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Received: 9 August 2017
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Abstract The aim of this research was to synthesize and

chemically characterize a cancer-specific 177Lu-Au-

nanoradiopharmaceutical based on gold nanoparticles

(NPs), the nuclear localization sequence (NLS)-Arg-Gly-

Asp peptide and an aptamer (HS-pentyl-pegaptanib) to

target both the a(v)b(3) integrin and the vascular

endothelial growth factor (VEGF) overexpressed in the

tumor neovasculature, as well as to evaluate by the tube

formation assay, the nanosystem capability to inhibit

angiogenesis. 177Lu-NP-RGD-NLS-Aptamer was obtained

with a radiochemical purity of 99 ± 1%. Complete inhi-

bition of tube formation (angiogenesis) was demonstrated

when endothelial cells (EA.hy926), cultured in a 3D-ex-

tracellular matrix support, were treated with the developed

nanosystem.
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Introduction

177Lu-nanoradiopharmaceuticals based on gold nanoparti-

cles (NPs) are in the spotlight of theranostic innovation.

Due to their optical properties, nontoxic nature, relatively

simple preparation and functionalization, NPs have been

successfully labeled with 177Lu (therapeutic b�max emission

of 0.497 MeV and c radiation of 0.208 MeV for diagnostic

imaging) and covalently bound to molecules with target-

specific recognition to obtain nanosystems with properties

suitable for optical and nuclear imaging, plasmonic-pho-

tothermal therapy and targeted radiotherapy on a single

platform [1–3].

Solid tumors require the formation of new blood vessels

(angiogenesis) for growth, and many new cancer therapies

are directed against the tumor vasculature [4, 5]. Multiple

angiogenesis inhibitors have been therapeutically validated

in preclinical and clinical trials [6].

The a(v)b(3) integrin is a specific marker of the neo-

vasculature, which is overexpressed in the tumor vessels

during angiogenesis. The Arg-Gly-Asp (RGD) peptide

motifs have been identified as high-affinity a(v)b(3)

selective ligands and therefore as antiangiogenic agents [7].

Furthermore, RGD conjugated to radiolabeled peptides

with a nuclear localization peptide sequence (NLS) pro-

mote the radionuclide internalization in cancer cells over-

expressing a(v)b(3) integrins, increasing the effectiveness

of targeted radiotherapy [8, 9].

Aptamers are single-stranded deoxyribonucleic acid or

ribonucleic acid oligonucleotides, which can bind their

target with high selectivity and affinity [10]. Pegaptanib is

an aptamer that inhibits angiogenesis by targeting the

vascular endothelial growth factor (VEGF) pathway [11].
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México-Toluca S/N, 52750 Ocoyoacac, Estado de México,
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One of the most widely used in vitro assays to model the

reorganization stage of angiogenesis is the tube formation

assay. This assay measures the ability of endothelial cells

to form capillary structures (tubes). The study focuses on

how specific signaling molecules are involved in the three-

dimensional formation of vascular networks. Compounds

which inhibit the formation of tubes could be useful as

specific antiangiogenic agents [12].

The use of heterobivalent molecules interacting con-

comitantly with different receptors in tumor cells is an

approach for drug enhancement for specific and sensitive

tumor imaging [13–15].

The aim of this study was to synthesize and chemically

characterize a cancer-specific 177Lu-Au-nanoradiopharma-

ceutical based on NPs, NLS-RGD and aptamer able to

target both the a(v)b(3) integrin and the VEGF, as well as

evaluate by the tube formation assay, the nanosystem

capability to inhibit angiogenesis.

