por las características de los alimentos, y lejos de ayudar a su correcta conservación afectan su sabor o su textura, dejando a un lado la idea original del producto.

1. d. Métodos para determinar la transferencia de materia

Existen diferentes métodos para determinar la transferencia de materia como lo es el método PRV utilizado por Tehrany et al. (2007) en su estudio realizado a 4 simuladores de alimentos (agua, 10% etanol, ácido acético, 95% etanol) y la migración de 6 sustancias contenidas comúnmente en los empaques (residuos de pintura del mismo y que afectan en el sabor y tiempo de vida). Los resultados indican que el coeficiente de partición, es decir, la migración de los componentes, depende de la polaridad y solubilidad de los migrantes en los simuladores de alimentos, siendo más fácilmente absorbidos por las soluciones no polares.

Existen diversas formas de medir la transferencia de materia, como el caso realizado por Karbowiak et al. (2009) que aporta información sobre la difusión de moléculas en empaques comestibles, utilizando como herramientas la RMN (Resonancia Magnética Nuclear), la espectroscopia y el FFIR-ATR (Spectroscopy: Attenuated Total Reflectance).

La sustancia que se utilizó para el estudio fue la “iota-carragenina” combinadas con otros compuestos como el glicerol, que le da propiedades mecánicas adecuadas, la segunda fue una grasa de alto punto de fusión cuyas propiedades como barrera eran buenas. Se obtuvieron dos tipos de películas: homogéneas (compuestos por polisacáridos o sólo grasas) y heterogéneas (emulsión), cuyas propiedades cambiaban según a las características del alimento y del empaque.

Las técnicas usadas en dichos estudios permiten estudiar la interacción del envase-alimento, sin olvidar que depende de las características propias del alimento, su
permeabilidad y la del empaque, que en el presente estudio dan una idea de lo que podría pasar con la interacción del molcajete al momento de preparar la salsa.

Actualmente los métodos experimentales son costosos, por lo que se ha propuesto que existan modelos matemáticos predictivos menos costosos y más rápidos, como el caso expuesto por Helmroth et al. (2002), donde se revisa el modelo específico vs el general, el microscópico y macroscópico; estocástico y determinista, calculando así mediante ecuaciones de difusión el coeficiente de difusión y la partición de coeficientes que ayudan a comprender más el fenómeno de transferencia. El uso de estos estudios da una predicción más realista, evaluando mejor el riesgo de migración; teniendo en cuenta que se debe tener conocimientos bien establecidos sobre el tema así como su aplicación. La desventaja de alguno de estos modelos es que no se puede utilizar para la aprobación de ciertos polímeros, ya que algunos si requieren un modelo experimental.

Estos casos muestran la estrecha relación del empaque, al igual que el método de cocción, en relación con el alimento y su aportación a las características sensoriales del mismo, por lo tanto se evaluará si los utensilios tradicionales influyen en las características propias de alimentos tradicionales.

1. e. Efecto a nivel toxicológico

Debido a la creciente preocupación por la inocuidad en los alimentos, se han planteado diversos estudios que tienen que ver con la migración de componentes a los alimentos, tal es el caso estudiado en la provincia del Chaco (Argentina), que efectúo “la determinación de parámetros representativos del fenómeno de migración de componentes no poliméricos de materiales plásticos hacia el alimento...y tiene por objetivo la determinación del Límite de Migración Total (LMT) y el Límite de Migración Específica (LME) (Barrionuevo, 2005, p. 1)”. Los resultados obtenidos en el estudio, fue que los envases que están en contacto directo con el alimento tienen componentes no poliméricos en exceso y aditivos que pueden traer un riesgo toxicológico en la población consumidora (Barrionuevo, 2005).

Kulkarni et al. (2006), presentan un estudio acerca de transferencia de materia, donde se estudia, la sorción, difusión y permeación de cloroformo, diclorometano, tetracloroetileno, tricloroetileno, 1,1,2,2-tetracloroetano, 1,2-dicloroetano y carbón tetrachloro en membrana copolimérica (FC-2177 D), estudiado a diferentes temperaturas (30°, 40°,
50°C), usando el método de sorción gravimétrica. Se observó que la temperatura en que hubo mayor difusión en la membrana fue a los 50°C; la difusión es atribuida al incremento de la cadena de polímeros que crea un volumen libre que favorece el transporte de solventes, concluyendo que la temperatura juega un papel determinante en el transporte de los compuestos antes mencionados y por lo tanto se puede esperar que los alimentos sufran la misma reacción en contacto con su empaque y a diferentes temperaturas. Estas interacciones hablando de alimentos, demuestran que los materiales con que se compone el empaque pueden afectar en las características sensoriales del alimento, que en teoría protegen, siendo en muchas ocasiones de carácter tóxico para el consumidor, más si se habla de un mal manejo al momento de su manipulación o conservación.

1. Efecto a nivel sensorial

La protección es uno de los roles más importantes del envase, ya que se encarga de la integridad microbiológica, sensorial y nutricional del alimento (Hantelys et al. 2012), sin embargo estos envases muchas veces son porosos y transmiten ciertas características al alimento que se ve reflejada en su sabor. Un ejemplo de ello en el caso estudiado por Saint-Eve et al. (2008) quienes concluyen que existe una influencia de los polímeros en los empaques sobre las características sensoriales del yogurt. Los autores mencionan que particularmente el aroma disminuye a causa de la porosidad del envase, sin embargo esto se contrarresta por la cantidad de grasas que contiene el yogurt y que hace que el mismo tenga más resistencia a la pérdida de compuestos volátiles.

Estas interacciones de envase-alimento favorecen la generación de flavoires en los alimentos. Por ejemplo en el caso de los vinos, se tiene el corcho, una parte importante de su empaque, donde, por ser de un material poroso se puede generar una transferencia de materia, así lo estudia Karbowiak et al. (2010) quienes observan la sorción y difusión de siete compuestos volátiles presentes en el vino (series homólogas de guaiacol, 4-vinilguaiacol, 4-etilfenol, 4-(2-propenil)guaiacol o eugenol). Se obtuvo que debido a la capacidad de sorción del corcho decrece la concentración de compuestos volátiles, afectando así las características sensoriales del vino.

Hantelys et al. (2012) presentan un caso similar a los anteriores, al estudiar el efecto de la humedad en empaques de papel con revestimiento. Ellos estudiaban dos tipos de papel procesados y la difusión de cuatro compuestos aromáticos presentes dentro del empaque (etil, ésteres, alcoholes y aldehídos), los gradientes de humedad a los que se sometieron
fueron de 50-100%, 33-84% y 10-100%. Con ello se demostró que la sorción depende de
a afinidad que tiene el compuesto aromático para con el empaque así como su
solubilidad en el agua, siendo el 3-exanol más soluble a una humedad relativa de 90% en
el papel uno, al igual que el benzaldehído en el papel número dos con una humedad
relativa del 90%, demostrando que entre más soluble en agua los compuestos aromáticos
se transfieren del empaque, provocando que se deterioren las características sensoriales
del producto, aunque si se ve reducido con un tratamiento plastificado dentro del
empaque sin embargo no es totalmente eliminado.

La fase en que se encuentra el alimento también es importante para la percepción de
algunas características sensoriales tales como el aroma; según lo expuesto por
Nongonierma et al. (2007) en su estudio realizado al sabor de la fresa encontrado en un
gel de contenido lácteo y en uno de pectina, cuya percepción fue evaluada por 20
personas previamente entrenadas en 10 sesiones de 30 minutos cada una, donde se
generaron descriptoros para el sabor “fresa”. Los resultados arrojaron que a mayor
cantidad de grasa los compuestos se ven disminuidos y casi no fueron percibidos por los
jueces. La temperatura de almacenaje (4-10°C), en el caso de la pectina favorece la
percepción de los olores a 4°C debido a la expulsión de agua contenida en el gel y cuya
percepción en el panel fue altamente significativa. El estudio nos da una idea de que la
composición del alimento puede influir en la disminución de la percepción del olor en los
alimentos, según la naturaleza del mismo.
2. Métodos de cocción

Acción mediante la cual se cocina el alimento a través de la transmisión de calor con el fin de ablandarlo haciendo que los nutrientes sean más accesibles, mejorando sabor, destruyendo microorganismos, modificando textura, aspecto y sabor (Gil Martínez, 2010).

La transmisión de calor se da por convección, radiación o por contacto. La convección se da en un medio líquido (agua y grasa) o en el aire, haciendo que las partículas calientes suban y las frías bajen hasta que esté completamente caliente el alimento. La radiación se da mediante una fuente de calor que desprende rayos que al chocar con los alimentos se calienta. La cocción por contacto se da cuando el alimento está en contacto directo con el calor, que es transmitido más rápidamente (Gil Martínez, 2010; Crespo & González, 2011).

2. a. Principios fundamentales

Expansion: Es desarrollado a partir de agua fría y permite el intercambio de jugos, nutrientes y sabores en la cocción de los alimentos.

Concentración: Es utilizado generalmente en carnes, por el cual gracias a temperaturas elevadas provoca que los prótidos se coagulen en la superficie permitiendo que los sabores se concentren en el interior.

Mixta: Es la combinación de ambos principios.

Los métodos de cocción se dividen en dos, los que se dan en medios húmedos y los que se hacen en medios secos. Dentro de los métodos realizados en medios húmedos está el pochado, el cocido, la utilización de la olla de presión, la cocción al vapor, el estofado, el glaseado y el baño maría. Dentro de los métodos de cocción en un ambiente seco se encuentra el asado, el salteado, el freído, el braseado, la cocción al vacío o mediante el microondas (Gil Martínez, 2010; Crespo & González, 2011).

2. b. Estudios previos

Algunos de los estudios que muestran este fenómeno es el presentado por Saleh & Tarek (2006) realizado al garbanzo (Cicer Arietinum), al que sometieron a tres diferentes métodos de cocción: ebullición, presión (olla exprés) y radiación (microondas). Los resultados mostraron que los diferentes métodos de cocción contribuían a la variación de nutrientes en el garbanzo; siendo la ebullición el método más recomendable para la cocción de éstos, por haber mantenido mejor sus nutrientes.
Un caso similar es el mostrado en el estudio realizado por Ouédraogo & Amyot (2011) donde se sometieron a diferentes métodos de cocción tres especies de peces (atún, tiburón y macarela) para comprobar la biodisponibilidad del mercurio (Hg), uno de los principales agentes cancerígenos que contienen estas especies. Se observó que hubo una disminución al momento de someterlo a la fritura con respecto al animal crudo y el sometido a ebullición. Esto es un ejemplo claro de que los métodos de cocción pueden influir más allá del sabor en un alimento, teniendo así un estrecho vínculo método-producto, afectando la preferencia de un producto sobre otro.

