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Abstract

A continuum is a non-degenerate connected compact metric space. Let X and

Y be continua such that X ⇥ Y is unicoherent. An element (p, q) 2 X ⇥ Y

makes a hole in X ⇥ Y if (X ⇥ Y )� {(p, q)} is not unicoherent. In this paper,

we characterize the elements (p, q) 2 X ⇥ Y such that (p, q) makes a hole in

X ⇥ Y , where X and Y are smooth dendroids.

Keywords: Continuum, smooth dendroid, unicoherence, make a hole,

property (b)
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1. Introduction

Unicoherence is an important topological property. It arose during the study

of topological properties of the Euclidan spaces, cubes, spheres, real projective

spaces, Hilbert cube and non-separating Peano subcontinuum of the 2-sphere.

Since its introduction, this concept has seen a increasing interest among topol-5

ogist having as result a lot of papers in the literature related to it. To the

present day, there are unsolved question about unicoherence. Intuitively, we

can say that a connected space will be unicoherent if it has no “holes”. The

unicoherence is not a hereditary property. Based in this last fact, our interest
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is aimed at characterizing the points of a unicoherent space such that its com-10

plement, as a subspace of the original space, is also unicoherent. In intuitive

terms, the points of this class make a “hole” in the space. The classification

of the points that make a hole in a unicoherent space has been used to distin-

guish spaces, especially in hyperspaces of continua (see [1] and [2]). Naturally,

one can wonder about the classification of the points that make a hole in other15

topological structures.

In formal terms, a connected topological space Z is unicoherent if whenever

Z = A [ B, where A and B are connected closed subsets of Z, we have A \ B

is connected, and an element z of a unicoherent space Z makes a hole in Z if

Z � {z} is not unicoherent.20

In this paper, we are interested in the following problem.

Problem. Let X and Y be continua such that X⇥Y is unicoherent. For which

elements (p, q) 2 X ⇥ Y , (p, q) makes a hole in X ⇥ Y .

Theorems in Section 4 in the current paper give a partial solution to our

problem, namely, when X and Y are smooth dendroids.25

The use of continuous function of a given space to the unit circumference in

the Euclidean plane has been the most powerful tool to study unicoherence. The

known results until now of this technique are not easily applicable for the case

of the space that results from removing a point to the product of two smooth

dendroids. This leads us to introduce a completely novelty method using this30

class of continuous functions to show that a metric space is unicoherent.

2. Notation and auxiliary results

The symbols R and N represent the set of real numbers and the set of positive

integers, respectively.

A point z of a connected topological space Z is called cut point (non-cut35

point) if Z � {z} is not connected (connected). The set Cut(Z) consists of all

cut points of Z and let NCut(Z) = Z � Cut(Z).
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The subspace [0, 1] of the real line R with the usual topology is denoted by

I. An arc is any space homeomorphic to I.

By an end point of an arcwise connected topological space Y , we mean end40

point in the classical sense, which means a point that is a non-cut point of any

arc in Y that contains it. The set of all end points of Y is denoted by E(Y ).

The word map stands for a continuous function.

Given a topological space Y , a subspace X of Y is said to be a deformation

retract of Y if there exists a map h : Y ⇥ I ! Y such that h(y, 1) = y for every45

y 2 Y , h(Y ⇥ {0}) = X, and h(x, 0) = x for every x 2 X.

A topological space Y is said to be contractible if there exists y 2 Y satis-

fying that {y} is a deformation retract of Y . In this case, the map h is called

contraction from Y to {y}.

Convention: when the domain of a sequence in a metric space X is under-50

stood from the context, or is not relevant to the discussion, for sake of simplicity,

we write hwki instead of {wk}1k=1. For a metric space X, let S(X) be the set of

all pairs (hwki, w0) where hwki is a sequence in X converging to w0 2 X.

The result bellow is well know.

Proposition 2.1. Let X and Y be metric spaces, let x0 2 X and let f :55

X ! Y be a function. Then, f is continuous at x0 if and only if for each

(hxni, x0) 2 S(X) there exists a subsequence hf(xnk)i of hf(xn)i such that

(hf(xnk)i, f(x0)) 2 S(Y ).

A map f from a connected topological space Z into the unit circumference

centred at the origin in the Euclidean plane S
1 has a lifting if there exists a60

map h : Z ! R such that f = exp �h, where exp is the exponential map of R

onto S
1 defined by exp(t) = (cos(2⇡t), sin(2⇡t)). A connected topological space

Z has property (b) if each map from Z into S
1 has a lifting.

The next results appear in the literature, we present them due that they will

be used frequently in our main theorems.65
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Proposition 2.2. [3, Proposition 9, p. 2001] Let Z be a topological space. If

Z is contractible, then Z has property (b).

Theorem 2.3. [4, Théorème 6’, p. 168] Let Z be a connected metric space. If

Z has property (b), then Z is unicoherent.

Theorem 2.4. [5, Theorem 4, p. 407] Let Z be a connected topological space,70

let z0 2 Z, let f : Z ! S
1 be a map and let t 2 exp�1(f(z0)). If f has a lifting,

then there exists a map h : Z ! R such that f = exp �h and h(z0) = t.

The next result is obtained immediately from [6, (3), p. 64]

Proposition 2.5. Let X be a connected metric space and let f : X ! S
1 be

a map. If h1, h2 : X ! R are liftings of f and there exists x0 2 X such that75

h1(x0) = h2(x0), then h1 = h2.

The property (b) is a topological property and each arc has property (b).

Both facts will be used repeatedly without mentioning why is true throughout

this paper.

Theorem 2.6. [4, Théorème 3’, p. 168] Let Z be a connected metric space. If80

there exist closed subsets A and B of Z having property (b) such that A \ B is

connected and Z = A [B, then Z has property (b).

The symbol FH denotes the harmonic fan, that is FH =
S
{Jk : k 2 N[{0}},

where J0 = {(t, 0) : t 2 I} and Jk = {(t, t

k
) : t 2 I} are contained in R2 for each

k 2 N. Given (l, r) 2 (N [ {0})⇥ I, define Jl(r) = {(t, u) 2 Jl : t  r}.85

Given a continuum X, we define its hyperspace C(X) as the space of all

subcontinua of X endowed with the Hausdor↵ metric (see [7, p. 9]).

Concerning to the convergence of a sequence in C(X), we will use the follow-

ing equivalence without mentioning explicitly: if hAki is a sequence in C(X),

then x 2 limAk if and only if there exists a sequence hxki satisfying that90

limxk = x and xk 2 Ak for each k 2 N.

A Whitney map for C(X) (see [7, p. 105]) means a map µ : C(X) ! I that

satisfies the following conditions:
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• For any A,B 2 C(X) such that A ✓ B and A 6= B, µX(A) < µX(B)

• µ({x}) = 0 for every x 2 X,95

• µ(X) = 1.

For any continuum X, by [7, Theorem 13.4, p. 107], there exists a Whitney map

for C(X).

A dendroid is an arcwise connected, hereditarily unicoherent continuum.

Let X be a dendroid. The symbol xy denote the unique arc from x to y, for100

each pair of elements x, y 2 X such that x 6= y and xy = {x} when x = y.