Experimental

Synthesis of the NLS-RGD peptide

The synthesis procedure is described in detail in the Sup-

plementary information section. Briefly, the cyclo(Arg-

Gly-Asp-DTyr-Lys)-3-maleimidepropionylamide (c(RGDyK)-

3MP) and NH2-Gly1-Arg2-Lys3-Lys4-Arg5-Arg6-Gly7-Gly8-

Cys9-Gly10-Cys11(Acm)-Gly12-Cys13(Acm)-CONH2 (NLS-

CGCGC) peptides were first synthesized and bound through

the -3MP and Cys9 to produce the NH2-Gly-Arg-Lys-Lys-

Arg-Arg-Gly-Gly-Cys-[c(Arg-Gly-Asp-D-Tyr-Lys)-3-succin-

imidepropionylamide)]-Gly-Cys(Acm)-Gly-Cys(Acm)-CONH2

(NLS-RGD) peptide; m/z (MALDI?) m/z = 2248.18

[M ? H]? (calcld. 2250.46).

Synthesis of the aptamer-SH (pegaptanib derivative)

The aptamer analogue to pegaptanib was designed to

interact covalently with gold atoms on the nanoparticle

surface by adding a HS-pentyl (-SH terminal group) and it

was synthesized with support of the Iba Solutions Com-

pany (Germany). The sequence of the RNA aptamer is as

follows: [(20-deoxy-20-fluoro)C-Gm-Gm-A-A-(20-deoxy-

20-fluoro)U-(20-deoxy-20-fluoro)C-Am-Gm-(20-deoxy-20-
fluoro)U-Gm-Am-Am-(20-deoxy-20-fluoro)U-Gm-(20-deoxy-

20-fluoro)C-(20-deoxy-20-fluoro)U-(20-deoxy-20fluoro)U-Am-

(20-deoxy-20-fluoro)U-Am-(20-deoxy-20-fluoro)C-Am-(20-
deoxy-20-fluoro)U-(20deoxy-20-fluoro)C-(20-deoxy-20-fluoro)

C-Gm-(30 ? 30)-dT], [[5-(phosphoonoxy)pentyl]thiol].

The methodology of the synthesis included: (1) standard

linkage of 28 RNA bases; (2) the attachment of 20-fluoro to

every U and C, (3) the attachment of 20-O-Methyl at

2,3,8,9,11–13,15,19,21,23 and 27; (4) inverse modification

dT, (5) 50-thiol; and (6) HPLC purification of the RNA.

PM = 9197.25 g/mol. The final product was lyophilized

on a scale of 29 nmol.

Conjugation of NLS-RGD and aptamer to the NPs

A NP solution stabilized with PBS (1 mL, 20 nm,

6.54 9 1011 particles/mL, Sigma Aldrich) was added to

10 lL of a NLS-RGD solution (1 mg/10 mL; 2.68 9 1014

molecules; 16 molecules per 20 nm nanoparticle) followed

by 10 lL of an aptamer solution (29 nmol/10 mL;

1.767 9 1013 molecules; 27 molecules per 20 nm

nanoparticle). The conjugation of the aptamer and NLS-

RGD molecules to the NP was performed by reactions of

the –SH with NP surface. Since up to 1701 peptides or

molecules can be attached to one NP (20 nm, surface

area = 1260 nm2) [16], no further purification was

necessary.

Preparation of the 177Lu-Au-nanoradiophar-

maceutical (177Lu-NP-RGD-NLS-Aptamer)

The 1,4,7,10-tetraazacyclododecane-N,N0,N00,N000-tetraacetic

acid-Gly-Gly-Cys (DOTA-GGC) peptide to be used as

chelator for Lu-177 (DOTA), was synthesized according to

the method described by Luna-Gutiérrez et al. [17]. The

detail methods to prepare 177Lu-DOTA-GGC-NP and to

evaluate its radiochemical purity have been shown elsewhere

[17, 19]. To 1 mL of the NP-NLS-RGD-Aptamer solution,

3 lL (18–20 MBq) of 177Lu-DOTA-GGC was added

(0.25 lg of peptide; 1.89 9 1014 molecules; 270 molecules

per 20 nm NP) to form the 177Lu-DOTA-GGC-NP-NLS-

RGD-Aptamer nanosystem (177Lu-NP-NLS-RGD-Aptamer)

(Fig. 1). For chemical characterization and comparative

purposes, the radioactive and non-radioactive systems of

DOTA-GGC-NP, DOTA-GGC-NP-NLS-RGD, DOTA-GG

C-NP-Aptamer and DOTA-GGC-NP-NLS-RGD-Aptamer

were also prepared using the same procedure.