La presentación en un producto juega un papel importante al momento de aceptar un alimento, tal es el caso estudiado en niños, con respecto a la aceptación del brócoli y la coliflor, que fueron cocinados de distinta forma (hervido y vapor). En este caso se observó que la variable “tiempo” jugaba un papel muy importante en la aceptación del producto, así como la composición del mismo, sin embargo el método era un factor que contribuía a la aceptación del producto, siendo el método al vapor el más aceptado (Delahunty et al. 2013).

Otro estudio realizado cuya variable fue el tipo de cocción es el reportado por Izquierdo et al. (1999) donde se analizó la corvina (Cynoscion maracaiboensis) elaborada mediante la técnica de vapor y fritura y su efecto en su composición química y perfil de ácidos grasos del producto. Se obtuvo que el contenido de humedad se ve favorecido al someterla a la cocción por vapor, mientras que la fritura afecta su contenido, disminuyendo a un 69.98% debido a la evaporación del agua del tejido interno, disminuyendo así el deterioro temprano del alimento. Se obtuvo también un aumento de ácidos grasos saturados en la fritura del alimento, mientras que la cocción a vapor no afectó su composición.

Juin-Kao et al. (2012) emplean diferentes métodos de cocción en vegetales con el fin de analizar su efecto en el contenido de diferentes carotenoides. Los autores someten 25 tipos de vegetales de uso común en Taiwán a tres métodos de cocción (hervido, stir-frying³, y fritura profunda), demostrando que el contenido de carotenoides se ve afectado. Los resultados obtenidos fueron que el mejor método para mantenerlos es el hervido, debido a que su contenido aumenta, siempre y cuando no se exceda; con los otros dos

³ Stir-frying: Término inglés que denomina a la técnica china de salteado en wok.
métodos ya mencionados se obtiene una considerable pérdida de diferentes carotenoides contenidos en los vegetales como los son la luteína, la zeaxantina y el β-caroteno.

Jouquand et al. (2014) estudian de igual manera el efecto del método cocción (tradicional y por microondas) de la carne de Burdeos. En el método tradicional, la reacción de Millard está presente y a causa la reacción de los azúcares y aminoácidos, por lo que es favorecida la formación de flavores. El objetivo principal del estudio era comprobar si se preservaban las cualidades nutricionales y sensoriales de cada método; los resultados obtenidos fueron que la cocción tradicional conserva los compuestos fenólicos responsables de parte de los sabores en comparación de la cocción por microondas, sin embargo la cocción por microondas optimiza la cocción hasta un 56% bajando también el contenido microbiano del platillo. A pesar de los resultados no hay una diferencia significativa en la aceptación sobre el producto, por lo que es una buena opción para su cocción de manera rápida.

Domínguez et al. (2014) observan el mismo comportamiento con respecto al efecto del rostizado, el asado, microondas y la fritura aplicada a la cocción de filetes de potrillo y su comportamiento en el incremento de compuestos volátiles con respecto al filete crudo. Se comprobó que rostizar el filete aumenta los compuestos volátiles debido a la relación existente entre la temperatura (aumento de temperatura, incremento de compuestos fenólicos) y su relación con la reacción óxido-reducción de los lípidos que se ve favorecida con el contenido de aldehídos.

Roldán et al. (2015) observan el mismo comportamiento con respecto al efecto de la cocción al vacío (60°C por 12 hrs) y el asado en horno (180°C hasta obtener una temperatura interna de 73°C) en la carne del “cordero león” y que además está adicionada con potenciadores de sabor. En el atributo de color, analizado instrumentalmente, la carne presentó en su cocción al vacío un color más obscuro en comparación con el método del asado. Con respecto a las características sensoriales en la carne, los sabores fueron analizados por un panel de jueces entrenado de 12 personas. El estudio arrojó que la mejor forma de cocción es al vacío al aumentar el sabor de la carne, pues aumentan los compuestos volátiles con la cocción prolongada a baja temperatura. Aun existiendo la presencia de un potenciador de sabor en la carne, el estudio demostró que según la forma de cocción su desarrollo de las características sensoriales es diferente, pues sus compuestos reaccionan de forma diferente y cuyo mejor método puede ser aprovechado a nivel industrial.
Vázquez & Santiago (2013) observa el mismo fenómeno al someter al maíz cacahuacintle a un proceso de cocción tradicional, comercial y alternativo, su objetivo fue determinar el efecto de estos métodos en la composición química y características físicas y del producto. En la investigación se obtuvo que para obtener una mejor calidad en el maíz para pozole, debe utilizarse el método alternativo\(^4\), ya que aumenta el volumen de floreado en un periodo de tiempo corto, con pérdida de sólidos mínima además de su alto contenido en aminoácidos, superior al obtenido en los otros métodos. En el método comercial se obtuvo una mejor calidad en el blanqueado, obteniendo una disminución en el triptófano contenido en el grano. El método tradicional\(^5\) por su parte dejó mejores características de humedad, sin embargo con una pérdida considerable de aminoácidos y un volumen menor en el floreado.

Dentro de los métodos de cocción hay factores como el tiempo, temperatura o humedad que afectan considerablemente sus características sensoriales, así lo demuestran Kaminarides et al. (2015) en su estudio realizado en el queso de Halloumi de oveja, originario del Mediterráneo; y cuya variable en la cocción fue el tiempo. En el estudio la cuajada es sometida a dos diferentes tiempos de cocción (30-60 minutos) a una temperatura de 93-95°C. Los resultados del estudio fueron que la mejor opción para la elaboración de este queso es la cocción por 30 minutos, debido a que una adición de 30 minutos más, degrada los compuestos volátiles característicos del queso, provocando además obscurecimiento del mismo y cuyas características sensoriales resultan desagradables, además del incremento de su costo, es decir, no es redituable. El estudio nos genera una idea de las consecuencias que el tiempo en la comida puede hacer, en el caso del queso no fueron favorables, sin embargo no en todos los casos puede ser así.

Otro caso similar al anterior, es el expuesto por Mora et al. (2011) que estudian el efecto de la humedad en la cocción de la pechuga de pavo en horno de convección. La cocción fue realizada a una temperatura de 100°C con una fuerza de circulación del aire de 0.90 ± 0.13 m/s, utilizando la humedad en la cocción a tres porcentajes diferentes, el primero a un porcentaje de 8% sin inyección de aire seco (NS), el segundo de 35 ± 5% con poca

\(^4\) Se somete el maíz a nixtamalización con 1.5 g por cada 100 g de maíz, en una solución agua-maíz de 2:1, agregando 2 ml de KOH al 50%, con una cocción de 60 min, se elimina el pico con ayuda de agua y fricción de una canasta y una superficie sólida, posteriormente se banquea en una solución de metasulfito para llevar finalmente a ebullición para el floreado.

\(^5\) Se somete el maíz a una nixtamalización con 0.5 a 2 g por cada 100 gr de maíz, reposa durante 16 horas, se descabeza manualmente, posteriormente se somete a ebullición hasta que floreé.
inyección de vapor y el tercero a un 85 ± 5% con una alta inyección de vapor. La textura fue medida a través de la fuerza cizalla, obteniendo que las muestras sometidas a una humedad del 8% presentan más deshidratación y necesitan más fuerza para su desintegración, sin embargo las sometidas a un 35 - 85% de humedad no presentan diferencia significativa. Las características sensoriales fueron analizadas por un panel semi entrenado integrado por 10 personas, demostrando que en apariencia y sabor las muestras no tienen una diferencia significativa entre ellas. Sin embargo las muestras sometidas a 8% de humedad en contraste con la sometida a un 85% de humedad analizadas mediante una prueba triangular demostraron que si existe diferencia significativa en el color de las muestras, percibiendo la del 8% más “tierna” que la sometida a un 85% de humedad, siendo la alternativa más viable para la cocción de pechuga de pavo a nivel industrial.

Otro caso que muestra que la temperatura afecta la interacción del alimento de acuerdo a la variación en los métodos de secado el cual es el expuesto por Hii (2013) donde la interacción en las semillas de cacao durante el proceso de secado mecánico, en el utiliza un simulador 3-D, donde encuentra que la temperatura excesiva aumenta los ácidos en el cacao por una insuficiente evaporación de los mismos. La influencia de la temperatura genera flavo-res en la semilla de cacao, y la transferencia de humo a las mismas puede ocasionar una contaminación en los ácidos que contiene, dejando un sabor desagradable; con el mismo se puede concluir que el secado mecánico puede no ser el más viable, debido a que afecta a sus atributos sensoriales.

En resumen, se observa que la forma de cocción afecta algunas características de los alimentos. Por su parte, el material en el que se procesan también influye al momento de interactuar sus partículas con el mismo; el modo en que influye el fuego en el instrumento y cómo se transmite (de forma lenta o muy rápida), si conserva el calor o no, entre otras tantas propiedades (Quo, 2011). El resultado de estas interacciones son platillos con propiedades diferentes, que permite que los alimentos tengan características únicas y que marcan la diferencia entre métodos tradicionales y modernos.

6 Existen diferentes métodos de secado de las semillas de cacao, donde figuran el mecánico, que utiliza aire caliente, sin embargo este método puede contaminar la semilla debido al contacto de la semilla con humo de la máquina que lo contiene, produciendo sabores amargos en la misma (Mahecha Rojas & Revelo García, 2013).
Capítulo 3 Metodología

1. Materiales

Se escogió la materia prima, procurando que fuera de la misma compra, siendo los ingredientes lo más homogéneos entre sí, registrando las marcas utilizadas, sin cambiarlas por otras, en el caso de elaborar otro lote de muestras, indicando además cómo se manipulan cada una de ellas, como: su sanitización, la temperatura de almacenaje o manipulación como lo dice Delahunty et al. (2013), Ouedraogo & Aymot (2011) entre otros.

1. a. Salsa

La materia prima (MP) utilizada fue comprada en un mercado local (Mercado Juárez, Edo. de México), durante el mes de Junio y Agosto del año 2015. Se adquirieron 2.0 kg de tomate verde (*Physaluss sp*.), 100 g de chile verde serrano (*Capsicum annum L.*), 30 g de cebolla blanca (*Allium cepa L.*), 5 g de ajo (*Allium sativum L.*) y 10 g de sal (La Fina, México), por cada vez que se realizó la manufactura de las salsas verdes para las diferentes pruebas.

Los ingredientes se llevaron a refrigeración a una temperatura de 4°C en recipientes individuales, posteriormente y previo a su utilización, se lavaron con agua (T°, 25°C) y jabón (Axión, México) fueron desinfectados en una solución de plata coloidal al 0.41% (Great Value, México) durante 15 minutos.

2. Preparación

La preparación se llevó a cabo cuidando de no cambiar los utensilios, especificando las marcas utilizadas en el caso de aparatos eléctricos, así como las velocidades y tiempo de procesamiento, en el caso del molcajete y metate, especificando su material y lugar de compra; también fue especificada la cantidad de ingredientes a preparar y el procesamiento de la materia prima, como los estudios citados Vázquez & Santiago (2013) e Izquierdo et al. (1999).
2. a. Salsa

Los ingredientes fueron divididos en 5 o 6 partes iguales cada pieza\(^7\), colocando cada una en recipientes diferentes, con el objetivo de tener una mayor homogeneidad entre las muestras.