A dendroid Z is smooth at v if for each (hani, a) 2 S(Z), then (hvani, va) 2

S(C(Z)). A continuum Z is a smooth dendroid if it is a dendroid and there

exists a point v in Z such that Z is smooth at v. For sake of simplicity, we say

that a pair (Z, v) is a smooth dendroid provided that Z is a smooth dendroid105

at v.

3. Results auxiliaries

We define an auxiliary function which will be useful in proofs of the next

results.

Let (X, v) a smooth dendroid and fix µ a Whitney map for C(X). DefinegX :110

X ⇥ I ! X by gX(x, t) is the only point of vx such that µ(vgX(x, t)) = tµ(vx).

Lemma 3.1. Let (X, v) a smooth dendroid. Then gX satisfies each one of the

following conditions.

(3.1.1) gX is well defined.

(3.1.2) gX is continuous.115

(3.1.3) If x 2 X � {v} and gX(x, t) = gX(x, s), then t = s.

(3.1.4) For each x 2 X, gX(x, 0) = v. Moreover, if (x, t) 2 (X � {v}) ⇥ I, then

gX(x, t) = v if only if t = 0.

5



(3.1.5) For each x 2 X, gX(x, 1) = x. Moreover, if (x, t) 2 (X � {v}) ⇥ I, then

gX(x, t) = x if only if t = 1.120

(3.1.6) For each (x, t) 2 X ⇥ I, gX({x}⇥ [0, t]) = vgX(x, t).

Proof. First, for each t 2 I, from the inclusion g(v, t) 2 vv = {v}, it follows

that g(v, t) = v. Now, let (x, t) 2 (X � {v}) ⇥ I be arbitrary. Note that

A = {vz : z 2 vx} is an arc in C(X) whose end points are {v} and {vx}. Since

0 = µ({v})  tµ(vx)  µ(vx), by the continuity of the one-to-one map µ|A,125

there exists an unique point gX(x, t) 2 vx such that µ(vgX(x, t)) = tµ(vx). The

proof of (3.1.1) is complete.

Applying Proposition 2.1, we are going to show that gX is continuous at

each point of X⇥I. Let (x0, t0) 2 X⇥I be arbitrary. Let (h(xk, tk)i, (x0, t0)) 2

S(X⇥I). We may assume that there exists y0 2 X such that (hgX(xk, tk)i, y0) 2130

S(X). Now, since gX(xk, tk) 2 vxk for each k 2 N and (hvxki, vx0) 2 S(C(X)),

we obtain that y0 2 vx0. By the continuity of µ and fact that X is smooth

at v, we have µ(vy0) = limµ(vgX(xk, tk)) = lim tkµ(vxk) = t0µ(vx0). Then,

gX(x0, t0) = y0. This finishes the proof of (3.1.2).

Next, we shall argue (3.1.3). Our assumptions guarantee that µ(vgX(x, t)) =135

µ(vgX(x, s)) and µ(vx) > 0. Hence, by the definition of gX , we deduce that

tµ(vx) = sµ(vx). This implies that t = s.

Observe that the first part of (3.1.4) and of (3.1.5) is a consequence of the

definition of gX and the second part of both follows from (3.1.3).

In order to show (3.1.6), let (x, t) 2 (X � {v}) ⇥ I be arbitrary. Hence,140

µ(vx) > 0. First, let s 2 [0, t]. Then gX(x, s), gX(x, t) 2 vx satisfy that

µ(vgX(x, s)) = sµ(vx) and µ(vgX(x, t)) = tµ(vx). So, since either vgX(x, s) ✓

vgX(x, t) and vgX(x, t) ✓ vgX(x, s), by the choice of s, we conclude that

vgX(x, s) ✓ vgX(x, t). This implies that gX(x, s) 2 vgX(x, t). Hence, from

the continuity of gX (see (3.1.2)), it follows that gX({x} ⇥ [0, t]) is a subcon-145

tinuum of the arc vgX(x, t) containing its end points gX(x, 0) = v and gX(x, t).

Then gX({x}⇥ [0, t]) = vgX(x, t). Clearly, (3.1.6) holds whenever x = v.
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The map gX will be used constantly in this paper without mentioning its

definition explicitly.

As a consequence of Lemma 3.1 and Proposition 2.2, we have the following150

result.

Corollary 3.2. Let X be a smooth dendroid. Then X is contractible and so X

has property (b).

The continuum FH is a smooth dendroid and hence FH has property (b).

This fact will be used repeatedly throughout this paper.155

Theorem 3.3. Let X and Y be connected metric space having property (b) and

let (x, y) 2 X ⇥ Y . Then (X ⇥ {y}) [ ({x}⇥ Y ) has property (b).

Proof. Since property (b) is a topological property, we obtain that X ⇥ {y}

and {x} ⇥ Y have property (b). Now, by Theorem 2.6, we deduce that (X ⇥

{y}) [ ({x}⇥ Y ) has property (b).160

In order to give necessary and su�cient conditions to any metric space have

property (b), we introduce the following notions.

For a family V of subsets of X, a map ' from any topological space into X

is called monotone with respect to V provided that for each V 2 V , '�1(V ) is

connected.165

Let U be a covering of a connected metric space X. Then, X is said to be U -

covered with respect property (b) provided that each element of U has property

(b), there exists a connected closed subset M of X having property (b) such

that M \U is connected and non-empty for all U 2 U and if U, V 2 U such that

U \ V 6= ;, then there exists a connected subset L(U, V ) of X having property170

(b) and L(U, V ) fulfils each one of the following conditions U \ V ✓ L(U, V ),

(U \ M) [ (V \ M) ✓ L(U, V ) \ M , the sets L(U, V ) \ U , L(U, V ) \ V and

L(U, V ) \ M are non-empty connected subsets of X. For (hxki, x0) 2 S(X),

the space X is said to be U -Maya space at (hxki, x0), if there exist a subset V

of U such that
T
V 6= ; and {xk : k 2 N [ {0}} ✓

S
V, a Hausdor↵ space F175
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having property (b) and a map ' : F ! X which is monotone whit respect to

V fulfilling '
�1(

T
V) 6= ; and some (hyki, y0) 2 S(F ) satisfies that '(yk) = xk

for each k 2 N [ {0}. The space X is said to be U -Maya space if and only if X

is U -Maya space at each (hxki, x0) 2 S(X).

Lemma 3.4. Let X be metric connected space and let U be a covering of X. If180

U 2 U has property (b), then X is U-Maya space at each (hxki, x0) 2 S(U).

Proof. Let (hxki, x0) 2 S(U) be arbitrary. Consider V = {U}, F = U and

' : F ! X be the inclusion map. Notice that F has property (b),
T
V 6= ;,

{xk : k 2 N [ {0}} ✓
S
V, (hxki, x0) 2 S(F ) satisfies that '(xk) = xk for each

k 2 N [ {0} and ' is monotone with respect to V such that '�1(
T
V) 6= ;. So,185

V, F , ' and hxki satisfy the required properties.

Lemma 3.5. A connected metric space X has property (b) if and only if there

exists a covering U of X such that X is U-covered with respect property (b)

and X is a U-Maya space.

Proof. The necessity follows from the fact thatX is {X}�covered with respect190

property (b) and X is a {X}�Maya space.

Suppose that exists a covering U of X such that X is U -covered with respect

property (b) and X is a U -Maya space. We will show that X has the property

(b). To this end, let f : X ! S
1 be a map.