Chemical characterization

The DOTA-GGC-NP-NLS-RGD-Aptamer was character-

ized in size and shape by transmission electron microscopy

(JEOL JEM2010 HT microscope operated at 200 kV). The

hydrodynamic diameter and Zeta potential were obtained

by dynamic light scattering (DLS) (Nanotrac Wave, Model

MN401, Microtract, FL, USA). The IR spectra were

acquired on a PerkinElmer System 2000 spectrometer with

an ATR platform (Pike Technologies ATR-FTIR) from

4400 to 570 cm-1 and 700 to 30 cm-1. The nanoconjugate

was measured by UV–Vis spectroscopy, monitoring the

shift in the surface plasmon band with a Perkin-Elmer
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Lambda-Bio spectrometer. Raman spectra were acquired

on a MicroRaman (JOBIN–Yvon-Horiba, LABRAM-

HR800) spectrometer with optical microscope (OLYMPUS

BX 41) and He–Ne Laser (632.8 nm) as excitation source.

Detail methods to evaluate the radiochemical purity by

size-exclusion chromatography and ultrafiltration have

been shown elsewhere [17, 19].

Biochemical characterization

Cell cultures

The permanent human umbilical vein cell line (EA.hy926)

was purchased from Gibco-Life Technologies (Carlsbad,

CA, USA) and cultured (37 �C, 5% CO2) in F12 medium

200 (Gibco-Life Technologies). The C6 rat glioma cell line

were obtained from American Type Culture Collection

(Atlanta, GA, USA) and cultured (37 �C, 5% CO2) in

Roswell Park Memorial Institute Medium (Sigma-Aldrich

Co.). In both cases fetal bovine serum (10%), penicillin

(100 U/mL) and streptomycin (100 lg/mL) were used.

Human serum stability

Radiolabeled NP (177Lu-NP-NLS-RGD-Aptamer, 200 lL)

were diluted in fresh human serum and incubated at 37 �C.

The stability was determined by UV–Vis analysis to

monitor the NP surface plasmon at 60 min and 24 h after

dilution. Radiochemical stability was determined by taking

samples at 60 min and 24 h for ultrafiltration and size-

exclusion evaluation (PD-10 column) as reported else-

where [17, 19].

In vitro affinity

The method to evaluate the 177Lu-NP-NLS-RGD-Aptamer

affinity to a(v)b(3) integrins was carried out using the by a

solid-phase binding assay as previously reported [17]. The

IC50 value of the 177Lu-NP-NLS-RGD-Aptamer peptide

was determined by nonlinear regression analysis (n = 5)

[17].

In vitro angiogenesis assay

An endothelial cell tube formation assay was performed

using the ECMatrixTM kit (BD Biosciences, Bedford, MA,

USA). Briefly, EA.hy926 cells (10,000 cells) were seeded

onto polymerized ECMatrix and incubated at 37 �C, 5%

CO2. Cells were cultured with (CTL?) or without (CTL-)

endothelial growth factor (ECGF, Sigma, Aldrich, USA,

20 lg/mL) in fetal bovine serum (FBS) and treated with

DOTA-GGC-NP (10 lL, 1 9 109 nanoparticles), DOTA-

GGC-NP-NLS-RGD (10 lL, 1 9 107 nanoparticles),

DOTA-GGC-NP-Aptamer (10 lL, 1 9 107 nanoparticles)

and DOTA-GGC-NP-NLS-RGD-Aptamer (10 lL,

1 9 107 nanoparticles). After 18 h, tube formation was

analyzed under an inverted light microscope (Eclipse

TE300; Nikon, Tokyo, Japan) at 409 magnification. The

semi-quantitative measurement of the angiogenic potential

was calculated by direct visual analysis of at least six

microscopic fields for each experimental condition allowed

the assignation of a numerical value to angiogenic potential

that reflects the degree of remodeling by using the formula

proposed by Aranda and Owen [18]. This also allowed the

establishment of statistical differences in angiogenic

potential between two conditions or compounds.