Los ingredientes a excepción de la sal, se llevaron a cocción en 1 litro de agua durante 15 minutos y en recipientes separados, posteriormente se escurrieron y fueron procesados por utensilios distintos, descritos a continuación (Ver ilustración 1).

- **Licuadora (Oster):** Se tomó uno de los recipientes que contenía una quinta parte de los ingredientes previamente cortados (tomate verde, chile verde serrano, cebolla blanca y ajo), procesado a 2000 rpm, durante 2 minutos sazonando finalmente con sal. Para las pruebas de análisis instrumental se utilizaron tres licuadoras diferentes de la marca Oster, pero de diferente modelo, que fue procesado a 2000 rpm de igual forma.
- **Molcajete:** Se tomó el segundo recipiente en que estaban los ingredientes (tomate verde, chile verde serrano, cebolla blanca y ajo), éstos se molieron haciendo fricción con el tejolote durante 20 minutos (de forma que la consistencia fuera la misma que la salsa en licuadora), sazonando finalmente con sal. Para las pruebas analíticas instrumentales se utilizaron tres molcajetes diferentes elaborados de piedra volcánica.
- **Mortero:** Se tomó el tercer recipiente con ingredientes dentro (tomate verde, chile verde serrano, cebolla blanca y ajo), éstos se molieron haciendo fricción durante 20 minutos (de forma que la consistencia fuera la misma que la salsa en licuadora), sazonando finalmente con sal.
- **Mixer (Oster):** Se tomó un cuarto recipiente de ingredientes previamente cortados (tomate verde, chile verde serrano, cebolla blanca y ajo), procesando a 3000 rpm, durante 2 minutos, sazonando posteriormente con sal.
- **Procesador (Moulinex):** Se tomó el último recipiente de ingredientes previamente cortados (tomate verde, chile verde serrano, cebolla blanca y ajo), moliendo a 2000 rpm durante 2 minutos, sazonando posteriormente con sal.

\(^7\) Según la prueba a realizar, puesto que para las pruebas sensoriales se utilizan cinco instrumentos de molienda y para las pruebas instrumentales se utilizan dos, por triplicado.
Las salsas fueron vertidas en un recipiente de plástico, fueron tapadas y etiquetadas según la aleatorización correspondiente para las pruebas a realizar, en el caso de la prueba de estabilidad las muestras fueron envasadas en frascos de vidrio, etiquetándolas según su instrumento en el que se procesaron y la fecha de elaboración. Posteriormente fueron refrigeradas a una temperatura de 4°C.

3. Método analítico Instrumental
 3. a. Determinación de cenizas

Para la prueba de cenizas se siguió el procedimiento de la NMX-F-066-S-1978, sin la determinación de sólidos debido a la naturaleza del producto, posteriormente en un crisol se calcinaron las muestras a una temperatura de 550-600°C, se pusieron de 5 gramos de la salsa, se colocó en una parrilla y quemó lentamente el material hasta que dejó de desprender humo, de forma que no saliera del crisol. Se llevó el crisol a una mufla y se efectuó la calcinación completa. Posteriormente se dejó enfriar y transfirió en el desecador para su enfriamiento total (Ver ilustración 2). Para calcular el porcentaje de cenizas se utilizó la fórmula:

\[
% \text{ cenizas} = \frac{(P - p)(100)}{M}
\]
Entendiendo que: P (Masa del crisol con las cenizas en gramos), p (Masa de crisol vacío en gramos) y M (Masa de la muestra en gramos) (Norma Mexicana (NMX), 1978).

3. b. Determinación de color

La determinación del color de la salsa se realizó a partir de un instrumento llamado colorímetro, de marca Hunter Lab color Quest XE. “El colorímetro, maneja cuatro escalas de color (XYZ, YXY, Hunter LAB, CIELAB L*a*b*) y cinco tipos de iluminación (incandescente, luz de día promedio, luz de día y blanco frío fluorescente) (FEOH, 2004, p. 6).”

La escala que se usó fue la CIELAB (FEOH, 2004, p. 6), utilizando la reflectancia de espejo incluido propio para los aderezos y salsas.
Tabla 1 Interpretación y escala de los parámetros de color (Trinderup, et al. 2015, p3)

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Interpretación</th>
<th>Escala</th>
</tr>
</thead>
<tbody>
<tr>
<td>L*</td>
<td>Designa Brilloz o luminosidad</td>
<td>100=blanco 0=negro</td>
</tr>
<tr>
<td>a*</td>
<td>Indica que tan rojo o verde es el alimento</td>
<td>Positivo=rojo Negativo=verde</td>
</tr>
<tr>
<td>b*</td>
<td>Indica que tan amarillo o azul es el alimento</td>
<td>Positivo=amarillo Negativo=azul</td>
</tr>
</tbody>
</table>

Se colocó la muestra sobre el colorímetro para que el cabezal de medición la cubriera y sacara una imagen multiespectral. Se cuidó que la superficie de la muestra estuviese nivelada y cubierta en su totalidad.

3. c. Estabilidad (Porcentaje de sinéresis)

3. c. 1. Por separación de fases

Se elaboraron 5 muestras de salsas, procesadas con diferentes utensilios (molcajete, mortero, mixer, procesador y licuadora), fueron almacenadas en frascos de vidrio transparentes y se colocaron en refrigeración durante una semana, las muestras fueron revisadas diariamente para observar los cambios ocurridos. Algunos de los cambios esperados fueron sinéresis de sólidos en la salsa y aparición de moho.

3. c. 2. Prueba por centrifugación

La sinéresis fue calculada a partir del líquido exudado mediante la centrifugación siguiendo el método de Mora, et al. (2013).

1. Pesar 10 g de salsa verde (Elaboradas en cinco utensilios diferentes) en cinco tubos de centrífuga a temperatura ambiente.
2. Conectar y prender la centrífugadora, colocar los tubos, cerrar y centrificar a 3000 rpm durante 10 min.
3. Calcular el porcentaje de sinéresis mediante:

8 Se realizará la prueba de centrifugación por tripletes.
\[S = \left(\frac{M2}{M1} \right)(100) \]

Siendo:

- \(M1 \) = Peso de la muestra
- \(M2 \) = Pérdida de peso después de la centrifugación
- \(S \) = Porcentaje de Sinéresis.

4. **Análisis sensorial**

Se realizó un análisis sensorial a un grupo de 29 personas con un rango de edad de 18-24 años de la licenciatura en Gastronomía divididos en 10 jueces entrenados para las pruebas discriminativas y 19 jueces semi-entrenados\(^{10}\) para las pruebas hedónicas, según lo indicado por Anzaldúa-Morales (2005) y Carpenter et al. (2009). Las muestras fueron presentadas en vasitos de vidrio con la cantidad de 10 g (Ver ilustración 3), se le pidió al juez las consumieran con ayuda de una cucharita, enjuagando su boca de muestra en muestra con ayuda de agua y totopos.

Ilustración 3 Prueba sensorial de salsa verde. 2/06715, Por Mónica Sánchez Z.

\(^{9}\) Instrumento de análisis que permite medir la calidad de los alimentos en función a sus características, cumpliendo a su vez la función preventiva y complementaria de los análisis físico-químicos y que está ligada a la degustación\(^{9}\) (Fortin & Desplancke, s.f.).

\(^{10}\) Anzaldúa-Morales (2005) y Carpenter et al. (2009) mencionan que los jueces semi-entrenados son aquellos que conocen las pruebas hedónicas y conceptos, sin embargo no están familiarizados con el producto, ni han hecho pruebas previas con el mismo.
4. a. Diferenciación

Se aplicó una prueba dúo-trío, se presentaron dos muestras al juez (una elaborada con molcajete y otra con licuadora) colocadas en tripletes con una tercera que sirvió de referencia, con el objetivo de que identificaran cuál de las muestras era igual a la referencia. Se aplicó en una habitación con poca luz, para que ésta no influya sobre el resultado de la prueba (Ver ilustración 4 para hoja de respuesta y anexo 2 para aleatorización).

4. b. Color, consistencia, pungencia

Se aplicó una prueba de evaluación sensorial tipo analítico, por medio de una prueba de ordenación, presentando 5 muestras de salsa (elaboradas con molcajete, mortero, licuadora, mixer y procesador), pidiendo que se ordenaran de menor a mayor, según la característica correspondiente (color, consistencia y pungencia), (Ver ilustración 5, para hoja de respuesta y anexo 1 para hoja de aleatorización).

Ilustración 4. Hoja de respuesta prueba dúo-trío.

<table>
<thead>
<tr>
<th>Evaluación Sensorial de Salsa Verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre: _________________________Fecha: ________________</td>
</tr>
</tbody>
</table>

Instrucciones: A continuación se le presenta una muestra referencial "R" y 3 dúos de muestras. Pruebe la muestra referencial y posteriormente el par que corresponda a cada sección, de arriba hacia abajo y siempre de izquierda a derecha e indique encerrando el número de la muestra que sea igual a "R". Una vez terminada la primera sección, enjuágue su boca con agua natural y prosiga con la siguiente sección, respetando el orden ya indicado. Repita el procedimiento hasta terminar.

<table>
<thead>
<tr>
<th>Juez #1</th>
<th>Aleatorización 1</th>
<th>Aleatorización 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>17</td>
</tr>
<tr>
<td>II</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

Observaciones o comentarios

¡MUCHAS GRACIAS POR SU COOPERACIÓN!
4. c. Preferencia

Se aplicó una prueba afectiva, a un panel semi-entrenado conformado por diecinueve jueces, por medio de una prueba de preferencia. Se presentaron cinco muestras de salsa elaboradas con diferentes utensilios pidiendo a los jueces que las ordenaran de menor (muestra que menos les agrade) a mayor (muestra que más les agrade) (Ver ilustración 6 para hojas de respuesta y anexo 3 para aleatorización).

Ilustración 6. Hoja de respuesta, prueba de preferencia.
4. d. Nivel de agrado

Se aplicó una prueba de evaluación sensorial de tipo afectivo, a un panel semi-entrenado conformado por diecinueve jueces, por medio de una prueba de nivel de agrado. Se presentaron cinco muestras de salsa elaboradas con diferentes utensilios pidiendo a los jueces que las calificaran de acuerdo a una escala establecida (Ver ilustración 7 para hoja de respuesta y anexo 4 para aleatorización).

Ilustración 7. Hoja de respuesta, prueba de nivel de agrado.

Para el análisis estadístico de la prueba sensorial de diferenciación y preferencia se utilizó la tabla de probabilidad un medio sin dirección con un nivel de significancia del 5% (Ver anexo 5). El análisis estadístico de la prueba de ordenación se realizó mediante la tabla de sumatoria ordinal absoluta con un nivel de significancia del 5% (Ver anexo 6).