Since X is U -covered with respect property (b), there exists a connected195

closed subset M of X fulfilling the conditions in the definition. Then M has

property (b), therefore there exists a map � : M ! R such that f |M = exp ��.

Now, for each U 2 U , let zU 2 U \ M . The assumption each U 2 U

has property (b), Theorem 2.4 and the equality f |M = exp �� guarantee the

existence of a map �U : U ! R in such way f |U = exp ��U and �U (zU ) = �(zU ).200

Define � : X ! R by �(x) = �U (x) if x 2 U . To see that � is well defined, let

x 2 X be arbitrary and let U, V 2 U be such that x 2 U \V . As a consequence

of the fact that U \ V 6= ; there exists a connected subset L(U, V ) of X having

8



property (b) and satisfying the required properties of the definition. Denote

L(U, V ) by L. Fix a 2 L \M . Applying Theorem 2.4, since f(a) = exp ��(a)205

there exists a map � : L ! R fulfilling f |L = exp �� and �(a) = �(a). Now, let

us argue that �(x) = �U (x) = �V (x).

Since L \ M is connected, �(a) = �(a) and exp �(�|L\M ) = f |L\M =

exp �(�|L\M ) the equality �|L\M = �|L\M follows from Proposition 2.5. This

and the inclusions zU 2 U \ M ✓ L \ M imply �(zU ) = �(zU ). Now, by210

the choice of �U , it follows that �U (zU ) = �(zU ) = �(zU ). Observe that

exp �(�|L\U ) = f |L\U = exp �(�U |L\U ). Now, invoke Proposition 2.5 to prove

that �|L\U = �U |L\U . Our assumptions ensure that x 2 U \ V ✓ L and so

�(x) = �U (x). Similarly, we deduce �(x) = �V (x). In conclusion �U (x) =

�V (x).215

From the definition of �, it follows that f = exp ��.

To check the continuity of �, using Proposition 2.1, we are going to show

that � is continuous at each point of X. Let x0 2 X be arbitrary and let

(hxki, x0) 2 S(X). It su�ces to prove that there exists a subsequence hxkj i of

hxki such that (h�(xkj )i,�(x0)) 2 S(R).220

By hypothesis we deduce that X is a U -Maya space at (hxki, x0), so there

exist a subset V of U , a Hausdor↵ space F having property (b), (hyki, y0) 2 S(F )

and a map ' : F ! X which is monotone with respect to V fulfilling the

conditions in the definition.

The continuity of ' and of f implies that f � ' : F ! S
1 is continuous. Fix225

c 2 '
�1(

T
V). Since F has the property (b), by Theorem 2.4, there exists a

map h : F ! R such that f � ' = exp �h and h(c) = � � '(c).

Now, let us argue h(yk) = � � '(yk) = �(xk) for all k 2 N [ {0}.

Let k 2 N [ {0} be arbitrary. Choose V 2 V in such way xk 2 V .

Then '
�1(V ) is connected. Now, since exp �h = exp �(� � '), we obtain that230

exp �(h|'�1(V )) = exp �(� �'|'�1(V )) = exp ��|V �' = exp ��V �'. Finally, the

inclusion c 2 '
�1(V ) and Proposition 2.5, imply that h|'�1(V ) = �V �'. Thus,

h(yk) = �V �'(yk) = �V (xk) = �(xk). To conclude, observe that the continuity

of h guarantees that lim�(xk) = �(x0).
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Theorem 3.6. Let X and Y be connected metric spaces and let (p, q) 2 X⇥Y .235

If there exists a covering U of (X ⇥Y )� {(p, q)} such that (X ⇥Y )� {(p, q)} is

U-covered with respect property (b) and (X ⇥ Y )� {(p, q)} is a U-Maya space,

then (X ⇥ Y )� {(p, q)} has property (b).

Proof. The connectedness of (X ⇥ Y ) � {(p, q)} follows from [8, Lemma 2.2,

p. 26]. Now, our assumptions and Lemma 3.5 ensure that (X ⇥ Y ) � {(p, q)}240

has property (b).

Corollary 3.7. Let X and Y be continua such that X ⇥ Y is unicoherent and

let (p, q) 2 X ⇥ Y . If there exists a covering U of (X ⇥ Y )� {(p, q)} such that

(X⇥Y )�{(p, q)} is U-covered with respect property (b) and (X⇥Y )�{(p, q)}

is a U-Maya space, then (p, q) does not make a hole in X ⇥ Y .245

Proof. A consequence of Theorem 3.6 and Theorem 2.3 is the unicoherence of

(X ⇥ Y )� {(p, q)}, and so (p, q) does not make a hole in X ⇥ Y .

For a smooth dendroid (X, vX) and p 2 X, set �X
p

= {x 2 X : p /2 vXx} [

{p}, ⌦X

p
= {x 2 X : p 2 vXx} and if p satisfies that ⌦X

p
� {p} 6= ;, then

�X(p) denotes the family of subsets of the form S [ {p} of X where S is an250

arc-component of ⌦X

p
� {p}.

Lemma 3.8. Let (X, vX) and (Y, vY ) be smooth dendroids and (p, q) 2 X ⇥Y .

Then each one of the following statements holds.

(3.8.1) gX(�X
p
⇥ I) = �X

p
.

(3.8.2) The subset �X
p

of X is connected, vX 2 �X
p

and �X
p

is contractible.255

(3.8.3) If q 6= vY , then the set (X ⇥ �Y
q
) � {(p, q)} is contractible and so it has

property (b).

(3.8.4) The set ⌦X

p
is a subcontinuum of X and (⌦X

p
, p) is a smooth dendroid.

(3.8.5) g⌦X
p
(T ⇥ I) = T for each T 2 �X(p).

(3.8.6) Each element of �X(p) has property (b).260
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(3.8.7) If T 2 �X(vX) is such that y /2 T and s 2 I, then gX(y, s) 2 T if only if

s = 0.

Proof. In order to show (3.8.1), let (x, t) 2 �X
p

⇥ I be arbitrary. Observe

that the condition x 2 �X
p

implies that vXx ✓ �X
p
. Thus, (3.1.6) ensures that

gX(x, t) 2 �X
p
. Then the inclusion gX(�X

p
⇥ I) ✓ �X

p
holds. Now, in light of265

(3.1.5), we deduce that �X
p

✓ gX(�X
p
⇥ I).

The connectedness of �X
p

follows from facts that vX 2
T
{vXx : x 2 �X

p
}

and �X
p

=
S
{vXx : x 2 �X

p
}. Now, the equality of (3.8.1) and the conditions

(3.1.4) and (3.1.5) guarantee that gX |�X
p ⇥I : �X

p
⇥ I ! �X

p
is a contraction.

Therefore, �X
p

is contractible. Then (3.8.2) is true.270

We shall argue (3.8.3). Set Z = (X ⇥ �Y
q
) � {(p, q)}. In order to get

a contraction of A, define G : A ⇥ I ! A by G((x, y), t) = (gX(x, t), gY (y, t)).

