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Abstract

A continuum is a non-degenerate compact connected metric space. Let C(X)

be the hyperspace of all subcontinua of X. An element A 2 C(X) makes a hole

in C(X) if C(X) � {A} is not unicoherent. In this paper, we characterize the

elements A 2 C(X) satisfying that A makes a hole in C(X) when X is a smooth

dendroid.
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1. Introduction

A connected topological space Z is unicoherent if whenever Z = A[B, where

A and B are connected closed subsets of Z, then the set A \ B is connected.

An element z of a unicoherent topological space Z makes a hole in Z if Z� {z}

is not unicoherent.5

A continuum is a non-degenerate compact connected metric space. Given a

continuum X, the hyperspace of all nonempty subcontinua of X is denoted by

C(X) metrized by the Hausdor↵ metric (see, [11, Definition 2.1, p. 11]). In [11,

⇤
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Theorem 19.8, p. 159] Sam B. Nadler, Jr. proves that the hyperspace C(X) is

unicoherent for any continuum X.10

In this paper we are interested in the following problem which arises in [1,

p. 2000]:

Problem. Let H(X) be a hyperspace of X. For which elements A 2 H(X), A

makes a hole in H(X).

The classification of the points that make a hole in a unicoherent space has15

been useful to distinguish topological spaces, specially hyperspaces, for example:

in [10, Lemmas 2.1 - 2.2, p. 348-349] A. Illanes shows that C2([0, 1]) � {A}

is unicoherent for each A 2 C2([0, 1]) (where C2(X) is the hyperspace of all

non-empty closed subsets of a continuum X having at most two components)

while C2(S) � {S} is not unicoherent, where S is a simple closed curve. As a20

consequence the author obtains that C2([0, 1]) and C2(S) are not homeomorphic;

this in contrast to the fact that C([0, 1]) and C(S) are homeomorphic.

In the current paper, we present the solution to the problem when X is

a smooth dendroid and H(X) = C(X). Our main result generalizes to [3,

Theorem 3.8, p. 136].25

Readers specially interested in this problem are referred to [1]-[6].

2. Auxiliary results

We use the symbols N and R to denote the set of all positive integers and

the set of all real numbers, respectively.

For a subset W of a topological space Z, Comp(W ) will represent the set30

of all component of W . A point z in a connected topological space Z is a cut

point of Z provided that Z � {z} is not connected.

An arc is any homeomorphic space to the closed unit interval [0,1].

The word map stands for a continuous function between topological spaces.

A subspace Y of a topological space Z is a deformation retract of Z if35

there exists a map H : Z ⇥ [0, 1] ! Z such that H(z, 0) = z for each z 2 Z,
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H(Z ⇥ {1}) = Y and H(y, 1) = y for each y 2 Y . A topological space Z is

contractible if exists z 2 Z in such a way that {z} is a deformation retract of Z.

A map f from a connected topological space Z into the unit circumference

centered at the origin in the Euclidean plane S
1 has a lifting if there exists40

a map h : Z ! R such that f = exp �h, where exp : R ! S
1 is defined by

exp(t) = (cos(2⇡t), sin(2⇡t)). A connected topological space Z has property b)

if each map from Z into S
1 has a lifting. Observe that to have property b) is

topological property.

It is known that each metric space having property b) is unicoherent (see45

[12, Theorem 7.3, p. 227]). This fact will be used repeatedly without mentioning

explicitly throughout this paper. Consequently, to have property b) will be an

important tool to obtain the desired classification. For this, we present known

results in the literature which we will use frequently:

Proposition 2.1. [1, Proposition 8, p. 2001] Let Z be a topological space and50

let W and Y be non-empty closed subsets of Z such that Z = W [Y . If W and

Y have property b) and W \ Y is connected, then Z has property b).

Proposition 2.2. [1, Proposition 9, p. 2001] Let Z be a topological space con-

nected and let Y be a deformation retract of Z. Then Z has property (b) if and

only if Y has property (b).55

An immediately consequence of previous proposition is the following result.

Corollary 2.3. Each contractible metric space has property b). In particular,

each contractible metric space is unicoherent.