La prueba sensorial de nivel de agrado se analizó con ayuda de la tabla Fisher con el mismo nivel de significancia de las anteriores (Ver anexo 7).

Para las notas y citas bibliográficas se utilizó el gestor de Word Harvard-Anglia 2008.
Capítulo 4 Resultados: análisis y discusión

1. Determinación de diferencias sensoriales entre muestras de salsas preparadas con diferentes utensilios.

Se realizaron dos pruebas sensoriales de tipo analítico, la primera de diferenciación y la segunda de ordenación en la que se pidió a los panelistas que probaran las muestras de izquierda a derecha y de arriba hacia abajo, según la prueba a realizar, calificando el color, la consistencia, pungencia; ayudando a encontrar la muestra idéntica a la referencia, con la ayuda de 10 jueces entrenados.

1. a. Prueba sensorial de diferenciación

Se aplicó una prueba dúo-trío a diez jueces entrenados, pidiendo que encontraran la muestra idéntica a la referencia\(^{11}\), la prueba fue aplicada por triplicado, se obtuvieron 30 juicios en total, utilizando la tabla de probabilidad $\frac{1}{2}$ sin dirección con un nivel de significancia del 5% (Ver anexo 5), se obtuvo que el número mínimo aceptado para que exista una diferencia significativa es de 21 juicios. Dado que los juicios correctos\(^{12}\) por parte de los jueces fueron igual a 27 (ver Tabla 2), se concluye que si existe diferencia significativa en las dos salsas, tanto por las elaboradas mediante licuadora, como las elaboradas a partir de un molcajete. Los jueces lograron identificar que las salsas elaboradas con licuadora se percibían ligeramente más saladas y ácidas que las otras. Mientras que la de molcajete tenía un sabor más intenso.

1. b. Color

Analizando el atributo del color con ayuda de la tabla de sumatoria ordinal absoluta (Ver anexo 6) y con un nivel de significancia del 5%, se estableció que el número mínimo para determinar diferencia significativa es de 20. Debido a que la diferencia de la salsa elaborada con mixer con respecto a la salsa elaborada con mortero es igual a 27 se estableció que si hay diferencia significativa con respecto al color (Ver Tabla 3 para

\(^{11}\) Las muestras utilizadas fueron de salsa elaborada con molcajete y salsa elaborada con licuadora.

\(^{12}\) Son considerados juicios correctos a los jueces que lograron identificar la muestra de referencia dentro de los tripletes.
vaciado de datos y Tabla 4 para diferencia absoluta13). Entre las demás salsas no existe diferencia significativa en el color, al menos en la valoración sensorial; debido a que a simple vista los jueces difirieron en la forma en que ordenaron sus muestras, que implica el hecho de no haber identificado alguna diferencia relevante.

Existen estudios particularmente de salsa cátup donde muestran que las diferentes formulaciones de la misma genera un cambio en el color percibido que puede incurrir en la aceptación o rechazo de la salsa (Grande et al. s.f.), por lo cual el color es una característica a cuidar para garantizar la aceptación de un producto.

<table>
<thead>
<tr>
<th>Juez</th>
<th>Molcajete (a)</th>
<th>Licuadora (b)</th>
<th>Procesador (c)</th>
<th>Mixer (d)</th>
<th>Mortero (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Σ</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>44</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparación</th>
<th>Diferencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-b</td>
<td>28-29</td>
<td>01</td>
</tr>
<tr>
<td>a-c</td>
<td>28-29</td>
<td>00</td>
</tr>
<tr>
<td>a-d</td>
<td>28-44</td>
<td>16</td>
</tr>
<tr>
<td>a-e</td>
<td>28-17</td>
<td>11</td>
</tr>
<tr>
<td>b-c</td>
<td>29-28</td>
<td>01</td>
</tr>
<tr>
<td>b-d</td>
<td>29-44</td>
<td>15</td>
</tr>
<tr>
<td>b-e</td>
<td>29-17</td>
<td>12</td>
</tr>
<tr>
<td>c-d</td>
<td>28-44</td>
<td>16</td>
</tr>
<tr>
<td>c-e</td>
<td>28-17</td>
<td>11</td>
</tr>
<tr>
<td>d-e</td>
<td>44-17</td>
<td>27</td>
</tr>
</tbody>
</table>

El atributo del color se vio más evidente con respecto a las salsas elaboradas con mixer y molcajete, probablemente por la forma en que se procesan, cuyos datos se ve reflejados en la tabla 3. De ahí se puede observar que la salsa con color más claro es la elaborada con molcajete, debido a que las partículas de los ingredientes eran de mayor tamaño que las demás, puesto que durante la molienda únicamente se lograba estrujar el agua contenida en éstos sin lograrlos integrar realmente y cuyos pigmentos no lograron integrarse completamente. Posteriormente se siguió con las salsas elaboradas con procesador y con molcajete, cuya calificación fue igual, debido a que las partículas eran similares entre sí.

13 La tabla de diferencia ordinal absoluta es la forma de analizar los datos estadísticamente, dónde al restar los valores finales de cada muestra, se puede encontrar el valor que se necesita para saber si hay una diferencia significativa entre cada una de ellas y cuyo valor se encuentra en la tabla de probabilidades, ya sea con dirección o sin dirección.
siendo de menor tamaño que las partículas de la salsa de mortero, logrando en la salsa integrar un poco más el pericarpio de los ingredientes y cuyos pigmentos se integraron de manera similar. La siguiente salsa fue elaborada con licuadora cuyas partículas eran de menor tamaño que las salsa anteriores, dónde se observó un color más obscuro obteniendo una mayor extracción de los pigmentos contenidos en la piel del tomate y chile principalmente; finalmente la salsa elaborada con mixer, que presentaba un tamaño de partículas muy pequeño, percibiéndose más obscura, por una mejor extracción de los pigmentos (Ver gráfica 1, percepción del color).

Gráfica 1. Percepción del color.

1. c. Consistencia

Analizando el atributo de la consistencia, con ayuda de la tabla de sumatoria ordinal absoluta (Ver anexo 6) y a un nivel de significancia del 5%, se estableció que el número mínimo para determinar diferencia significativa es de 20; debido a que la diferencia entre las salsas es menor a 20, se concluye que no hay diferencia significativa en la consistencia de las salsas elaboradas con los diferentes utensilios (Ver Tabla 5 para vaciado de datos y Tabla 6 para diferencia absoluta). A diferencia de otros estudios en los que la textura viscosa es un parámetro determinante para identificar la diferencia entre una muestra y otra, tal es el caso de Cardona et al. (2010), en el presente estudio, el resultado de las salsas elaboradas con diferentes utensilios muestra que la diferencia entre ellas es mínima.
Con respecto a la pungencia y con ayuda de la tabla de sumatoria ordinal absoluta (Ver anexo 6), a un nivel de significancia del 5%, se estableció que el número mínimo para determinar diferencia significativa es de 20. Dado que la diferencia entre la salsa elaborada con mortero, con respecto a las salsas elaboradas con licuadora, mixer y procesador es mayor a 20 se puede decir que si existe diferencia en el grado de pungencia de las mismas, siendo la de mortero la menos picosa y la elaborada con mixer la más picosa (Ver tabla 7 para vaciado de datos y Tabla 8, para Diferencia ordinal absoluta).
No existen estudios que determinen sensorialmente la pungencia de acorde al tipo de instrumento de molienda, sin embargo sí los hay con respecto a la pungencia según el tipo de chile utilizado, tal es el caso presentado por Yun-Hon Sacoto (2015), que presentan el grado de pungencia en una salsa agridulce, utilizando las variedades de chile Piri Piri, Tabasco y De Árbol donde su porcentaje es del 27 %. Esto demuestra la importancia que suele tener el grado de pungencia (conocida como picor) dentro de una salsa y que puede llegar a ser factor de aceptación para con el producto. En el caso de las salsas elaboradas con diferentes utensilios, se puede mostrar que el tipo de molienda afecta significativamente en la percepción de la pungencia, ésto se debe a que la capsaicina contenida en el chile es mejor triturada en los utensilios eléctricos que en los tradicionales, por lo que las salsas se perciben con más picante a pesar de tener la misma cantidad de chile en su composición (Ver gráfica 2).

<table>
<thead>
<tr>
<th>Juez</th>
<th>Molcajete (a)</th>
<th>Licuadora (b)</th>
<th>Mortero (c)</th>
<th>Mixer (d)</th>
<th>Procesador (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5*</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Σ</td>
<td>25</td>
<td>38</td>
<td>11</td>
<td>40</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comparación</th>
<th>Diferencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[a-b]</td>
<td>[25-38]</td>
<td>[13]</td>
</tr>
<tr>
<td>[a-c]</td>
<td>[25-11]</td>
<td>[14]</td>
</tr>
<tr>
<td>[a-d]</td>
<td>[25-40]</td>
<td>[15]</td>
</tr>
<tr>
<td>[a-e]</td>
<td>[25-36]</td>
<td>[11]</td>
</tr>
<tr>
<td>[b-c]</td>
<td>[38-11]</td>
<td>[27]</td>
</tr>
<tr>
<td>[b-d]</td>
<td>[38-40]</td>
<td>[02]</td>
</tr>
<tr>
<td>[b-e]</td>
<td>[39-36]</td>
<td>[02]</td>
</tr>
<tr>
<td>[c-d]</td>
<td>[11-40]</td>
<td>[29]</td>
</tr>
<tr>
<td>[c-e]</td>
<td>[11-36]</td>
<td>[25]</td>
</tr>
<tr>
<td>[d-e]</td>
<td>[40-36]</td>
<td>[04]</td>
</tr>
</tbody>
</table>

Tabla 7. Vaciado de datos, prueba de ordenación.

Gráfica 2. Análisis de Pungencia
El comportamiento de la salsa con respecto a los atributos anteriores nos muestra que los jueces encuentran una mayor diferencia en la pungencia, que los demás atributos, pues los resultados entre una salsa y otra sueles ser altos, mientras que en el atributo de la pungencia, los valores cambian más radicalmente (Ver tabla 9).

<table>
<thead>
<tr>
<th>Comparación</th>
<th>Color</th>
<th>Consistencia</th>
<th>Pungencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molcajete - Licuadora</td>
<td>1</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Molcajete - Mortero</td>
<td>0</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>Molcajete - Mixer</td>
<td>16</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Molcajete - Procesador</td>
<td>11</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Licuadora - Mortero</td>
<td>1</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>Licuadora - Mixer</td>
<td>15</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Licuadora - Procesador</td>
<td>12</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Mortero - Mixer</td>
<td>16</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>Mortero - Procesador</td>
<td>11</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>Mixer - Procesador</td>
<td>27</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

2. Pruebas afectivas

2. a. Nivel de Agrado

Se determinó el nivel de agrado en muestras de salsa verde elaboradas en molcajete, mixer, licuadora, mortero y procesador respectivamente, mediante la aplicación de una prueba afectiva de nivel de agrado aplicada a un panel conformado por 19 jueces, se comparan los valores calculados de la relación de variación con los “valores críticos para F”, los cuales establecen los límites para que las muestras sean significativamente diferentes una de otra, con un porcentaje en específico; si los valores son mayores o iguales que el valor en tablas (Ver anexo 7), se establece que existe diferencia significativa.