First, let ((a, b), t) 2 A⇥I be arbitrary. By (3.8.1), we deduce that G((a, b), t) 2

X ⇥ �Y
q
. Now, we need to show that G((a, b), t) 6= (p, q). To this end, suppose

to the contrary that G((a, b), t) = (p, q). Thus, gX(a, t) = p and gY (b, t) = q.275

Since b 2 �Y
q
, we infer that b = q and, by (3.1.5), we get t = 1. Hence,

a = gX(a, 1) = p. In conclusion, (a, b) = (p, q), a contradiction. On the other

hand, the continuity of G follows from (3.1.2). Finally, the conditions (3.1.4)

and (3.1.5) guarantee that G is a contraction.

Observe that p 2
T
{px : x 2 ⌦X

p
} and ⌦X

p
=

S
{px : x 2 ⌦X

p
}. Hence,280

⌦X

p
is connected. To show that ⌦X

p
is closed in X, let (hxki, x) 2 S(X) be such

that each xk 2 ⌦X

p
. Our assumption (X, vX) is a smooth dendroid guarantees

that (hvXxki, vXx) 2 S(C(X)). Since p 2 vXxk for each k 2 N, we infer that

p 2 vXx and so x 2 ⌦X

p
. This shows that ⌦X

p
is closed in X. Therefore ⌦X

p
is

a subcontinuum of X. Hence, we conclude that (3.8.4) holds.285

In order to prove (3.8.5), let T 2 �X(p) be arbitrary. First, we are going

to argue the inclusion g⌦X
p
(T ⇥ I) ✓ T . Let (x, t) 2 T ⇥ I be arbitrary. Notice

that the condition x 2 T implies that px ✓ T . Thus, by (3.1.6), we obtain that

g⌦X
p
(x, t) 2 T . Now, in light of (3.1.5), we deduce that T ✓ g⌦X

p
(T ⇥ I).

11



A consequence of Proposition 2.2 and the fact that g⌦X
p

: T ⇥ I ! T is290

a contraction (see (3.8.5), (3.1.4) and (3.1.5)) is that T has property (b). So,

(3.8.6) holds.

We are going to prove the first part of (3.8.7). Our assumption y /2 T

implies that y 2 X � {vX} and vXy \ T = {vX}. So, by (3.1.6), we have that

gX(y, s) 2 gX({y} ⇥ I) \ T = {vX} = {gX(y, 0)}. Applying (3.1.4), we infer295

that s = 0. The second part is immediate, if s = 0, then gX(y, 0) = vX 2 T .

Results below will be essential in the proof of the main theorems in the next

section.

Lemma 3.9. Let (X, vX) and (Y, vY ) be smooth dendroids and let (p, q) 2 X⇥

Y . If T 2 �X(p), then T ⇥ Y � {(p, q)} is {(T ⇥ {y}) [ ({x} ⇥ Y ) : (x, y) 2300

(T � {p})⇥ (Y � {q})}-covered with respect property (b).

Proof. Set Z = (T ⇥ Y )� {(p, q)}, E = T � {p} and G = Y � {q}. For each

(x, y) 2 E ⇥ G, let U(x, y) = (T ⇥ {y}) [ ({x} ⇥ Y ). Define U = {U(x, y) :

(x, y) 2 E ⇥G}. Observe that U is a covering of Z.

First, by Corollary 3.2 and (3.8.6), Y and T have property (b). Thus, The-305

orem 3.3 guarantees that each element of U has property (b).

Next, fix r 2 G. SetM = T⇥{r}. Notice thatM is a connected closed subset

of Z having property (b). Also, M \ U(x, r) = M and M \ U(x, y) = {(x, r)}

are connected for each (x, y) 2 E ⇥ (G� {r}).

Finally, let x,w 2 E and y, z 2 G be arbitrary. We have that U(x, y) \310

U(w, z) 6= ;. Set J = xw. Since E is arcwise connected, we infer that J ✓ E.

Define L(U(x, y), U(w, z)) = (J ⇥ Y ) [ U(x, y). For sake of simplicity, L will

represent to L(U(x, y), U(w, z)). By [9, (7.5)], we conclude that J ⇥ Y has

property (b). Hence, since (J ⇥ Y ) \ U(x, y) = (J ⇥ {y}) [ ({x} ⇥ Y )) is

connected, by Theorem 2.6, we obtain that L has property (b). Observe that315

U(x, y) \ U(w, z) ✓ L. We have that U(w, z) \ L = U(w, z) if z = y and

U(w, z) \ L = (J ⇥ {z}) [ ({w} ⇥ Y ) otherwise. Thus, the sets L \ M =

12



M , U(x, y) \ L = U(x, y) and U(w, z) \ L are connected and the equality

(U(x, y) \ M) [ (U(w, z) \ M) = M = L \ M holds. Thus L fulfils all our

requirements.320

In conclusion, Z is U�covered with respect to property (b).

Let X and Y be metric spaces. For a subset Z of X ⇥ Y , the set of all

elements (h(xk, yk)i, (x0, y0)) of S(Z) such that each subsequence h(xkj , ykj )i of

h(xk, yk)i satisfies that the sets {xkj : j 2 N} and {ykj : j 2 N} are infinity will

be represented by S⇤(Z). This notation will be used for the rest of the paper.325

Lemma 3.10. Let (X, vX) and (Y, vY ) be smooth dendroids and let (p, q) 2

X ⇥ Y . If T 2 �X(p), then T ⇥ Y � {(p, q)} has property (b).

Proof. In light of Theorem 3.6, it su�ces to show the existence of a covering

U of (T ⇥ Y ) � {(p, q)} such that (T ⇥ Y ) � {(p, q)} is U -covered with respect

property (b) and (T ⇥ Y )� {(p, q)} is a U -Maya space.330

Set Z = (T ⇥ Y ) � {(p, q)}, E = T � {p} and G = Y � {q}. For each

(x, y) 2 E ⇥ G, let U(x, y) = (T ⇥ {y}) [ ({x} ⇥ Y ). Define U = {U(x, y) :

(x, y) 2 E⇥G}. Observe that U is a covering of Z. Lemma 3.9 guarantees that

Z is U -covered with respect property (b).

In order to prove that Z is a U -Maya space, let (h(xk, yk)i, (x0, y0)) 2 S(Z)335

be arbitrary. Taking subsequences, if it is necessary, by Lemma 3.4, we may

assume that (h(xk, yk)i, (x0, y0)) 2 S⇤(Z) and we only need to consider the

following cases.

Case I. {xk : k 2 N [ {0}} ✓ E.

Fix w 2 G. Consider V = {U(xk, w) : k 2 N[ {0}}. Observe that {(xk, yk) :340

k 2 N [ {0}} ✓
S
V and (p, w) 2

T
V.

Define ' : FH ! Z by

'(t, u) =

8
>>><

>>>:

(g⌦X
p
(xl, 3t), w) if (t, u) 2 Jl and t  1

3

(xl, gY (w, 2� 3t)) if (t, u) 2 Jl and
1
3  t  2

3

(xl, gY (yl, 3t� 2)) if (t, u) 2 Jl and
2
3  t

13



Let us show that ' is monotone with respect to V. Let k 2 N [ {0} be

arbitrary. In order to prove that '
�1(U(xk, w)) is connected, define A = {l 2

N[{0} : xk = xl} and B = {l 2 N[{0} : xk 6= xl}. We shall prove the following345

claims.