Given a continuum X, F1(X) denotes the hyperspace of all degenerate sub-

continua of X, this is F1(X) = {{x} : x 2 X}.60

A Whitney map for C(X) is a continuous function µ : C(X) ! [0, 1] such

that:

1. µ({x}) = 0 for each x 2 X,

2. µ(A) < µ(B) if A ⇢ B and A 6= B,
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3. µ(X) = 1.65

It is known that Whitney maps always exist (see [11, Theorem 13.4, p. 107]).

A Whitney level is a subspace of C(X) of the form µ
�1(t) where 0 < t < 1 and

µ is a Whitney map for C(X).

The result below follows from [1, Lemma 13, p. 2004].

Proposition 2.4. Let X be a continuum, let µ be a Whitney map for C(X)70

and let A 2 C(X)� {X}. Then µ
�1([µ(A), 1])� {A} has property b).

The next characterization of the cut points of Whitney levels will be used

frequently in the proof of our main theorems.

Proposition 2.5. [9, Theorem 2.1, p. 210] Let X be a continuum, let A 2

C(X), let µ be a Whitney map for C(X) and let t = µ(A). Then, A is a cut75

point of µ�1(t) if and only if there exist non-empty disjoint open subsets U and

V of X such that X�A = U[V and each B 2 µ
�1(t) satisfies either B ⇢ U[A

or B ⇢ V [A.

For a continuum X, an order arc in C(X) is an arc ↵ in C(X) such that if

A,B 2 ↵, then either A ⇢ B or B ⇢ A. If ↵ is an order arc in C(X), then ↵ is80

said to be an order arc from
T

↵ to
S

↵.

Each non-degenerate proper subcontinuum of a continuum will be called

non-trivial.

3. Smooth dendroids

A dendroid is a hereditarily unicoherent arcwise connected continuum (hered-85

itarily unicoherent means each one of its subcontinua is unicoherent). Each

subcontinuum of a dendroid is a dendroid. Let X be a dendroid. A point x 2 X

will be called end point of X provided that x is not a cut point of any arc in X

containing it. The set of all end points of X is denoted by E(X). Each point

x 2 X which is a common end point of at least three di↵erent arcs is called90

ramification point of X. The symbol R(X) represents the set of all ramification
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points of X. If x, y 2 X are such that x 6= y, then [x, y] will denote the unique

arc in X whose end points are x and y. Set [x, x] = {x} for each x 2 X.

A dendroid X is said to be smooth at p 2 X provided that for each sequence

{xn}n2N in X converging to a point x 2 X, the sequence of arcs {[p, xn]}n2N95

converges to [p, x] in C(X).

Throughout this paper X will denote a smooth dendroid at p and µ will

denote a Whitney map for C(X).

Let B a subset of X, let C 2 Comp(X �B) and let b 2 B. We say that b is

arcwise accessible from C provided that there exists an arc in C [ {b} having b100

as an end point.

Lemma 3.1. Let A 2 C(X) be non-trivial. If C1, C2 2 Comp(X � A) and

there exist a, b 2 A such that [a, b] a proper subcontinuum of A and a, b are

arcwise accessible from C1 and C2, respectively, then there exists J 2 µ
�1(µ(A))

satisfying that C1 \ J 6= ; and C2 \ J 6= ;.105

Proof. Let t = µ(A). Then µ([a, b]) < t. Since a is arcwise accessible from

C1, there exists an arc W such that W ⇢ C1 [ {a} and a is an end point of

W. Set F = [a, b] [W . Notice that F 2 C(X). By [11, Theorem 14.6, p. 112],

there exists an order arc ↵ in C(X) from [a, b] to F . Fix s 2 [0, 1] in such

a way µ([a, b]) < s < min{t, µ(F )}. Then, there exists G 2 ↵ satisfying that110

µ(G) = s. Observe that G\C1 6= ;. Now, from our assumption there exists an

arc Y such that Y ⇢ C2 [ {b} and b is an end point of Y . Set I = G [ Y . We

have that I 2 C(X). Thus, there exists an order arc � in C(X) from G to X

fulfilling that I 2 �. We may take J 2 � \ µ
�1(t). Note that C2 \ J 6= ; and

that the inclusion G ⇢ J guarantees that C1 \ J 6= ;. Thus, J satisfies all our115

requirements.