Se puede concluir que: Para **muestras**: tomamos GLv=4 y GLr=72 según las tablas (Ver anexo 7), el valor de F para este numerador y denominador respectivamente es de 2.53, con un nivel de significancia de 0.05, nuestro valor calculado de F para muestras es de 13.69 (Ver tabla 11), en consecuencia hay diferencia significativa entre las muestras. Para
jueces: tomamos $GL_j= 18$ y $GL_r= 72$, según las tablas (Ver anexo 7) el valor de F para este numerador y denominador respectivamente es de 1.53 y con un nivel de significancia de 0.05, el valor calculado de F para jueces es de 1.64 (Ver tabla 11), es decir, el valor es mayor al de tablas, en consecuencia si hay diferencia significativa debido a que en tablas el valor para los jueces es de 1.75, el estudio arrojó un valor de 1.64, siendo menor al valor de tablas, quiere decir que es estadísticamente igual.

En las pruebas afectivas, el estudio demostró que las salsas muestran una diferencia significativa en su nivel de agrado para las muestras, lo que quiere decir que las muestras son diferentes una de la otra, sin que los jueces interfieran demasiado en las pruebas, de acuerdo a los resultados las salsas se pueden ordenar de acuerdo al nivel de agrado de la siguiente forma: de menor a mayor agrado está la salsa de mortero, posteriormente la de molcajete, siguiendo la de licuadora y procesador, calificando con mayor nivel de agrado la elaborada con mixer. Estos resultados se pueden explicar considerando que durante el crecimiento del ser humano, éste prueba más los alimentos procesados por aparatos eléctricos, por lo que la memoria gustativa tiene un mejor nivel de agrado para estos productos, pero no significa que no se acepten los demás, como es el caso de las salsas elaboradas con molcajete (Ver Gráfica 3).

Gráfica 3. Prueba de nivel de agrado en salsas.
Tabla 10. Prueba de Nivel de agrado

<table>
<thead>
<tr>
<th>Juez</th>
<th>Molcajete</th>
<th>Licuadora</th>
<th>Mixer</th>
<th>Mortero</th>
<th>Procesador</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Σ</td>
<td>74</td>
<td>76</td>
<td>86</td>
<td>43</td>
<td>79</td>
<td>358</td>
</tr>
</tbody>
</table>
2. b. Preferencia

Se pretende analizar la preferencia de los jueces en relación a cinco muestras de salsa elaboradas con utensilios diferentes (molcajete, mortero, procesador, licuadora y mixer), utilizando la tabla de p=1/2 sin dirección (Ver anexo 5), se estableció que el número mínimo para determinar si existe diferencia significativa es 15, (Véase Tabla 13). Se concluye que sí existe diferencia significativa entre la muestra elaborada en mortero a diferencia de las muestras elaboradas en algún otro aparato.

<table>
<thead>
<tr>
<th>Tabla 11. Tabla de análisis de datos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de muestras m</td>
</tr>
<tr>
<td>Número de jueces n</td>
</tr>
<tr>
<td>Grados de libertad de la variable (muestras) GL v=</td>
</tr>
<tr>
<td>Grados de libertad de los jueces GL j=</td>
</tr>
<tr>
<td>Grados de libertad totales GL t=</td>
</tr>
<tr>
<td>Grados de libertad residuales GL r=</td>
</tr>
<tr>
<td>Factor de corrección FC</td>
</tr>
<tr>
<td>Suma total TT</td>
</tr>
<tr>
<td>Suma de cuadrados de la variable (muestras) SCv</td>
</tr>
<tr>
<td>Suma de cuadrados de los jueces SCj</td>
</tr>
<tr>
<td>Suma de cuadrados totales SCT</td>
</tr>
<tr>
<td>Suma de cuadrados residuales SCr</td>
</tr>
<tr>
<td>Varianza entre variables Vv</td>
</tr>
<tr>
<td>Varianza entre jueces Vj</td>
</tr>
<tr>
<td>Varianza residual Vr</td>
</tr>
<tr>
<td>Valor F de variables Fv</td>
</tr>
<tr>
<td>Valor F de jueces Fj</td>
</tr>
</tbody>
</table>
Gráfica 4. Análisis de la preferencia en salsas elaboradas con cinco diferentes utensilios.

Tabla 12. Prueba de preferencia de salsa verde

<table>
<thead>
<tr>
<th>Juez</th>
<th>Molcajete</th>
<th>Licuadora</th>
<th>Mixer</th>
<th>Mortero</th>
<th>Procesador</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
Con respecto a la prueba de preferencia, se obtuvo que la salsa elaborada con mortero fue la menos aceptada, posteriormente sigue la de procesador, la de licuadora y la de molcajete, la salsa más aceptada es la que se elabora con mixer, a lo que podemos aludir que es debido a que se está muy acostumbrado a sabores con éste tipo de utensilios, sin embargo un punto a favor del molcajete es que fue el segundo en la preferencia de los jueces y que quiere decir que a pesar de su poca utilización, el sabor que aporta al alimento es relevante (Ver gráfica 4).

<table>
<thead>
<tr>
<th>Comparación</th>
<th>Diferencia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63-62</td>
<td>01</td>
</tr>
<tr>
<td></td>
<td>63-71</td>
<td>08</td>
</tr>
<tr>
<td></td>
<td>63-28</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>63-57</td>
<td>06</td>
</tr>
<tr>
<td></td>
<td>62-71</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td>62-28</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>62-57</td>
<td>05</td>
</tr>
<tr>
<td></td>
<td>71-28</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>71-57</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>28-57</td>
<td>29</td>
</tr>
</tbody>
</table>
3. Estabilidad (porcentaje de sinéresis)

3. a. Por separación de fases en refrigeración

Se realizó una prueba de estabilidad durante la semana del primero de julio al 7 de julio del 2015, en la que se pusieron 5 tríos de muestras de salsa verde elaborada con diferentes utensilios en frascos de vidrio con una capacidad de 80 g. Éstas se dejaron en refrigeración a una temperatura de 4° C con el fin de ver los cambios ocurridos en la salsa. Se obtuvo que las salsas presentaban sinéresis diferentes en función del utensilio usado en la elaboración de la salsa (Ver tabla 14).

La salsa elaborada con molcajete en comparación con la de licuadora muestra una sinéresis mayor, debido a que su consistencia martajada extraía el agua de los ingredientes, pero dejando trozos de los mismos de tamaño mediano, los otros utensilios mostraron una sinéresis similar, sin embargo la salsa elaborada con mortero mostró una sinéresis menor, debido a que la consistencia que se obtuvo fue martajada sin embargo con tropezos demasiado grandes sin una integración total de los ingredientes. El experimento en las condiciones indicadas se debe a la naturaleza por la cual las amas de casa conservan las salsas, ya sea en refrigeración o temperatura ambiente, siendo un factor muy importante de consumo el tiempo en que la salsa se mantenga unida, relacionando la frescura de la misma con respecto a la sinéresis observada.

<table>
<thead>
<tr>
<th>Tabla 14. Estabilidad día siete salsa verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
</tr>
<tr>
<td>Molcajete</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Licuadora</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mixer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mortero</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Procesador</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
3. b. Por centrifugación

Se realizó una prueba de estabilidad a seis salsas verdes, tres elaboradas en diferentes molcajetes y tres elaboradas con diferentes licuadoras; la sinéresis fue calculada a partir del líquido exudado por centrifugación (Mora et al., 2013). Se observó que la salsa elaborada con licuadora tiene una mayor sinéresis con un porcentaje promedio de 71.46% (Ver tabla 15), y la salsa con menor sinéresis es la de molcajete con un porcentaje promedio de 66% (Ver tabla 15), esto debido a que en el caso de la salsa elaborada en molcajete las partículas son más grandes al contrario de la elaborada con licuadora, por lo que se puede decir que a menor partícula, mayor extrusión de agua y menor estabilidad.

En el estudio realizado por Mora et al. (2013) se analiza la estabilidad de una salsa de alcachofa de acuerdo a diferentes espesantes utilizados en la misma; aunque no es de la misma naturaleza el producto, se puede observar en comparación con el estudio citado, que la molienda si afecta la estabilidad de la salsa, pudiendo ser un factor de conservación y aceptación del mismo.

La prueba de estabilidad que se mostró sin la centrífuga, es probable que tuviese mayor sinéresis por el espacio del fraco en que se conservó la muestra, y dónde el movimiento de las muestras para la medición que se observaba diariamente, pudo afectar la sinéresis correcta de cada muestra.

<table>
<thead>
<tr>
<th>Tabla 15. Porcentaje de sinéresis en salsas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestra</td>
</tr>
<tr>
<td>A 1 (Molcajete)</td>
</tr>
<tr>
<td>A 2</td>
</tr>
<tr>
<td>A 3</td>
</tr>
<tr>
<td>B 1 (Licuadora)</td>
</tr>
<tr>
<td>B 2</td>
</tr>
<tr>
<td>B 3</td>
</tr>
</tbody>
</table>
4. Determinación de cenizas

La prueba de cenizas de la salsa verde con pulpa muestra que el molcajete contiene un promedio de cenizas del 2.97% con una desviación estándar de 0.29 y las salsas elaboradas en licuadora contienen en promedio el 2.06% de cenizas con una desviación estándar de 0.24 (Ver tabla 16). Por la desviación estándar pequeña, permite concluir que el uso del molcajete influye en la cantidad de cenizas contenidas en la salsa verde. Por otra parte la prueba de cenizas en salsa verde sin pulpa arrojó el molcajete contiene un promedio de cenizas del 2.81% con una desviación estándar de 0.07 y las salsas elaboradas en licuadora contienen en promedio el 1.99% de cenizas con una desviación estándar de 0.13 (Ver tabla 16). Debido a que la desviación estándar resultó pequeña, permite concluir que el uso del molcajete influye en la cantidad de cenizas contenidas en la salsa verde independiente a los trozos de ingredientes más o menos pequeños contenidos en la misma.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>% de cenizas</th>
<th>Promedio ± DS</th>
<th>Muestra</th>
<th>% de cenizas</th>
<th>Promedio ± DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (Molcajete)</td>
<td>2.64</td>
<td>2.97 ± 0.29</td>
<td>A4 (Molcajete)</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>3.08</td>
<td></td>
<td>A5</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>3.20</td>
<td></td>
<td>A6</td>
<td>2.80</td>
<td></td>
</tr>
<tr>
<td>B1 (Licuadora)</td>
<td>2.31</td>
<td>2.06 ± 0.24</td>
<td>B4 (Licuadora)</td>
<td>2.08</td>
<td>1.99 ± 0.13</td>
</tr>
<tr>
<td>B2</td>
<td>2.05</td>
<td></td>
<td>B5</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>1.84</td>
<td></td>
<td>B6</td>
<td>1.84</td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo a García Velázquez et al. (2015), el contenido de cenizas puede estar influido de acuerdo a la naturaleza de los ingredientes, el contenido de sólidos en el mismo, etc. mostrando un 0.8-1.5% de cenizas en salsas con contenido de aguacate, sin embargo se notó un aumento de cenizas con salsas que fueron procesadas de ingredientes frescos, que sería el caso de nuestra salsa. En el presente estudio se dividieron los ingredientes en partes iguales, de forma que la salsa tuviese la misma composición, por lo que la
diferencia o no en las cenizas se puede aludir a la interacción prolongada con el instrumento de molienda (Ver gráfica 5), dónde los números 1, 2, 3 se refieren a las salsas elaboradas con molcajete y cuyo contenido de cenizas es mayor al contenido mostrado en los números 4, 5 y 6 que se refieren a las salsas elaboradas con licuadora, y que independiente a la pulpa contenida en éstos, puede verse una diferencia significativa que se comprobó gracias a la prueba estadística Tukey14 con un 5% de significancia.