Claim 1.
S

l2N[{0}
Jl(

1
3 ) ✓ '

�1(U(xk, w)).

If (t, u) 2
S

l2N[{0}
Jl(

1
3 ), by (3.8.5), then '(t, u) 2 T ⇥ {w} ✓ U(xk, w).

Claim 2.
S
l2A

Jl ✓ '
�1(U(xk, w)).

If (t, u) 2
S
l2A

Jl and t � 1
3 , then '(t, u) 2 {xk} ⇥ Y ✓ U(xk, w). From350

this and Claim 1, we can conclude that Jl is a subset of '�1(U(xk, w)) for each

l 2 A.

Claim 3. Jl \ '
�1(U(xk, w)) = Jl(

1
3 ) for each l 2 B.

Let l 2 B be arbitrary. Claim 1 guarantees that Jl(
1
3 ) ✓ '

�1(U(xk, w)).

Now, from the definition of ', the inclusion (t, u) 2 Jl \'
�1(U(xk, w)) and the355

inequality xk 6= xl imply that t  1
3 . Thus, Jl \ '

�1(U(xk, w)) is a subset of

Jl(
1
3 ).

Next, invoke our last claims to show that '
�1(U(xk, w)) =

✓ S
l2A

Jl

◆
[

✓ S
l2B

Jl(
1
3 )

◆
is connected.

Finally, notice that (0, 0) 2 '
�1(

T
V) and '(1, 1

k
) = (xk, yk) for all k 2 N.360

Thus, V, FH , ' and h(1, 1
k
), (1, 0)i 2 S(FH) fulfil all our requirements.

Case II. {xk : k 2 N} ✓ E and x0 = p.

Then y0 6= q. So, we may assume that {yk : k 2 N} ✓ G. Fix z 2 E and

consider V = {U(z, yk) : k 2 N}. Then (z, vY ) 2
T
V. Let ' : FH ! Z be

define by365

'(t, u) =

8
>>><

>>>:

(z, gY (yl, 3t)), if (t, u) 2 Jl and t  1
3

(g⌦X
p
(z, 2� 3t), yl), if (t, u) 2 Jl and

1
3  t  2

3

(g⌦X
p
(xl, 3t� 2), yl), if (t, u) 2 Jl and

2
3  t

14



In order to prove that ' is monotone with respect to V, let k 2 N [ {0} be

arbitrary and, set A = {l 2 N [ {0} : yl = yk} and B = {l 2 N [ {0} : yl 6= yk}.

The following claims will give that '�1(U(z, yk)) is connected.

Claim 1.
S

l2N[{0}
Jl(

1
3 ) ✓ '

�1(U(z, yk)).

If (t, u) 2
S

l2N[{0}
Jl(

1
3 ), then '(t, u) 2 {z}⇥ Y ✓ U(z, yk). This guarantees370

the inclusion Jl(
1
3 ) ✓ '

�1(U(z, yk) for each l 2 N [ {0}.

Claim 2.
S
l2A

Jl ✓ '
�1(U(z, yk)).

Let (t, u) 2
S
l2A

Jl be arbitrary. In light of Claim 1, we only need to suppose

that t � 1
3 . By (3.8.5), we have that '(t, u) 2 T ⇥ {yk} ✓ U(z, yk).

Claim 3. Jl(
1
3 ) = Jl \ '

�1(U(z, yk)) for each l 2 B.375

Let l 2 B be arbitrary. Claim 1 ensures that Jl(
1
3 ) ✓ Jl \ '

�1(U(z, yk)).

Now, if (t, u) 2 Jl is such that '(t, u) 2 U(z, yk), since yk 6= yl, then '(t, u) 2

{z}⇥ Y and t  1
3 . The proof of our claim is complete.

Thus, claims 1, 2 and 3 imply that '�1(U(z, yk)) =

✓ S
l2A

Jl

◆
[
✓ S

l2B

Jl(
1
3 )

◆

is connected.380

On the other hand, we have '(1, 1
k
) = (xk, yk) for each k 2 N and (0, 0) 2

'
�1(

T
V). So, V, FH , ' and h(1, 1

k
), (1, 0)i 2 S(FH) satisfies all our require-

ments.

In conclusion, Z is a U -Maya space.

Lemma 3.11. Let (X, vX) and (Y, vY ) be smooth dendroid and let (p, q) 2385

X⇥Y . If z 2 vXp�{vX , p} and T 2 �Y (q), then ({z}⇥Y )[((X⇥T )�{(p, q)})

has property (b).

Proof. In light Theorem 3.6, we need to prove that there exists a covering U

of ({z}⇥ Y ) [ ((X ⇥ T )� {(p, q)}) such that ({z}⇥ Y ) [ ((X ⇥ T )� {(p, q)})

is U -covered with respect property (b) and ({z} ⇥ Y ) [ ((X ⇥ T ) � {(p, q)}) is390

a U -Maya space.
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Set Z = ({z}⇥ Y )[ ((X ⇥ T )� {(p, q)}), E = {z}⇥ Y and G = (X ⇥ T )�

{(p, q)}. Consider U = {E,G}. Notice that U is a covering of Z and
T
U 6= ;.

Let us argue that Z is U�covered with respect to property (b).

By Corollary 3.2 and Lemma 3.10, we conclude that each element of U395

has property (b). Now, set M = E = L(E,G). We have that M and L are

connected closed subsets of Z having property (b). The sets M \ E = E and

M \ G = {z} ⇥ T are connected. Thus M satisfies the required properties of

our definition. For sake of simplicity, L will represent to L(E,G). Observe that

the inclusions E \ G = {z} ⇥ T ✓ L and (E \ M) [ (G \ M) ✓ L \ M hold400

and the sets L \ E = E, L \G = {z}⇥ T and L \M = M are connected and

non-empty. Thus, L fulfilling the conditions in the definition. We can conclude

that Z is U�covered with respect to property (b).

Now, in order to prove that Z is a U�Maya space, let (h(xk, yk)i, (x0, y0)) 2

S(Z) be arbitrary. Taking subsequences, if it is necessary, by Lemma 3.4 and405

since E is a closed subset of Z, we only need to assume that each (xk, yk) 2

G� E, (x0, y0) 2 E �G and (h(xk, yk)i, (x0, y0)) 2 S⇤(Z).

The assumptions (x0, y0) 2 E � G and each (xk, yk) 2 G � E imply that

x0 = z, y0 2 ⌦Y

q
� T and xk 6= z for each k 2 N. Hence, we may assume that

p /2 {xk : k 2 N} and q /2 {yk : k 2 N}. We will consider two cases:410

Case I. z 2 vXxk for each k 2 N.

In light of (3.8.4), we may consider the mappings g⌦Y
q

and g⌦X
z
. Let ' :

FH ! Z be defined by

'(t, u) =

8
<

:
(z, g⌦Y

q
(yl, 2t)), if (t, u) 2 Jl and t  1

2

(g⌦X
z
(xl, 2t� 1), yl), if (t, u) 2 Jl and

1
2  t

Notice that ' is well defined, the continuity of ' follows from (3.1.1), '(0, 0) 2
T
U and so '

�1(
T
U) 6= ;.415

The connectedness of '
�1(E) and '

�1(G) shall be a consequence of the

below claims.
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Claim 1.
S
l2N

Jl(
1
2 ) ✓ '

�1(G) \ '
�1(E).