Define the partial order p by letting x p y whenever [p, x] ⇢ [p, y]. Let

⇢ : C(X) ! X be defined by ⇢(B) is the unique zero of B relative to p. The

function ⇢ is continuous (see [8, Theorem I5-A, p. 552]) and it satisfies that

⇢(B) 2 B and B is a smooth dendroid at ⇢(B) for each B 2 C(X).120
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Given B 2 C(X), define gB : B ⇥ [0, 1] ! B by gB(x, t) is the unique point

of [⇢(B), x] such that µ([⇢(B), gB(x, t)]) = (1� t)µ([⇢(B), x]).

Proposition 3.2. For each B 2 C(X), each one of the following conditions

holds.

1. gB is well defined,125

2. gB is a continuous,

3. for each x 2 B, gB(x, 0) = x and gB(x, 1) = ⇢(B)

Proof. Let B 2 C(X) be arbitrary. Set b = ⇢(B).

(1) Let (x, t) 2 B ⇥ [0, 1] be arbitrary. Define A = {[b, z] : z 2 [b, x]}. Note

that A is an arc in C(B) whose end points are {b} and [b, x]. Since 0 = µ({b}) 130

(1�t)µ([b, x])  µ([b, x]), by the continuity of the one-to-one function µ|A, there

exists a unique point gB(x, t) 2 [b, x] such that µ([b, gB(x, t)]) = (1� t)µ([b, x]).

Therefore, gB is well defined.

(2) In order to prove the continuity of gB , let {(xn, tn)}n2N be a sequence

converging to (x, t) in B ⇥ [0, 1]. We may suppose that there exists y 2 B135

satisfying that y = lim gB(xn, tn). Next, we will show y = gB(x, t). Since

y = lim gB(xn, tn), each gB(xn, tn) 2 [b, xn] and B is a smooth dendroid at b,

we deduce that y 2 lim[b, xn] = [b, x] and [b, y] = lim[b, gB(xn, tn)]. So, from

the continuity of µ, it follows that µ([b, y]) = limµ([b, gB(xn, tn)]) = lim(1 �

tn)µ([b, xn]) =140

(1� t)µ([b, x]). Thus y = gB(x, t).

(3) Let x 2 B be arbitrary. The definition of gB guarantees µ([b, gB(x, 0)]) =

(1 � 0)µ([b, x]) = µ([b, x]). This and the inclusion [b, g(x, 0)] ⇢ [b, x] guarantee

that [b, gB(x, 0)] = [b, x]. Hence, gB(x, 0) = x. Now, gB(x, 1) is the unique

point of [b, x] such that µ([b, gB(x, 1)]) = (1� 1)µ([b, x]) = 0. This implies that145

b = gB(x, 1).

The map gB will be used constantly in this paper without mentioning its

definition explicitly.
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Corollary 3.3. The smooth dendroid at p X has property b).

Proof. The map gX satisfies that gX(x, 0) = x and gX(x, 1) = p for each150

x 2 X (see, (3) of Proposition 3.2). Thus, X is contractible and, by Proposition

2.3, X has property b).

Lemma 3.4. Let {Bn}n2N be a sequence converging to B in C(X) and let

{(yn, ln)}n2N be a sequence converging to (y, l) in X ⇥ [0, 1]. If yn 2 Bn for

each n 2 N, then the sequence {gBn(yn, ln)}n2N converges to gB(y, l).155

Proof. For each n 2 N, set xn = gBn(yn, ln). We may assume that there

exists x 2 X such that x = limxn. Since xn 2 [p, yn] for every n 2 N, by our

assumption X is a smooth dendroid at p, we have that x 2 [p, y]. Now, set

b = ⇢(B) and bn = ⇢(Bn) for each n 2 N. From the definition of ⇢, it follows

that each bn 2 [p, xn] and each bn 2 [p, yn]. Thus, the continuity of ⇢ and [7,160