Gráfica 5. Comportamiento del porcentaje de cenizas en una salsa verde.

5. Análisis instrumental de color

Se aplicaron dos análisis de color, uno en la salsa normal15 y otro en salsa sin pulpa16, el análisis de color con el colorímetro Hunter Lab XE, aplicando una reflectancia de espejo incluido (RSIN), osciló entre los valores -1.3 y 45.49 en la salsa sin pulpa; cuyos parámetros disminuyeron en la salsa elaborada con molcajete. El análisis mostró que la salsa elaborada en molcajete tiene una alta luminosidad con tendencia al color verde amarillo y cuyos valores en rojo son negativos. Con respecto a las salsas elaboradas con licuadora se tiene que tienen una gran luminosidad con coordenadas dirigidas al color verde y en negativo al rojo (Ver tabla 17).

14 Se realizó mediante un sofware, sin embargo de forma manual se realizan las diferencias entre las medias de los grupos, sacando posteriormente una desviación típica, dónde los coeficientes del resultado se comparan en la tabla Tukey.

15 Salsa normal: Muestra de salsa que se tomó íntegramente después de la molienda de las mismas en la licuadora y molcajete.

16 Salsa sin pulpa: Se refiere a salsa que se pasó por un colador para eliminar los sólidos de la misma, con el fin de evitar que la luz proyectada por el colorímetro atravesara una partícula más grande que las otras, afectando así el resultado del estudio.
Los resultados en la salsa con pulpa fueron muy diferentes, esto debido a que existían trozos irregulares de los ingredientes dentro de la salsa; los valores oscilaron entre -0.16 y 47.32; dónde la mayoría de los parámetros disminuyó en la salsa elaborada con molcajete. El análisis mostró que la salsa elaborada en molcajete tiene una alta luminosidad con tendencia al color verde amarillo y cuyos valores en rojo son negativos. Con respecto a las salsas elaboradas con licuadora se tiene que tienen una gran luminosidad con coordenadas dirigidas al color verde y rojo, teniendo una salsa más clara que la de molcajete. La razón por la que la salsa de molcajete se ve más obscura es porque contiene trozos más grandes de chile o tomate (Ver tabla 18).

Debido a que las muestras contienen partículas sólidas de diferente tamaño en las muestras, la luz del colorímetro pudo haber pasado por alguna de estas, afectando el color de manera significativa de una muestra a otra, por esa razón se decidió hacer la prueba de color sin la pulpa de la salsa. A pesar de esto en las pruebas de color, con pulpa y sin pulpa, se percibió a la salsa de licuadora más obscura que la de molcajete, al igual que en la prueba sensorial de ordenación, dónde a pesar de ser sólo un punto abajo, la salsa de molcajete se percibe más clara que la de licuadora.

<table>
<thead>
<tr>
<th>Valores</th>
<th>Molcajete</th>
<th>Promedio ± DS</th>
<th>Licuadora</th>
<th>Promedio ± DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a*</td>
<td>-0.75</td>
<td>-0.99</td>
<td>-1.33</td>
<td>-1.3 ± 0.84</td>
</tr>
<tr>
<td>b*</td>
<td>14.46</td>
<td>13.36</td>
<td>14.25</td>
<td>14.02 ± 0.58</td>
</tr>
<tr>
<td>L</td>
<td>43.26</td>
<td>42.90</td>
<td>44.05</td>
<td>43.40 ± 0.58</td>
</tr>
</tbody>
</table>
Debido a que las salsas se almacenaron un día para su análisis es posible que hubiese habido un obscurecimiento en las muestras, tal es el caso presentado también por Díaz y Pacheco (2000), sin embargo en este caso el pardeamiento no depende de la formulación de la salsa, si no de su molienda, por lo que también podría ser un factor aceptación en el producto.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a*</td>
<td>-0.02</td>
<td>-0.17</td>
<td>-0.28</td>
<td>-0.16 ± 0.13</td>
<td>0.76</td>
<td>0.29</td>
<td>-0.02</td>
<td>0.44 ± 0.27</td>
</tr>
<tr>
<td>b*</td>
<td>18.93</td>
<td>16.91</td>
<td>14.55</td>
<td>16.79 ± 2.19</td>
<td>20.29</td>
<td>19.01</td>
<td>17.20</td>
<td>18.83 ± 1.55</td>
</tr>
<tr>
<td>L</td>
<td>49.81</td>
<td>47.17</td>
<td>44.99</td>
<td>47.32 ± 2.41</td>
<td>46.30</td>
<td>47.21</td>
<td>46.31</td>
<td>46.60 ± 0.52</td>
</tr>
</tbody>
</table>

Los análisis realizados a las salsas mostraron ser coherentes al comparar los sensoriales con los análisis instrumentales, por lo que se puede decir que tanto los jueces entrenados como los aparatos pueden diferenciar los parámetros, en cuanto al parámetro del color, se puede apreciar que a pesar de no tener una diferencia significativa según el análisis sensorial, al analizarlos de manera instrumental, concuerda el hecho de que la salsa de molcajete se perciba más clara que la elaborada en licuadora. El análisis de sinéresis instrumental con respecto al realizado por reposo se percibió diferente, debido a que su separación fue ligeramente mayor, pero no significativamente, por lo que se pueden aludir los resultados en condiciones normales a la forma de almacenaje que tuvieron las salsa, sin embargo la sinéresis calculada instrumentalmente, nos demuestra que hay una mejor estabilidad en la de licuadora, por lo que a los ojos, es mejor para el consumo.
Conclusiones

Con ayuda del entrenamiento realizado por los panelistas, éstos fueron capaces de discriminar de manera sencilla las pruebas realizadas, identificando las diferencias entre muestra y muestra. Con respecto a las evaluaciones sensoriales se concluyó que si hay una diferencia en el color, dónde el mixer y el mortero son los instrumentos en cuyo color mostraron una diferencia significativa. Esta misma diferencia se observó también en el atributo del sabor, esto debido a que con el mortero los ingredientes no se lograban moler adecuadamente siendo sólo martajados, pero sin llegar a integrar más que el agua de los mismos a diferencia de las elaboradas con el mixer la molienda era más homogénea, por lo que el chile que contenía la salsa se puedo mezclar adecuadamente y cuyas semillas de capsaicina se trituraron mejor, al igual que la piel de los ingredientes. Sin embargo en la consistencia a la vista no se pudo encontrar una diferencia relevante en las muestras de salsa.

Aunque la salsa elaborada en molcajete ocupa un segundo lugar en un nivel de agrado, hay una diferencia significativa entre la elaborada con mortero y la de molcajete en cuyos comentarios se dijo que el haberla guardado un día, había hecho que su sabor decreciera. Por otra parte se desecha la teoría que se tenía acerca que la fricción era lo que daba el sabor en el molcajete, debido a que la salsa elaborada con mortero fue la menos aceptada por los jueces y cuyo sabor calificaron como desabrido.

Se puede decir que hay una diferencia entre las salsas elaboradas con un aparato electrónico y el molcajete, como se comprueba en la prueba dúo-trío. Con respecto a la estabilidad en condiciones normales, se puede decir que entre más triturados estén los ingredientes, estos serán más estables, sin embargo la sinéresis aumenta, puesto que la extracción de agua en los vegetales es mayor.

En cuestión al color se puede apreciar que las muestras sí tienen una diferencia, puesto que las muestras de molcajete están direccionadas al color verde azul, es decir más obscuro y las de licuadora se direccionan al rojo y verde por lo que se aprecian más claras. Sin embargo esto cambia si tiene pulpa, más los jueces no encuentran una diferencia aparente al menos en las elaboradas en licuadora y molcajete.
Por su parte, los valores de ceniza en las muestras fueron de 2.97 + 0.29 y de 2.06 + 0.24, en molcajete y licuadora respectivamente, mostrando una mayor cantidad de cenizas la salsa de molcajete.

Los hallazgos contribuyen a la valorización de métodos y utensilios tradicionales ya que contribuyen a los sabores originales de México, puesto que si el utensilio sí aporta sabor a los alimentos, entonces su abandono ocasionaría una pérdida importante en nuestra gastronomía.
Bibliografía

García Velásquez, M. D. I. Á. y otros, 2015. *Google académico*. [En línea] Available at: https://scholar.google.com.mx/scholar?lookup=0&q=An%C3%A1lisis+instrumental+de+salsas+picantes+tr%2C%2AdPicas++de+ciudad+de+Saltillo,+Coahuila&hl=es&as_sdt=0.5 [Último acceso: 03 Septiembre 2015].

Grande, J. J. y otros, s.f. *Optimización del proceso de producción de salsa catsup elaborada con jitomate (Solanum lycopersicum L.) libre de agroquímicos, y
aprovechamiento de los subproductos obtenidos para una fermentación en medio sólido..
Celaya, s.n.