Fig. 1 Overall scheme of the
177Lu-NP-NLS-RGD-Aptamer

nanoradiopharmaceutical

J Radioanal Nucl Chem

123



Internalization assay

C6 cells (1 9 106 cells/tube) were incubated (0.5 mL) with

1 kBq (1 9 107 nanoparticles) of the following treatments:

(a) 177Lu-NP, (b) 177Lu-NP-NLS-RGD, (c) 177Lu-NP-Ap-

tamer and (d) 177Lu-NP-NLS-RGD-Aptamer, in triplicate

at 37 �C for 2 h. The detailed method has been shown

elsewhere [16, 17]. Differences between the in vitro cell

data of 177Lu-NP-NLS-RGD-Aptamer and each treatment

were evaluated with Student’s t test (grouped analysis,

significance was defined as p\ 0.05).

Fluorescence microscopy images

C6 cells (0.2 mL) were incubated with the followings

treatments (5 9 104 cells): (a) 177Lu-NP (b) 177Lu-NP-

NLS-RGD, (c) 177Lu-NP-Aptamer and (d) 177Lu-NP-NLS-

RGD-Aptamer and. In all cases 1 kBq with 1 9 107

nanoparticles was used. The detailed procedures of staining

of the nuclei with Hoechst dye (blue) and the acquisition of

images of fluorescent NPs internalized in the C6 cells have

been shown elsewhere [21].

Results and discussion

TEM images, hydrodynamic particle size and Z

potential

Images of DOTA-GGC-NP-NLS-RGD-Aptamer (NP-

nanosytem) are shown in Fig. 2. The a ‘‘halo’’ around the

NPs was observed as consequence of the poor interaction

of the electron beam with the NLS-RGD and aptamer

molecules (low electron density). The average particle

hydrodynamic diameter of the NP-nanosystem determined

by DLS was 29.99 ± 1.90 nm, which was higher than that

of NP (24.70 ± 0.07 nm). The increase in the diameter

also indicated the conjugation of the aptamer and NLS-

RGD to the NP surface (Fig. 2) [19]. The Z potential for

the NP and NP-nanosystem was -59 ± 2.7 mV and

-74 ± 4.8 mV respectively, showing an increase in the

colloidal stability.

Infrared and Raman spectroscopy

The MIR spectrum of the NP-nanosystem is given in

Fig. 3. The spectrum is highly structured with fine bands

not observed in the spectra of aptamer, NLS-RGD, DOTA-

GGC nor the gold nanoparticles prior to their interaction

(Fig. 3). Of interest are the multiple bands observed in the

NP-nanosystem spectrum in the region from 2350 to

1700 cm-1 assigned to –CH2NH3
?, R2-NH2

?, R3-NH?,

R–C=NH?, protonated amidines (R2-N–C=N(-N)-R2)

from the arginine, guanine and adenine, as well as vibra-

tions in the regions of amides I, II and III, [20]. The bands

up to 3500 cm-1 are assigned to the unassociated –OH

from the tyrosine and asparagine of the NLS-RGD and the

carboxylic acid from DOTA-GGC (Fig. 3). The asym-

metric vibrations (1234 cm-1) in the phosphates –O–P(O)–

O– bridged to the terminal pentyl mercaptan [(CH2)5-SH]

and to the riboside (both through –CH2–) observed in the

aptamer spectrum disappear in the NP-nanosystem spec-

trum, which indicate that the aptamer is bonded to NP

through the HS-pentyl moiety. In Raman spectra, the bands

with good intensity confirmed the assignations in MIR. A

detail analysis of the Raman, MIR and FIR spectra as

evidence of the NP functionalization with the aptamer and

the NLS-RGD peptide are included in the Supplementary

information section.