Let l 2 N be arbitrary and let (t, u) 2 Jl be such that t  1
2 . Then '(t, u) 2 E

and, by (3.8.5), '(t, u) 2 G. This implies that (t, u) 2 '
�1(G) \ '

�1(E).420

Claim 2. J0 ✓ E.

Notice that '(J0(
1,
2 )) ✓ E and, by the definition of g⌦X

z
and our assumption

z = x0, we obtain that '(t, 0) 2 E for all t 2 [ 12 , 1]. In conclusion, '(J0) ✓ E.

Claim 3. Jl \ '
�1(E) = Jl(

1
2 ) for each l 2 N.

Let l 2 N be arbitrary. First, from the fact that xl 6= z, by (3.1.4), for425

each (t, u) 2 Jl such that '(t, u) 2 E, we have that t  1
2 . This implies that

Jl\'�1(E) is a subset of Jl(
1
2 ). The inclusion Jl(

1
2 ) ✓ Jl\'�1(E) is guaranteed

by Claim 1.

Claim 4.
S
l2N

Jl ✓ '
�1(G).

Let l 2 N be arbitrary. Claim 1 ensures that Jl(
1
2 ) ✓ '

�1(G). Next, if430

(t, u) 2 Jl satisfies that t � 1
2 , from the fact that yk 2 T , by (3.8.5), we infer

that '(t, u) 2 G. Therefore, Jl ✓ '
�1(G) for each l 2 N.

Claim 5. J0 \ '
�1(G) = {(0, 0)}.

By (3.8.7) and from our assumption y0 /2 T , we infer that if '(y0, t) 2 G,

then t = 0. This proves our claim.435

Thus, from claims 1-5, it follows that '�1(E) = J0[
S
l2N

Jl(
1
2 ) and '

�1(G) =
S
l2N

Jl are connected. This implies that ' is monotone with respect to U .

Observe that '(1, 1
k
) = (xk, yk) for all k 2 N. In conclusion U , FH , ' and

h(1, 1
k
), (1, 0)i 2 S(FH) fulfil all our requirement.

Case II. z /2 vXxk for each k 2 N.440

Our assumption and the facts that z 2 vXp � {p} and x0 = z imply that

p /2 vXxk for each k 2 N [ {0}.
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Define ' : FH ! Z by

'(t, u) =

8
<

:
(gX(xl, 2t), q), if (t, u) 2 Jl and t  1

2 ,

(xl, g⌦X
q
(yl, 2t� 1)), if (t, u) 2 Jl and t � 1

2

to get a map. Notice that '( 12 , 0) = (z, q) 2
T
U and hence '

�1(
T

U) 6= ;.

Next, we are going to show that '�1(E) and '
�1(G) are connected. To this

end, we prove the following claims.445

Claim 1. J0 \ '
�1(E) = {(t, 0) 2 J0 : t � 1

2}.

First, let t 2 I be such that '(t, 0) 2 E. Since x0 = z, by (3.1.5), we deduce

that t � 1
2 . This implies that J0 \ '

�1(E) ✓ {(t, 0) 2 J0 : t � 1
2}. Now, if

t 2 [ 12 , 1], the equality x0 = z and (3.8.5) guarantee that '(t, 0) 2 E. The

conclusion is that {(t, 0) 2 J0 : t � 1
2} is a subset of '�1(E). This proves our450

claim.

Claim 2. '
�1(E) \

S
l2N

Jl = ;.

This claim follows from the fact that z /2 gX({xl} ⇥ I) for each l 2 N (see

(3.1.6)).

Claim 3.
S
l2N

Jl ✓ '
�1(G).455

By (3.8.5) and yk 2 T , we have that '(Jl) ✓ G for each l 2 N.

Claim 4. J0 \ '
�1(G) = J0(

1
2 ).

The inclusion q 2 T guarantees that '(J( 12 )) ✓ G. On the other hand, if

t 2 I is such that '(t, 0) 2 G, by (3.8.7), we obtain that t  1
2 . The proof of

this claim is finished.460

Thus, by claim 1-4, we obtain that '
�1(E) = {(t, 0) 2 J0 : t � 1

2} and

'
�1(G) = J0(

1
2 ) [

S
l2N

Jl are connected. This implies that ' is monotone with

respect to U .

Finally, notice that '(1, 1
k
) = (xk, yk) for all k 2 N. Therefore, U , FH , '

and h(1, 1
k
), (1, 0)i 2 S(F ) fulfil all our requirements.465

We have that Z is a U�Maya space.
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Lemma 3.12. Let (X, vX) and (Y, vY ) be smooth dendroid and let (p, q) 2

X⇥Y . If z 2 vXp�{vX , p}, then ((X⇥�Y
q
)�{(p, q)})[({z}⇥Y ) has property

(b).

Proof. For sake of simplicity, set Z = ((X ⇥ �Y
q
) � {(p, q)}) [ ({z} ⇥ Y ). In470

light of Theorem 3.6, if su�ces to prove that exists a covering U of Z such that

Z is U�covered with respect to property (b) and Z is a U�Maya space.

First, set E = (X ⇥ �Y
q
)� {(p, q)} and G = {z}⇥ Y . Consider U = {E,G}.

Notice that U is a covering of Z and
T
U 6= ;. Second, Corollary 3.2 and (3.8.3)

guarantees that each element of U has property (b). Now, setM = G = L(E,G).475

Then M and L are connected closed subsets of Z having property (b). Observe

that M \ G = G and M \ E = {z} ⇥ �Y
q

are connected. The symbol L

will represent to L(E,G). Notice that L is a connected closed subset of Z

having property (b). These sets satisfy: E \ G = {z} ⇥ �Y
q

✓ L, L \ G = G,

L\E = {z}⇥�Y
q
are connected, L\M = M 6= ; and (G\M)[(E\M) ✓ L\M .480

Thus, L fulfilling the conditions in the definition. This finishes the proof of that

Z is U�covered with respect to property (b).

In order to prove that Z is U�Maya space, let (h(xk, yk)i, (x0, y0)) 2 S(Z)

be arbitrary. Taking subsequences, if it is necessary, by Lemma 3.4 and the

condition G is a closed subset of Z, we only need to assume that {(xk, yk) : k 2485

N} ✓ E �G, (x0, y0) 2 G� E and (h(xk, yk)i, (x0, y0)) 2 S⇤(Z).

The assumptions (x0, y0) 2 G�E and each (xk, yk) 2 E�G guarantee that

x0 = z, y0 2 ⌦Y

q
� {q} and z /2 {xk : k 2 N}. Thus, we may assume that xk 6= p

and yk 6= q for each k 2 N.

Now, we consider two cases.490

Case I. z 2 vXxk for each k 2 N.

By (3.8.5), we can consider the mapping g⌦X
z
. Let ' : FH ! Z be defined

by

'(t, u) =

8
<

:
(z, gY (yl, 2t)), if (t, u) 2 Jl and t  1

2 ,

(g⌦X
z
(xl, 2t� 1), yl), if (t, u) 2 Jl and t � 1

2 .
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Observe that ' is a map and (0, 0) 2 '
�1(

T
U).

Now, we shall prove the claims below to argue the connectedness of '�1(E)

and '
�1(G).