Norma Mexicana (NMX), 1978. *Determinación de cenizas en alimentos. Secretaría*

Anexos

Anexo 1. Aleatorización

<table>
<thead>
<tr>
<th></th>
<th>Juez #1</th>
<th>Juez #2</th>
<th>Juez #3</th>
<th>Juez #4</th>
<th>Juez #5</th>
<th>Juez #6</th>
<th>Juez #7</th>
<th>Juez #8</th>
<th>Juez #9</th>
<th>Juez #10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>00</td>
<td>36</td>
<td>31</td>
<td>46</td>
<td>05</td>
<td>27</td>
<td>43</td>
<td>72</td>
<td>00</td>
</tr>
</tbody>
</table>

Dónde:
- Código no. 12,72 = Molcajete
- Código no. 36,05 = Licuadora
- Código no. 46,00 = Mixer
- Código no. 27,43 = Mortero
- Código no. 85,31 = Procesador

Anexo 2. Aleatorización

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19</td>
<td>03</td>
<td>77</td>
<td>16</td>
<td>19</td>
<td>77</td>
<td>29</td>
<td>88</td>
<td>88</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>06</td>
<td>90</td>
<td>16</td>
<td>06</td>
<td>63</td>
<td>77</td>
<td>90</td>
<td>72</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>06</td>
<td>77</td>
<td>63</td>
<td>90</td>
<td>63</td>
<td>88</td>
<td>88</td>
<td>05</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>19</td>
<td>16</td>
<td>63</td>
<td>90</td>
<td>63</td>
<td>88</td>
<td>88</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>27</td>
<td>90</td>
<td>90</td>
<td>63</td>
<td>82</td>
<td>82</td>
<td>05</td>
<td>72</td>
<td>00</td>
</tr>
</tbody>
</table>

Dónde:
- Código no. 19, 17, 77, 06, 88, 44, 82 = Molcajete
- Código no. 16, 03, 36, 29, 63, 45, 56 = Licuadora
- R= Molcajete

Anexo 3: Aleatorización

<table>
<thead>
<tr>
<th>Juez #1</th>
<th>37</th>
<th>13</th>
<th>34</th>
<th>28</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juez #2</td>
<td>90</td>
<td>71</td>
<td>23</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Juez #3</td>
<td>13</td>
<td>37</td>
<td>28</td>
<td>92</td>
<td>34</td>
</tr>
<tr>
<td>Juez #4</td>
<td>90</td>
<td>25</td>
<td>56</td>
<td>23</td>
<td>71</td>
</tr>
<tr>
<td>Juez #5</td>
<td>34</td>
<td>28</td>
<td>13</td>
<td>37</td>
<td>92</td>
</tr>
<tr>
<td>Juez #6</td>
<td>23</td>
<td>90</td>
<td>71</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Juez #7</td>
<td>37</td>
<td>13</td>
<td>34</td>
<td>28</td>
<td>92</td>
</tr>
<tr>
<td>Juez #8</td>
<td>90</td>
<td>71</td>
<td>23</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Juez #9</td>
<td>13</td>
<td>37</td>
<td>28</td>
<td>92</td>
<td>34</td>
</tr>
<tr>
<td>Juez #10</td>
<td>90</td>
<td>25</td>
<td>56</td>
<td>23</td>
<td>71</td>
</tr>
<tr>
<td>Juez #11</td>
<td>34</td>
<td>28</td>
<td>13</td>
<td>37</td>
<td>92</td>
</tr>
<tr>
<td>Juez #12</td>
<td>23</td>
<td>90</td>
<td>71</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Juez #13</td>
<td>37</td>
<td>13</td>
<td>34</td>
<td>28</td>
<td>92</td>
</tr>
<tr>
<td>Juez #14</td>
<td>90</td>
<td>71</td>
<td>23</td>
<td>25</td>
<td>56</td>
</tr>
<tr>
<td>Juez #15</td>
<td>13</td>
<td>37</td>
<td>28</td>
<td>92</td>
<td>34</td>
</tr>
</tbody>
</table>

Dónde:

- Código no. 37, 56 = Molcajete
- Código no. 25, 13 = Licuadora
- Código no. 34, 23 = Mixer
- Código no. 71, 28 = Mortero
- Código no. 92, 90 = Procesador
Anexo 4: Aleatorización

<table>
<thead>
<tr>
<th>No de juez.</th>
<th>Código 1</th>
<th>Código 2</th>
<th>Código 3</th>
<th>Código 4</th>
<th>Código 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juez # 1</td>
<td>62</td>
<td>87</td>
<td>27</td>
<td>60</td>
<td>04</td>
</tr>
<tr>
<td>Juez # 2</td>
<td>52</td>
<td>79</td>
<td>64</td>
<td>81</td>
<td>40</td>
</tr>
<tr>
<td>Juez # 3</td>
<td>60</td>
<td>04</td>
<td>62</td>
<td>87</td>
<td>27</td>
</tr>
<tr>
<td>Juez # 4</td>
<td>81</td>
<td>48</td>
<td>52</td>
<td>79</td>
<td>64</td>
</tr>
<tr>
<td>Juez # 5</td>
<td>87</td>
<td>27</td>
<td>60</td>
<td>04</td>
<td>62</td>
</tr>
<tr>
<td>Juez # 6</td>
<td>52</td>
<td>64</td>
<td>81</td>
<td>79</td>
<td>48</td>
</tr>
<tr>
<td>Juez # 7</td>
<td>62</td>
<td>87</td>
<td>27</td>
<td>60</td>
<td>04</td>
</tr>
<tr>
<td>Juez # 8</td>
<td>52</td>
<td>79</td>
<td>64</td>
<td>81</td>
<td>40</td>
</tr>
<tr>
<td>Juez # 9</td>
<td>60</td>
<td>04</td>
<td>62</td>
<td>87</td>
<td>27</td>
</tr>
<tr>
<td>Juez # 10</td>
<td>81</td>
<td>48</td>
<td>52</td>
<td>79</td>
<td>64</td>
</tr>
<tr>
<td>Juez # 11</td>
<td>87</td>
<td>27</td>
<td>60</td>
<td>04</td>
<td>62</td>
</tr>
<tr>
<td>Juez # 12</td>
<td>52</td>
<td>64</td>
<td>81</td>
<td>79</td>
<td>48</td>
</tr>
<tr>
<td>Juez # 13</td>
<td>62</td>
<td>87</td>
<td>27</td>
<td>60</td>
<td>04</td>
</tr>
<tr>
<td>Juez # 14</td>
<td>52</td>
<td>79</td>
<td>64</td>
<td>81</td>
<td>40</td>
</tr>
<tr>
<td>Juez # 15</td>
<td>60</td>
<td>04</td>
<td>62</td>
<td>87</td>
<td>27</td>
</tr>
</tbody>
</table>

Dónde:

- Código no. 62,79 = Molcajete
- Código no. 87,64 = Licuadora
- Código no. 27,81 = Mixer
- Código no. 60,48 = Mortero
- Código no. 04,52 = Procesador
Anexo 5. Tabla de probabilidad 1/2 sin dirección

<table>
<thead>
<tr>
<th>Number of trials (n)</th>
<th>0.05</th>
<th>0.04</th>
<th>0.03</th>
<th>0.02</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>61</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>62</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>63</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>66</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>67</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Values (X) not appearing in table may be derived from X = (z \sqrt{n} + n + 1)/2. See text. Reprinted from J. Food Sci. 43, pp. 940-947, 1978. Copyright © by Institute of Food Technologists.
Anexo 6. Tabla de Sumatoria Ordinal absoluta, 5% de probabilidad.

<table>
<thead>
<tr>
<th>Jueces</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>14</td>
<td>18</td>
<td>22</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>39</td>
<td>43</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>15</td>
<td>19</td>
<td>23</td>
<td>27</td>
<td>32</td>
<td>36</td>
<td>41</td>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>15</td>
<td>20</td>
<td>24</td>
<td>29</td>
<td>34</td>
<td>38</td>
<td>43</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>16</td>
<td>21</td>
<td>26</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>51</td>
<td>56</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>27</td>
<td>32</td>
<td>37</td>
<td>42</td>
<td>48</td>
<td>53</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>33</td>
<td>39</td>
<td>44</td>
<td>50</td>
<td>55</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>18</td>
<td>24</td>
<td>29</td>
<td>34</td>
<td>40</td>
<td>46</td>
<td>52</td>
<td>57</td>
<td>63</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>19</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>47</td>
<td>53</td>
<td>59</td>
<td>66</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>19</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>42</td>
<td>49</td>
<td>55</td>
<td>61</td>
<td>67</td>
</tr>
<tr>
<td>17</td>
<td>14</td>
<td>20</td>
<td>26</td>
<td>32</td>
<td>38</td>
<td>44</td>
<td>50</td>
<td>56</td>
<td>63</td>
<td>69</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>20</td>
<td>26</td>
<td>32</td>
<td>39</td>
<td>45</td>
<td>51</td>
<td>58</td>
<td>65</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
<td>40</td>
<td>46</td>
<td>53</td>
<td>60</td>
<td>66</td>
<td>73</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>21</td>
<td>28</td>
<td>34</td>
<td>41</td>
<td>47</td>
<td>54</td>
<td>61</td>
<td>68</td>
<td>75</td>
</tr>
<tr>
<td>21</td>
<td>16</td>
<td>22</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
<td>70</td>
<td>77</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>22</td>
<td>29</td>
<td>36</td>
<td>43</td>
<td>50</td>
<td>57</td>
<td>64</td>
<td>71</td>
<td>79</td>
</tr>
<tr>
<td>23</td>
<td>16</td>
<td>23</td>
<td>30</td>
<td>37</td>
<td>44</td>
<td>51</td>
<td>58</td>
<td>65</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>17</td>
<td>23</td>
<td>30</td>
<td>37</td>
<td>45</td>
<td>52</td>
<td>59</td>
<td>67</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>24</td>
<td>31</td>
<td>38</td>
<td>46</td>
<td>53</td>
<td>61</td>
<td>69</td>
<td>76</td>
<td>84</td>
</tr>
<tr>
<td>26</td>
<td>17</td>
<td>24</td>
<td>32</td>
<td>39</td>
<td>46</td>
<td>54</td>
<td>62</td>
<td>70</td>
<td>77</td>
<td>85</td>
</tr>
<tr>
<td>27</td>
<td>18</td>
<td>25</td>
<td>32</td>
<td>40</td>
<td>47</td>
<td>55</td>
<td>63</td>
<td>71</td>
<td>79</td>
<td>87</td>
</tr>
<tr>
<td>28</td>
<td>18</td>
<td>25</td>
<td>33</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
<td>89</td>
</tr>
<tr>
<td>29</td>
<td>18</td>
<td>26</td>
<td>33</td>
<td>42</td>
<td>50</td>
<td>58</td>
<td>66</td>
<td>75</td>
<td>83</td>
<td>92</td>
</tr>
<tr>
<td>30</td>
<td>19</td>
<td>26</td>
<td>34</td>
<td>42</td>
<td>51</td>
<td>59</td>
<td>67</td>
<td>76</td>
<td>85</td>
<td>93</td>
</tr>
<tr>
<td>31</td>
<td>19</td>
<td>27</td>
<td>34</td>
<td>42</td>
<td>51</td>
<td>59</td>
<td>67</td>
<td>76</td>
<td>85</td>
<td>93</td>
</tr>
<tr>
<td>32</td>
<td>19</td>
<td>27</td>
<td>35</td>
<td>43</td>
<td>51</td>
<td>60</td>
<td>68</td>
<td>77</td>
<td>86</td>
<td>95</td>
</tr>
<tr>
<td>33</td>
<td>20</td>
<td>27</td>
<td>36</td>
<td>44</td>
<td>52</td>
<td>61</td>
<td>70</td>
<td>78</td>
<td>87</td>
<td>96</td>
</tr>
<tr>
<td>34</td>
<td>20</td>
<td>28</td>
<td>36</td>
<td>44</td>
<td>53</td>
<td>62</td>
<td>71</td>
<td>79</td>
<td>89</td>
<td>98</td>
</tr>
<tr>
<td>35</td>
<td>20</td>
<td>28</td>
<td>37</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>72</td>
<td>81</td>
<td>90</td>
<td>99</td>
</tr>
<tr>
<td>36</td>
<td>20</td>
<td>29</td>
<td>37</td>
<td>46</td>
<td>55</td>
<td>64</td>
<td>74</td>
<td>83</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>37</td>
<td>21</td>
<td>29</td>
<td>38</td>
<td>46</td>
<td>55</td>
<td>64</td>
<td>74</td>
<td>83</td>
<td>92</td>
<td>102</td>
</tr>
<tr>
<td>38</td>
<td>21</td>
<td>29</td>
<td>38</td>
<td>47</td>
<td>56</td>
<td>65</td>
<td>75</td>
<td>84</td>
<td>94</td>
<td>103</td>
</tr>
<tr>
<td>39</td>
<td>21</td>
<td>30</td>
<td>39</td>
<td>48</td>
<td>57</td>
<td>66</td>
<td>76</td>
<td>85</td>
<td>95</td>
<td>105</td>
</tr>
<tr>
<td>40</td>
<td>21</td>
<td>30</td>
<td>39</td>
<td>48</td>
<td>57</td>
<td>67</td>
<td>76</td>
<td>86</td>
<td>96</td>
<td>106</td>
</tr>
<tr>
<td>41</td>
<td>22</td>
<td>31</td>
<td>40</td>
<td>49</td>
<td>58</td>
<td>68</td>
<td>77</td>
<td>87</td>
<td>97</td>
<td>107</td>
</tr>
<tr>
<td>42</td>
<td>22</td>
<td>31</td>
<td>40</td>
<td>49</td>
<td>59</td>
<td>69</td>
<td>78</td>
<td>88</td>
<td>98</td>
<td>109</td>
</tr>
<tr>
<td>43</td>
<td>22</td>
<td>31</td>
<td>41</td>
<td>50</td>
<td>60</td>
<td>69</td>
<td>79</td>
<td>89</td>
<td>99</td>
<td>110</td>
</tr>
<tr>
<td>44</td>
<td>22</td>
<td>32</td>
<td>41</td>
<td>51</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>101</td>
<td>111</td>
</tr>
</tbody>
</table>
Anexo 7.