Fig. 2 a Transmission electron microscopy (TEM) images and b size

distribution determined by dynamic light scattering (DLS) of the

DOTA-GGC-NP-NLS-RGD-Aptamer nanosystem
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UV–Vis spectroscopy

The NP spectrum showed a characteristic surface plasmon

resonance at 519.2 nm. A red-shift to 519.5, 519.8, 521.3

and 522.3 nm was observed in the DOTA-NP, DOTA-

GGC-NP-Aptamer, DOTA-GGC-NP-NLS-RGD, DOTA-

GGC-NP-NLS-RGD-Aptamer spectra, respectively

(Fig. 4). A decrease can be noticed in the intensity of the

surface plasmon resonance peak of the NP conjugates due

to changes in the refraction index and dielectric medium

because of the interaction between the GGC, NLS-RGD

and the NP surface [21].

Radiochemical purity

Radiochemical purity of the 177Lu-NP-NLS-RGD-Aptamer

nanoradiopharmaceutical determined by ultracentrifuga-

tion and PD10 size-exclusion chromatography was

99 ± 1%.

Human serum stability

177Lu-NP-NLS-RGD-Aptamer was stable in human serum

for 24 h, since at this time the radiochemical purity con-

tinues as high as 99 ± 1%. The 522.3 nm surface plasmon

resonance characteristic of NP, remained stable but slightly

shifted to shorter energy (521.9 nm) as consequence of the

protein interactions [16].

Solid-phase a(v)b(3) binding assay: in vitro affinity

Fig. 3 MIR-Infrared spectra of NP, DOTA-GGC, NLS-RGD,

Aptamer and DOTA-GGC-NP-NLS-RGD-Aptamer nanosystems

Fig. 4 UV–Vis spectra of the NP, DOTA-GGC-NP, DOTA-GGC-

NP-NLS-RGD and DOTA-GGC-NP-NLS-RGD-Aptamer

nanosystems
Fig. 5 Competition assay of 177Lu-NP-NLS-RGD-Aptamer for

specific binding to the a(v)b(3) integrin
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The in vitro competitive binding assay of the colloidal

system 177Lu-NP-NLS-RGD-Aptamer to determine the

a(v)b(3) affinity showed that the concentration of the RGD

peptide to displace 50% of the 177Lu-NP-NLS-RGD-Ap-

tamer from the receptor was 4.41 ± 0.4 nM (IC50)

(Fig. 5). The 177Lu-NP-NLS-RGD-Aptamer affinity is

congruent with similar affinity results reported for colloidal

systems based on NP-RGD and radiolabeled with 177Lu

[17].

Endothelial cell tube formation assay

As shown in Fig. 6, cells cultured in Matrigel with

proangiogenic factors (FBS and ECGF) efficiently induced

flattening and cell migration (positive control, Fig. 6a),

where cells reorganized and formed tubes and complex-

multicellular polygonal structures, which are from two to

three cells thick. Cells over Matrigel without any proan-

giogenic factors (negative control, Fig. 6d) remained

adhered to the matrix and maintained a rounded shape.

Each of the nanosystem components [DOTA-GGC-NP

(Fig. 6b); DOTA-GGC-NPs-NLS-RGD (Fig. 6c); or

DOTA-GGC-NP-Aptamer (Fig. 6e)] regulated in a nega-

tive manner and with different intensity the key steps of the

angiogenic process (adhesion, protrusion, cell–cell contact

or cell migration). EA.hy926 cells cultured over Matrigel

and stimulated with FBS and ECGF were quickly adhered

and formed projections increasing cell–cell contact to

migrate until forming polygonal structures that gain com-

plexity over time (Fig. 6a).