Claim 1.
S
l2N

Jl(
1
2 ) ✓ '

�1(E) \ '
�1(G).495

From the definition of ', it follows that '(Jl(
1
2 )) ✓ G. Now, if l 2 N, the

inclusion yl 2 �Yq and (3.8.1) guarantee that '(t, u) 2 E for each (t, u) 2 Jl(
1
2 ).

Claim 2.
S
l2N

Jl ✓ '
�1(E).

If (t, u) 2
S
l2N

Jl and t � 1
2 , since yl 2 �Yq , then '(t, u) 2 E. This and Claim500

1 prove that '(Jl) is contained in E for each l 2 N.

Claim 3. J0(e) = J0 \ '
�1(E) where e <

1
2 is such that gY (y0, 2e) = q.

By (3.1.6), we deduce that '(J0(e)) ✓ {z} ⇥ �Y
q

✓ E. Then J0(e) ✓ J0 \

'
�1(E). Now, let t 2 I such that '(t, 0) 2 E. From the fact that y0 2 ⌦Y

q
�{q},

it follows that t  1
2 . Hence, gY (y0, 2t) 2 �Y

q
. This implies that gY (y0, 2t) 2505

vY q = gY ({y0}⇥[0, 2e]) and so t  e (see (3.1.3)). We conclude that J0\'�1(E)

is a subset of J0(e).

Claim 4. '
�1(G) \ Jl = Jl(

1
2 ) for each l 2 N.

Let l 2 N be arbitrary. Claim 1 ensures that Jl(
1
2 ) is contained in '

�1(G).

Next, let (t, u) 2 Jl be such that '(t, u) 2 G. Since z 6= xl, by (3.1.4), we have510

that t  1
2 . This proves our claim.

Claim 5. J0 ✓ '
�1(G).

By the definition of g⌦X
z
, it follows that '(t, 0) 2 G for all t 2 I.

Thus, from claims 2-5, it follows that '�1(E) = J0(e)[
S
l2N

Jl and '
�1(G) =

J0 [
S
l2N

Jl(
1
2 ) are connected. This proves that ' is monotone with respect to U .515

Notice that '(1, 1
k
) = (xk, yk) for all k 2 N. So, U , FH , ' and h(1, 1

k
), (1, 0)i 2

S(FH) satisfy the required properties.
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Case II. z /2 vXxk for each k 2 N.

Our assumption and the choice z 2 vXp� {vX , p} imply that p /2 vXxk for

each k 2 N [ {0}.520

Define ' : FH ! Z by

'(t, u) =

8
<

:
(gX(xl, 2t), vY ), if (t, u) 2 Jl and t  1

2 ,

(xl, gY (yl, 2t� 1)), if (t, u) 2 Jl and t � 1
2 ,

to get a map. Notice that (0, 0) 2 '
�1(

T
U).

Next, let us argue that ' is monotone with respect to U . To this end, we

are going to prove the following claims.

Claim 1.
S
l2N

Jl ✓ '
�1(E).

By the definition of ', we deduce that '(Jl(
1
2 )) ✓ X ⇥ {vY } ✓ E for each525

l 2 N. Now, if (t, u) 2
S
l2N

Jl is such that t � 1
2 , by (3.8.1), yk 2 �Y

q
and xl 6= p,

we have that '(t, u) 2 {xl}⇥ �Yq ✓ E.

Claim 2. J0(e) = J0 \ '
�1(E) where e 2 [ 12 , 1] is such that gY (y0, 2e� 1) = q.

First, notice that '(J0(
1
2 )) ✓ X⇥{vY } ✓ E. Second, by (3.1.6), if t 2 [ 12 , e],

then '(t, u) 2 {z} ⇥ vY q ✓ E. This proves that J0(e) is a subset of '�1(E).530

Now, let t 2 I be such that '(t, 0) 2 E. Assume that t � 1
2 . By (3.1.6), then

'(t, 0) 2 {z}⇥ gY ({y0}⇥ [0, 2e� 1]). Hence, in light of (3.1.3), we deduce that

t  e. In conclusion, J0 \ '
�1(E) ✓ J0(e).

Claim 3. Jl \ '
�1(G) = ; for each l 2 N.

Let l 2 N be arbitrary. From the fact that z /2 gX({xl}⇥ I), we deduce that535

'(Jl) \G = ; (see (3.1.6)). This shows our claim.

Claim 4. J0 \ '
�1(G) = {(t, 0) 2 J0 : t � 1

2}.

If t 2 [ 12 , 1], since x0 = z, we obtain that '(t, u) 2 G. Hence, {(t, 0) 2 J0 :

t � 1
2} is a subset of '�1(G). Now, let t 2 I be such that '(t, 0) 2 G. By

(3.1.5), we deduce that t � 1
2 . This finishes the proof of our claim.540
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So, invoke claims 1-4 to prove that '
�1(E) = J0(e) [

S
l2N

Jl and '
�1(G) =

{(t, 0) 2 J0 : t � 1
2} are connected. This implies that ' is monotone with

respect to U .

Finally, we have '(1, 1
k
) = (xk, yk) for all k 2 N. Hence, U , FH , ' and

h(1, 1
k
), (1, 0)i 2 S(FH) fulfil all our requirements.545

Therefore, Z is a U�Maya space.

Lemma 3.13. Let (X, vX) and (Y, vY ) be smooth dendroids, let (p, q) 2 X⇥Y .

If p 2 Ncut(X) � E(X), q 2 Y � E(Y ), z 2 vXp � {vX , p} and T 2 �Y (q),

then ((X ⇥ (�Y
q
[ T ))� {(p, q)}) [ ({z}⇥ Y ) has property (b).

Proof. For sake of simplicity denote ((X ⇥ (�Y
q
[ T )) � {(p, q)}) [ ({z}⇥ Y )550

by Z. To show that Z has property (b), by Theorem 3.6, it su�ces to verify

that there exists a covering U of Z such that Z is U�covered with respect to

property (b) and Z is a U�Maya space.

In order to define U , set E = ((X ⇥ �Y
q
) � {(p, q)}) [ ({z} ⇥ Y ) and G =

((X ⇥ T ) � {(p, q)}) [ ({z} ⇥ Y ). Consider U = {E,G}. Observe that U is a555

covering of Z and
T
U 6= ;. Next, we are going to show that Z is U�covered

with respect to property (b).

Notice that E and G has property (b) by Lemma 3.11 and Lemma 3.12.

Thus, each element of U has property (b).

Now, set M = {z}⇥ Y . We have that M is a connected closed subset of Z560

having property (b). Notice that M \E = M = M \G are connected. On other

hand, from the fact that p 2 Ncut(X)�E(X), we have that X ⇥ {q}� {(p, q)}

is connected. Hence, the equality E \ G = M [ ((X ⇥ {q}) � {(p, q)}) shows

that E \G is connected. Now, take L(E,G) = G. Then L(E,G) has property

(b), the sets L(E,G)\E = E \G, L(E,G)\G = G and L(E,G)\M = M are565

connected, the inclusion E \G ✓ L(E,G) holds and (M \E)[ (M \G) = M ✓

L(E,G) \M = M . This finishes the proof that Z is U -covered with respect to

property (b).
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In order to prove that Z is U -Maya space, let (h(xk, yk)i, (x0, y0)) 2 S(Z)

be arbitrary. Taking subsequences, if it is necessary, by Lemma 3.4 and the570

condition G is a closed subset of Z, we only need to assume that {(xk, yk) : k 2

N} ✓ E �G, (x0, y0) 2 G� E and (h(xk, yk)i, (x0, y0)) 2 S⇤(Z).