Theorem 12, p. 312] guarantee that

[b, x] = lim[bn, xn] and [b, y] = lim[bn, yn]. (1)

On the other hand, by definition of gBn , for each n 2 N, we have that

xn 2 [bn, yn] and µ([bn, xn]) = (1 � ln)µ([bn, yn]). By the continuity of µ and

(1), we obtain that µ([b, x]) = (1 � l)µ([b, y]). This and the fact that gB(y, l)

is the unique point of [p, y] such that µ([b, gB(y, l)]) = (1 � l)µ([b, y]) imply165

gB(y, l) = x.

Proposition 3.5. Let A 2 C(X)�F1(X). Then F1(X) is a deformation retract

of µ�1([0, µ(A)])� {A}.

Proof. Set W = µ
�1([0, µ(A)])� {A}. Define H : W ⇥ [0, 1] ! W by

H(B, l) = gB(B ⇥ {l})

First, we are going to prove that H is well defined. Let (B, l) 2 W ⇥ [0, 1]

be arbitrary. From (2) of Proposition 3.2, we deduce that H(B, l) 2 C(X).170

Now, observe that H(B, l) ⇢ B. Then µ(H(B, l))  µ(B)  µ(A) and so
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H(B, l) 2 µ
�1([0, µ(A)]). Next, assume that H(B, l) = A. From this, we

obtain that A ⇢ B and µ(A)  µ(B). Thus, µ(A) = µ(B) and so A = B, a

contradiction. This proves that H is well defined.

In order to show that H is continuous, let {(Bn, ln)}n2N be a sequence175

converging to (B, l) in W ⇥ [0, 1]. We may assume that there exists F 2 W such

that F = limH(Bn, ln). Let us prove that H(B, l) = F .

Let x 2 H(B, l) be arbitrary. Then there exists y 2 B such that x = gB(y, l).

Since B = limBn, there exists a sequence {yn}n2N converging to y in X such

that yn 2 Bn for each n 2 N. Invoke Lemma 3.4 to prove that lim gBn(yn, ln) =180

gB(y, l) = x, and so x 2 F .

Now, let z 2 F . Then there exists a sequence {wn}n2N in X such that

wn 2 Bn for each n 2 N and z = lim gBn(wn, ln). Taking subsequence if it is

necessary, we may assume that exists w 2 X such that w = limwn. So, w 2 B.

Using Lemma 3.4, we obtain that z = lim gBn(wn, ln) = gB(w, l). This shows185

that z 2 H(B, l). In conclusion the continuity of H holds.

Finally, from (3) of Proposition 3.2, we haveH(B, 0) = gB(B⇥{0}) = B and

H(B, 1) = gB(B ⇥ {1}) = {⇢(B)} 2 F1(X) for each B 2 W , and H({x}, 1) =

{x} for all x 2 X. Therefore, F1(X) is a deformation retract of W .

Theorem 3.6. Let A 2 C(X)�F1(X). Then, µ�1([0, µ(A)])�{A} has property190

b).

Proof. It is known that X is homeomorphic to F1(X). Then F1(X) has prop-

erty b) (see Corollary 3.3). Now, from Proposition 2.2 and Proposition 3.5, we

deduce that µ�1([0, µ(A)])� {A} has property b).

4. Main Theorems195

Throughout this section A denotes an element of C(X).

Theorem 4.1. If A /2 F1(X) and A \ E(X)� {p} 6= ;, then A does not make

a hole in C(X).
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Proof. In order to prove that C(X)� {A} is unicoherent, by Corollary 2.3, it

is su�ces to show that C(X)� {A} is contractible.200

Define H : (C(X)� {A})⇥ [0, 1] ! C(X)� {A} by

H(B, t) = gX(B ⇥ {t})