The treatment with DOTA-GGC-NP precludes migra-

tion and reorganization of the cells, stopping the tube

formation progress (Fig. 6b); furthermore, cells appear in

close proximity and firmly adhere to the matrix, but

polygonal structures were not formed. It has been reported

that gold nanoparticles have antiangiogenic properties

because they selectively interact with cell mitogens and

mediators of angiogenesis, particularly blocking the

VEGF165/VEGFR2 interaction [22]. The observed cell

adhesion is likely to be triggered and maintained by the

signaling transduction mediated by cell adhesion molecules

such as integrins and its transactivation via the other

growth factors present in the FBS such as EGF, which is

not affected by NPs.

Exposure of cells to gold nanoparticles conjugated with

the NLS-RGD peptide significantly reduced cell adhesion

properties and abolished the ability of endothelial cells to

form tubes even in the presence of proangiogenic stimu-

lation (Fig. 6c). Cells exposed to DOTA-GGC-NP-NLS-

RGD acquired a rounded shape, and some of them made

contact, forming groups of maximum four cells (Fig. 6c).

This response is certainly due to the known blocking that

RGD exerts on a(v)b(3) integrin [7]. It is well known that

this integrin plays key roles in cell–cell and cell–ECM

interaction, this explains the lack of cell adhesion and the

reduced intercellular contact. Some authors have validated

Fig. 6 Endothelial cell tube formation assay a without any additional treatment (positive control), and treated with b DOTA-GGC-NP, c DOTA-

GGC-NP-NLS-RGD, e DOTA-GGC-NP-Aptamer or f DOTA-GGC-NP-NLS-RGD-Aptamer; d without proangiogenic factors (negative control)
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that organelle-specific damage can be amplified by tar-

geting molecules to the nucleus, and Kang et al. [23] have

demonstrated that the DNA damage, cell division arrest

and apoptosis produced by NPs could be increased by

modifying NPs with the NLS sequence.

The conjugation to DOTA-GGC-NP of the RNA apta-

mer directed against VEGF slightly increased the antian-

giogenic effect produced by the nanoparticles (Fig. 6e).

Cells treated with DOTA-GGC-NP-Aptamer remained

firmly attached to the matrix and approximately one-third

of the population sprouted and maintained their ability to

associate and form branched clusters without achieving

complete formation of polygonal structures (Fig. 6e). The

maintenance of cell adhesion and chemotaxis properties are

due to the angiogenic signaling mediated by other growth

factors, cytokines, chemokines and hormones present in the

FBS.

The DOTA-GGC-NP-NLS-RGD-Aptamer nanosystem

here reported, inhibits tube formation (Fig. 6f). In these

culture conditions, the loss of cell adhesion, migration and

protrusion was observed and very few cells could maintain

contact with others.

Semi-quantitative measurement of the angiogenic

potential (AP) of the tested compounds, in terms of their

kinetics to bring about EA.hy926 cell line remodeling into

tube structures, evidenced that a greater AP was reached by

the DOTA-GGC-NP-NLS-RGD-Aptamer nanosystem with

a score of 0.33 ± 0.05, which is significantly lower than

that of the 2.04 ± 0.19 score obtained for the positive

control, in which the maximum reorganization was

observed, obtaining the formation of a complex mesh.

DOTA-GGC-NP and DOTA-GGC-NP-Aptamer reduced

the AP score to 0.99 ± 0.10 and 0.78 ± 0.06, respectively,

while in DOTA-GGC-NP-NLS-RGD, the AP was

0.54 ± 0.08. In this study, the synergic antiangiogenic

properties of a nanosystem able to simultaneously target

VEGF and integrins with a remarkable ability to inhibit

signals through VEGFR and interfering with its transacti-

vation via integrins, was demonstrated.

Internalization assay

As shown in Table 1, the molecules 177Lu-NP-NLS-RGD,
177Lu-NP-Aptamer and 177Lu-NP-NLS-RGD-Aptamer

have greater uptake and internalization than that of the

unspecific molecule 177Lu-NP (p\ 0.05). Furthermore, the

colloidal 177Lu-NP-NLS-RGD-Aptamer system shows the

largest uptake and internalization. The 177Lu-NP non-

specific accumulation in C6 glioblastoma cells is related to

the NP passive uptake mechanism [24]. However, with the

conjugation to NPs of NLS-RGD and aptamer, the specific

tumor cell internalization was significantly higher

(Table 1). 177Lu-NP-NLS-RGD-Aptamer internalized in

cell nuclei also demonstrated a specific nuclear entry

(Fig. 7).