Distribución $F. P[F(m; n) > a] = 0.05.$

<table>
<thead>
<tr>
<th>Grados de libertad del denominador</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>24</th>
<th>30</th>
<th>40</th>
<th>60</th>
<th>120</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>4.54</td>
<td>5.68</td>
<td>7.29</td>
<td>9.06</td>
<td>9.90</td>
<td>7.71</td>
<td>3.64</td>
<td>2.59</td>
<td>3.54</td>
<td>2.48</td>
<td>2.40</td>
<td>2.33</td>
<td>2.29</td>
<td>2.23</td>
<td>2.20</td>
<td>2.16</td>
<td>2.11</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.49</td>
<td>5.63</td>
<td>7.34</td>
<td>9.01</td>
<td>9.85</td>
<td>7.74</td>
<td>3.66</td>
<td>2.60</td>
<td>3.54</td>
<td>2.49</td>
<td>2.42</td>
<td>2.35</td>
<td>2.29</td>
<td>2.23</td>
<td>2.19</td>
<td>2.15</td>
<td>2.11</td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.45</td>
<td>5.59</td>
<td>7.30</td>
<td>9.06</td>
<td>9.71</td>
<td>7.70</td>
<td>3.55</td>
<td>2.49</td>
<td>3.45</td>
<td>2.38</td>
<td>2.31</td>
<td>2.25</td>
<td>2.20</td>
<td>2.15</td>
<td>2.10</td>
<td>2.06</td>
<td>2.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.41</td>
<td>5.55</td>
<td>7.26</td>
<td>9.03</td>
<td>9.62</td>
<td>7.66</td>
<td>3.48</td>
<td>2.46</td>
<td>2.41</td>
<td>2.34</td>
<td>2.27</td>
<td>2.21</td>
<td>2.15</td>
<td>2.11</td>
<td>2.06</td>
<td>2.02</td>
<td>1.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.38</td>
<td>5.52</td>
<td>7.23</td>
<td>9.00</td>
<td>9.55</td>
<td>7.59</td>
<td>3.42</td>
<td>2.42</td>
<td>2.38</td>
<td>2.31</td>
<td>2.23</td>
<td>2.16</td>
<td>2.11</td>
<td>2.07</td>
<td>2.03</td>
<td>1.98</td>
<td>1.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.35</td>
<td>5.49</td>
<td>7.19</td>
<td>8.97</td>
<td>8.96</td>
<td>7.54</td>
<td>3.33</td>
<td>2.39</td>
<td>2.35</td>
<td>2.30</td>
<td>2.24</td>
<td>2.18</td>
<td>2.11</td>
<td>2.05</td>
<td>1.99</td>
<td>1.93</td>
<td>1.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.32</td>
<td>5.47</td>
<td>7.17</td>
<td>8.94</td>
<td>8.90</td>
<td>7.48</td>
<td>3.27</td>
<td>2.32</td>
<td>2.27</td>
<td>2.22</td>
<td>2.16</td>
<td>2.09</td>
<td>2.02</td>
<td>1.95</td>
<td>1.88</td>
<td>1.82</td>
<td>1.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4.30</td>
<td>5.44</td>
<td>7.15</td>
<td>8.89</td>
<td>8.84</td>
<td>7.42</td>
<td>3.23</td>
<td>2.29</td>
<td>2.23</td>
<td>2.18</td>
<td>2.12</td>
<td>2.06</td>
<td>2.00</td>
<td>1.93</td>
<td>1.86</td>
<td>1.80</td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.28</td>
<td>5.42</td>
<td>7.13</td>
<td>8.85</td>
<td>8.79</td>
<td>7.36</td>
<td>3.19</td>
<td>2.25</td>
<td>2.20</td>
<td>2.14</td>
<td>2.08</td>
<td>2.02</td>
<td>1.95</td>
<td>1.88</td>
<td>1.81</td>
<td>1.75</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.26</td>
<td>5.40</td>
<td>7.11</td>
<td>8.82</td>
<td>8.74</td>
<td>7.30</td>
<td>3.15</td>
<td>2.21</td>
<td>2.16</td>
<td>2.10</td>
<td>2.04</td>
<td>2.00</td>
<td>1.94</td>
<td>1.87</td>
<td>1.80</td>
<td>1.74</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.24</td>
<td>5.39</td>
<td>7.09</td>
<td>8.78</td>
<td>8.69</td>
<td>7.25</td>
<td>3.11</td>
<td>2.18</td>
<td>2.13</td>
<td>2.07</td>
<td>2.01</td>
<td>1.95</td>
<td>1.88</td>
<td>1.81</td>
<td>1.75</td>
<td>1.69</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.23</td>
<td>5.37</td>
<td>7.07</td>
<td>8.74</td>
<td>8.64</td>
<td>7.21</td>
<td>3.07</td>
<td>2.14</td>
<td>2.09</td>
<td>2.04</td>
<td>1.98</td>
<td>1.92</td>
<td>1.85</td>
<td>1.79</td>
<td>1.73</td>
<td>1.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.21</td>
<td>5.35</td>
<td>7.04</td>
<td>8.70</td>
<td>8.59</td>
<td>7.16</td>
<td>3.03</td>
<td>2.10</td>
<td>2.05</td>
<td>2.00</td>
<td>1.94</td>
<td>1.88</td>
<td>1.81</td>
<td>1.75</td>
<td>1.69</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.20</td>
<td>5.34</td>
<td>7.02</td>
<td>8.66</td>
<td>8.54</td>
<td>7.12</td>
<td>2.99</td>
<td>2.06</td>
<td>2.01</td>
<td>1.96</td>
<td>1.90</td>
<td>1.84</td>
<td>1.78</td>
<td>1.72</td>
<td>1.66</td>
<td>1.60</td>
<td>1.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4.18</td>
<td>5.33</td>
<td>7.00</td>
<td>8.62</td>
<td>8.49</td>
<td>7.08</td>
<td>2.95</td>
<td>2.02</td>
<td>1.97</td>
<td>1.92</td>
<td>1.86</td>
<td>1.80</td>
<td>1.74</td>
<td>1.68</td>
<td>1.62</td>
<td>1.56</td>
<td>1.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.17</td>
<td>5.32</td>
<td>6.98</td>
<td>8.58</td>
<td>8.44</td>
<td>7.04</td>
<td>2.91</td>
<td>1.98</td>
<td>1.93</td>
<td>1.88</td>
<td>1.82</td>
<td>1.76</td>
<td>1.70</td>
<td>1.64</td>
<td>1.58</td>
<td>1.52</td>
<td>1.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.08</td>
<td>5.23</td>
<td>6.84</td>
<td>8.45</td>
<td>8.34</td>
<td>6.99</td>
<td>2.84</td>
<td>1.91</td>
<td>1.86</td>
<td>1.81</td>
<td>1.75</td>
<td>1.69</td>
<td>1.63</td>
<td>1.57</td>
<td>1.51</td>
<td>1.45</td>
<td>1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.00</td>
<td>5.15</td>
<td>6.76</td>
<td>8.37</td>
<td>8.25</td>
<td>6.94</td>
<td>2.77</td>
<td>1.86</td>
<td>1.81</td>
<td>1.76</td>
<td>1.70</td>
<td>1.64</td>
<td>1.58</td>
<td>1.52</td>
<td>1.46</td>
<td>1.40</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>3.92</td>
<td>5.07</td>
<td>6.68</td>
<td>8.29</td>
<td>8.17</td>
<td>6.89</td>
<td>2.70</td>
<td>1.81</td>
<td>1.76</td>
<td>1.71</td>
<td>1.65</td>
<td>1.59</td>
<td>1.53</td>
<td>1.47</td>
<td>1.41</td>
<td>1.35</td>
<td>1.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>3.84</td>
<td>5.00</td>
<td>6.60</td>
<td>8.22</td>
<td>8.10</td>
<td>6.84</td>
<td>2.63</td>
<td>1.76</td>
<td>1.71</td>
<td>1.66</td>
<td>1.60</td>
<td>1.54</td>
<td>1.48</td>
<td>1.42</td>
<td>1.36</td>
<td>1.30</td>
<td>1.24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>