From (3) of Proposition 3.2, it follows that

H(B, 0) = gX(B ⇥ {0}) = B and H(B, 1) = gX(B ⇥ {1}) = {p} (2)

for each B 2 C(X) � {A}. In order to prove that H is a map, let us start by

proving that H is well defined. To this end, let (B, t) 2 (C(X) � {A}) ⇥ [0, 1]

be arbitrary. First, the continuity of gX and the inclusion B 2 C(X) guarantee

that gX(B⇥{t}) = H(B, t) 2 C(X). Second, suppose that H(B, t) = A. By (2)205

we obtain that 0 < t < 1. Now, let e 2 A\E(X)�{p}. Then there exists x 2 B

such that gX(x, t) = e. Thus, by definition of gX , we deduce that e 2 [p, x] and

µ([p, e]) = (1� t)µ([p, x]) < µ([p, x]). This implies that [p, e] is a proper subset

of [p, x], a contradiction. In conclusion, H(B, t) 2 C(X)� {A}.

Finally, the continuity of gX guarantees that of H. Hence, C(X) � {A} is210

contractible.

An immediately consequence of our previous theorem is the next result.

Corollary 4.2. The element X of C(X) does not make a hole in C(X).

The theorem below presents a characterization of non-trivial subcontinua that

make a hole in C(X) in terms of Whitney level containing it. This characteri-215

zation will aid to prove our main results.

Theorem 4.3. Let t = µ(A). If A is non-trivial, then A does not make a hole

in C(X) if and only if µ�1(t)� {A} is connected.

Proof. First, set W = µ
�1([0, t]) � {A} and Y = µ

�1([t, 1]) � {A}. Observe

thatW and Y are connected closed subsets of C(X)�{A}, C(X)�{A} = W[Y ,220

W \ Y = µ
�1(t) � {A} and, by Proposition 2.4 and Theorem 3.6, W and Y

have property b).
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Now, if we assume that A does not make a hole in C(X), then C(X)� {A}

is unicoherent and so, W \ Y = µ
�1(t)� {A} must be connected.

Finally, when W \ Y = µ
�1(t) � {A} is connected, by Proposition 2.1,225

C(X)� {A} has property b). Hence, C(X)� {A} is unicoherent.

Theorem 4.4. If A is non-trivial and X � A is connected, then A does not

make a hole in C(X).

Proof. From our assumption and Propositions 2.5, it follows that µ�1(µ(A))�

{A} is connected. Thus, by Theorem 4.3, A does not make a hole in C(X).230

Theorem 4.5. If A is non-trivial, A is not an arc and X�A is not connected,

then A does not make a hole in C(X).

Proof. Let t = µ(A). In light of Theorem 4.3, it su�ces to prove that µ�1(t)�

{A} is connected. Suppose to the contrary that µ�1(t)� {A} is not connected.

By Proposition 2.5, there exist disjoint non-empty open subsets U and V of X235

such that X � A = U [ V and each B 2 µ
�1(t) satisfies either B ⇢ U [ A or

B ⇢ V [A.

Now, let C1, C2 2 Comp(X �A) be such that C1 ⇢ U and C2 ⇢ V . Taking

r 2 C1 and q 2 C2, we have that [r, q] \ A 6= ;. Next, let h : [0, 1] ! [r, q] be

a homeomorphism such that h(0) = r and h(1) = q. Define t0 = inf{t 2 [0, 1] :240

h(t) 2 A} and set a = h(t0). Thus, h([0, t0]) = [h(0), h(t0)] = [r, a] ⇢ C1 [ {a}.

Then a is arcwise accessible from C1. Similarly, define t1 = sup{t 2 [0, 1] :

h(t) 2 A} and b = h(t1) to get that b is arcwise accessible from C2. Since [a, b]

must be a proper subcontinuum of A, Lemma 3.1 guarantees the existence of

J 2 µ
�1(t) satisfying that J \ C1 6= ; and J \ C2 6= ;; hence J \ U 6= ; and245

J \ V 6= ;. This contradicts the choice of U and V . Therefore, µ�1(t)� {A} is

connected and so, A does not make a hole in C(X).

Theorem 4.6. If A is a non-trivial arc, X � A is not connected and p 2 A \

E(X), then A does not make a hole in C(X).
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Proof. Set t = µ(A). We are going to prove that µ�1(t) � {A} is connected.250

Seeking a contradiction assume that A = [p, b] and A is a cut point of µ�1(t).