Since the C6 cell line overexpress a(v)b(3) integrin, the

uptake and internalization of NLS-RGD molecules was

that expected. This is in agreement with previous works in

which the affinity of RGD to the a(v)b(3) integrin and NLS

internalization properties have been reported [8].

At the first glance, it is difficult to understand the

aptamer uptake and internalization effect, because the

aptamer molecule is negatively-charged and typically, the

cell membrane has negative charge characteristics. Dif-

ferent endocytic pathways taken by aptamer-NPs have

been reported [25]. Aptamer-NPs colloidal systems, how-

ever, exhibit good cell uptake properties. Furthermore, the

cell uptake and internalization of NP-aptamer has been

reported to be higher than that of NPs [26]. The internal-

ization mechanisms and intracellular trafficking of

nanoparticles require further studies, especially regarding

the difference between targeted and non-targeted

nanoparticles.

Fluorescence microscopy images

As shown in Fig. 7, 177Lu-NP-NLS-RGD-Aptamer emits

the highest fluorescence, which indicates a higher NP

internalization in C6 cells due to the NLS-RGD and apta-

mer interactions with the membrane cell. This agrees with

the result of the uptake and internalization described above

(Table 1). Hoechst dye inside the nuclei was visualized

with an excitation filter of 330–385 nm and an emission

filter of 420 nm, and the NPs were detected by using an

excitation filter of 530–550 nm and an emission filter of

590 nm.

The fluorescence present in the colloidal systems 177Lu-

NP-NLS-RGD, 177Lu-NP-Aptamer and 177Lu-NP-NLS-

Table 1 Percentage of uptake

and internalization of the

different 177Lu-nanosystems in

C6 glioma cells

Treatment Uptake (%) Internalization (%)

177Lu-NP 8.13 ± 0.72 4.04 ± 0.74
177Lu-NP-NLS-RGD 15.18 ± 0.28 8.57 ± 0.26
177Lu-Aptamer 14.72 ± 0.47 10.43 ± 0.06
177Lu-NP-NLS-RGD-Aptamer* 20.64 ± 0.18* 17.31 ± 0.96*

* Significant statistical difference (p\ 0.05) between 177Lu-NP-NLS-RGD-Aptamer and each treatment
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RGD-Aptamer, once internalized in C6 cell, can be

attributed to the aggregation-induced emission phe-

nomenon [27]. 177Lu-NP-conjugates may undergo an

aggregation phenomenon that modifies their physical

properties and enhances the fluorescence present in NPs

colloidal systems. 177Lu-NP-NLS-RGD-Aptamer showed

larger mean intensity that the rest of the treatments (Fig. 7),

which is correlated with a strong fluorescence phenomenon

present inside the cells.

Conclusions

TEM, DLS and spectroscopy techniques demonstrated that

NPs could be successfully conjugated to NLS-RGD and HS-

pentyl-pegaptanib (aptamer) through interactions with the

thiol groups of cysteine. 177Lu-NP-NLS-RGD-Aptamer,

with a radiochemical purity[98%, is highly stable in human

serum and shows specific recognition for a(v)b(3) integrin

and VEGF (in vitro inhibition of vascular-tube formation).

The cancer-specific 177Lu-Au-nanoradiopharmaceutical

shows suitable properties as a specific antiangiogenic agent

by targeting both the VEGF pathway and a(v)b(3) integrin.

The results obtained in this study warrant further preclinical

studies to determine the in vivo specificity and the radio-

therapeutic and antiangogenic properties of the 177Lu-NP-

NLS-RGD-Aptamer radiopharmaceutical.
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