So, in light of Proposition 2.5 there exist disjoint non-empty open subset U and

V of X such that X �A = U [ V and if B 2 µ
�1(t), then either B ⇢ U [A or

B ⇢ A [ V .

Fix q 2 U and r 2 V . Let C1, C2 2 Comp(X � A) be such that q 2 C1 and255

r 2 C2. Observe that C1 ⇢ U , C2 ⇢ V and [q, r] \ A 6= ;. Let h : [0, 1] ! [q, r]

be a homeomorphism such that h(0) = q and h(1) = r. Consider t0 = inf{t 2

[0, 1] : h(t) 2 A}, t1 = sup{t 2 [0, 1] : h(t) 2 A} and let a = h(t0) and

c = h(t1). To see that a is arcwise accessible from C1 and c is arcwise accessible

from C2, simply note that h([0, t0]) = [h(0), h(t0)] = [q, a] ⇢ C1 [ {a} and260

h([t1, 1]) = [h(t1), h(1)] = [c, r] ⇢ C2 [ {c}. From the fact that p 2 A\E(X), it

follows that p /2 [q, r] and so, [a, c] is a proper subcontinuum of A. By Lemma

3.1, there exists J 2 µ
�1(t) satisfying that J \ C1 6= ; and J \ C2 6= ;, and so

J \ U 6= ; and J \ V 6= ;. This is a contradiction. Therefore, A does not make

a hole in C(X).265

Theorem 4.7. If A is a non-trivial arc, X � A is not connected and

R(X) \A� E(A) 6= ;, then A does not make a hole in C(X).

Proof. Let t = µ(A). We are going to prove that µ�1(t) � {A} is connected.

Assume that not, then there exist disjoint non-empty open subsets U and V of

X such that X � A = U [ V and each B 2 µ
�1(t) satisfies either B ⇢ U [ A270

or B ⇢ V [ A (see Proposition 2.5). Now, we shall show that there exists

J 2 µ
�1(t) such that J \ U 6= ; and J \ V 6= ;, this will contradict the choice

of U and V .

To this end, suppose that A = [a, b]. Let x 2 R(X) \ A � E(A). Since

A is an arc, there exists an arc C in X such that x is an end point of C and275

A \ C = {x}. This, if C1 2 Comp(X � A) is such that C � {x} ⇢ C1, then

x is arcwise accessible from C1 and either C1 ⇢ U or C1 ⇢ V . Suppose that

C1 ⇢ U .

Now, fix w 2 V . Let C2 2 Comp(X � A) be such that w 2 C2. Consider

11



a homeomorphism h : [0, 1] ! [x,w] satisfying that h(0) = x and h(1) = w.280

Define t1 = sup{t 2 [0, 1] : h(t) 2 A} and z = h(t1). Note that h([t1, 1]) =

[h(t1, 1)] = [z, w] ⇢ C2 [ {z} and so, z is arcwise accessible de C2. Observe that

[x, z] is a proper subcontinuum of A. By Lemma 3.1, there exists J 2 µ
�1(t)

satisfying that J \C1 6= ; and J \C2 6= ;, and so J \U 6= ; and J \ V 6= ;. In

conclusion, µ�1(t)� {A} is connected and, by Theorem 4.3, A does not make a285

hole in C(X).

For a non-trivial arc B, let LB = {y 2 X �B : B ⇢ [p, y]}.

Theorem 4.8. If A is a non-trivial arc, X � A is not connected, R(X) \ A�

E(A) = ; and LA is not open, then A does not make a hole in C(X).

Proof. Let t = µ(A). By Theorem 4.3, it su�ces to show that µ�1(t)�{A} is290

connected. If µ�1(t)�{A} is not connected, then there exist disjoint non-empty

open subsets U and V of X such that X � A = U [ V , and each B 2 µ
�1(t)

satisfies either B ⇢ U [ A or B ⇢ V [ A (see Proposition 2.5). Suppose that

A = [a, b] and a 2 [p, b]. Now, we shall show that there exists J 2 µ
�1(t)

fulfilling that J \U 6= ; and J \V 6= ;. To this end, we considerer the following295

two cases.

Case 1. Either LA ⇢ U or LA ⇢ V .

Assume that LA ⇢ U . From the fact that LA is not open, it follows that

there exists x 2 U � LA. Take y 2 V . So, y 2 X � LA. Then, from our

assumption R(X) \ A � E(A) = ;, it follows that [x, y] \ A = {a}. Thus, if300

C1, C2 2 Comp(X � A) such that x 2 C1 ⇢ U and y 2 C2 ⇢ V , we have that

a is arcwise accessible from C1 and C2. Lemma 3.1 guarantees the existence of

J 2 µ
�1(t) satisfying that J \ C1 6= ; and J \ C2 6= ;; hence J \ U 6= ; and

J \ V 6= ;.

Case 2. LA \ U 6= ; and LA \ V 6= ;.305

Let x 2 LA\U and y 2 LA\V . This and the equality R(X)\A�E(A) = ;

imply that [x, y]\A = {b}. Then, b is arcwise from C1 and C2, where C1, C2 2
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Comp(X�A) such that x 2 C1 ⇢ U and x 2 C2 ⇢ V . So, by Lemma 3.1, there

exists J 2 µ
�1(t) satisfying that J \ C1 6= ; and J \ C2 6= ;. We deduce that

J \ U 6= ; and J \ V 6= ;.310

In both cases, we obtain a contradiction to the choice of U and V . Therefore,

µ
�1(t)� {A} is connected and so, A does not make a hole in C(X).

A non-trivial arc B is called simple arc if B \ E(X) = ;, X � B is not

connected, R(X) \ B � E(B) = ; and LB is open. Our definition of simple

arc for a smooth fan is equivalent to the definition of a simple arc given in [3,315

p. 134].

Theorem 4.9. If A is a simple arc, then A makes a hole in C(X).

Proof. In light of Theorem 4.3, it su�ces to prove that µ
�1(t) � {A} is not

connected where t = µ(A). Set U = LA and V = X � (A [ LA). Note that

A[LA is closed. Then V is open. These disjoint non-empty open subsets of X320

satisfy thatX�A = U[V . Now, we are going to prove that if B 2 µ
�1(t)�{A},

then either B ⇢ A [ U or B ⇢ A [ V .

To this end, we suppose to the contrary that there exists B 2 µ
�1(t)� {A}

such that B \ U 6= ; and B \ V 6= ;. Fix x 2 B \ U and y 2 B \ V . Since

B is arcwise connected, we have that [x, y] ⇢ B. We also have A ⇢ [p, x]325

and A 6⇢ [p, y]. Next, if [x, y] \ A � E(A) 6= ;, then z 2 [x, y] \ A � E(A) is

such that [z, y] \ [z, p] = {z}, [z, y] \ [x, z] = {z} and [p, z] \ [x, z] = {z}, and

so, z 2 R(X) \ A � E(A), this is a contradiction. Then E(A) ⇢ [x, y]. This

imply that A is a proper subset of [x, y]. Thus t = µ(A) < µ([x, y])  µ(B), a

contradiction. Hence, either B ⇢ A [ U or B ⇢ A [ V , and so by Proposition330

2.5, µ�1(t)� {A} is not connected. The proof is complete.

Classification

Theorem 4.10. The subcontinuum A makes a hole in C(X) if and only if A

is a simple arc.
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Proof. First, assume that A makes a hole in C(X). A consequence of [1,335

Theorem 3, p. 2001] and Corollary 4.2 is the fact that A is non-trivial. Next,

Theorem 4.1 implies that A \ E(X)� {p} = ;. By Theorem 4.6, we have that

p /2 A \ E(X) and hence A \ E(X) = ;. Now, Theorem 4.4 guarantees that

X � A is not connected. From Theorem 4.5, it follows that A is an arc. Using

Theorem 4.7, we deduce that R(X) \ A � E(A) = ;. Invoke Theorem 4.8 to340

prove that LA is open. In conclusion, A is a simple arc.

The converse follows from Theorem 4.9.
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