Since (x0, y0) 2 G � E, we obtain that x0 6= z and y0 2 T � {q}. Thus, we

may suppose that {xk : k 2 N} ✓ X � {z} and {yk : k 2 N} ✓ �Y
q
� {q}.

Taking subsequences, if it is necessary, we consider the following cases.575

Case I. z 2 vXxl for each l 2 N.

In light of (3.8.4), we can consider the mapping g⌦X
z
. Let ' : FH ! Z be

defined by

'(t, u) =

8
<

:
(z, gY (yl, 2t)), if (t, u) 2 Jl and t  1

2 ,

(g⌦X
z
(xl, 2t� 1), yl), if (t, u) 2 Jl and

1
2  t.

Now, we are going to prove that ' is monotone with respect to U . To this

end, we shall show the following claims.

Claim 1.
S

l2N[{0}
Jl(

1
2 ) ✓ '

�1(E) \ '
�1(G).

If (t, u) 2
S

l2N[{0}
Jl(

1
2 ), then '(t, u) 2 {z} ⇥ Y ✓ E \ G. Hence, Jl(

1
2 ) ✓580

'
�1(E) \ '

�1(G) for each l 2 N [ {0}.

Claim 2. J0 ✓ '
�1(G).

Let (t, u) 2 J0 be such that 1
2  t. Since y0 2 T , by (3.8.5), we deduce that

'(t, u) 2 (X ⇥ T )� {(p, q)} ✓ G. This and Claim 1 imply that J0 ✓ '
�1(G).

Claim 3. Jl(
1
2 ) = Jl \ '

�1(G) for each l 2 N.585

Let l 2 N be arbitrary. The inclusion Jl(
1
2 ) ✓ Jl \ '

�1(G) is guaranteed by

Claim 1. Since yl /2 T , if (t, u) 2 Jl is such that '(t, u) 2 G, then '(t, u) 2

{z} ⇥ Y (see (3.8.5)) and, by (3.1.4) and xl 6= z, we obtain that t  1
2 . This

shows that Jl \ '
�1(G) ✓ Jl(

1
2 ) for each l 2 N.

Claim 4. J0(
1
2 ) = J0 \ '

�1(E).590
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In light of Claim 1, we only need to prove that J0 \ '
�1(E) is a subset of

J0(
1
2 ). Let t 2 I be such that '(t, 0) 2 E. If t were greater than 1

2 , since x0 6= z,

by (3.1.4), '(t, 0) would be an element of (X ⇥ �Y
q
) � {(p, q)} and this would

imply that y0 2 �Y
q
, a contradiction. We conclude that (t, 0) 2 J0(

1
2 ).

Claim 5.
S
l2N

Jl ✓ '
�1(E).595

If (t, u) 2
S
l2N

Jl is such that t � 1
2 , by (3.8.1), we have that '(t, u) 2

(X ⇥ �Y
q
) � {(p, q)}. This and Claim 1 prove that each Jl is contained in

'
�1(E).

Thus, by claims 1-5, we obtain that '�1(E) = J0(
1
2 ) [

S
l2N

Jl and '
�1(G) =

J0 [
S
l2N

Jl(
1
2 ) are connected. We conclude that ' is monotone with respect to600

U .

Observe that '(1, 1
k
) = (xk, yk) for all k 2 N and (0, 0) 2 '

�1(
T
U). There-

fore, U , FH , ' and h(1, 1
k
), (1, 0)i 2 S(FH) fulfil all our requirements.

Case II. z /2 vXxl for each l 2 N.

Define ' : FH ! Z by

'(t, u) =

8
>>><

>>>:

(z, gY (yl, 3t)), if (t, u) 2 Jl and t  1
3 ,

(gX(z, 2� 3t), yl), if (t, u) 2 Jl and
1
3  t  2

3 ,

(gX(xl, 3t� 2), yl), if (t, u) 2 Jl and
2
3  t.

Next, let us show the connectedness of '�1(E) and '
�1(G).605

Claim 1.
S

l2N[{0}
Jl(

1
3 ) ✓ '

�1(E) \ '
�1(G).

If (t, u) 2
S

l2N[{0}
Jl(

1
3 ), then '(t, u) 2 {z} ⇥ Y ✓ E \ G. Hence, we obtain

that Jl(
1
3 ) ✓ '

�1(E \G) = '
�1(E) \ '

�1(G) for each l 2 N [ {0}.

Claim 2.
S
l2N

Jl ✓ '
�1(E).

Let t be arbitrary. Claim 1 ensures that Jl(
1
3 ) ✓ '

�1(E) for each l 2 N.610

Now, let (t, u) 2 Jl be such that t � 1
3 . Then, since yl 2 �Yq , we deduce that

'(t, u) 2 (X ⇥ �Y
q
)� {(p, q)} ✓ E. Thus, '�1(E) contains Jl for each l 2 N.

24



Claim 3. J0 ✓ '
�1(G).

Since y0 2 T , if t 2 [ 13 , 1], then '(t, 0) 2 (X ⇥ T ) � {(p, q)} ✓ G. This and

Claim 1 show that J0 is a subset of '�1(G).615

Claim 4. Jl(
1
3 ) = Jl \ '

�1(G) for each l 2 N.

Let l 2 N be arbitrary. From Claim 1, it follows that Jl(
1
3 ) ✓ Jl \ '

�1(G).

Now, let (t, u) 2 Jl be such that '(t, u) 2 G. The inclusion yl 2 �Yq and (3.8.1)

imply that '(t, u) 2 {z} ⇥ Y . Hence, by (3.8.1), t  1
3 and so Jl \ '

�1(G) is

contained in Jl(
1
3 ).620

Finally, from claims 1 and 2, it follows that J0(
1
3 ) [

S
l2N

Jl ✓ '
�1(E). So,

since J0(
1
3 ) [

S
l2N

Jl is a dense connected subset of FH , we infer that '
�1(E)

is connected. On the other hand, claims 1, 3 and 4 guarantees that '�1(G) =

J0 [
S
l2N

Jl(
1
3 ) is connected. Then ' is monotone with respect to U .

We have that '(1, 1
k
) = (xk, yk) for all k 2 N, (0, 0) 2 '

�1(
T
U) and U , FH ,625

' and h(1, 1
k
), (1, 0)i 2 S(FH) satisfy the required properties.

In conclusion, Z is a U�Maya space.

4. Main Results

All results in this section together give the classification of points that make

a hole in the product of two smooth dendroids.630

Each corollary below can be proved using similar arguments of the proof of

the previous theorem respectively.

Theorem 4.1. Let (X, vX) and (Y, vY ) be smooth dendroids and let q 2 Y . If

vX 2 E(X), then (vX , q) does not make a hole in X ⇥ Y .

Proof. Our assumption vX 2 E(X) guarantees that X 2 �X(vX). So, ap-635

plying Lemma 3.10 we obtain that X ⇥ Y � {(vX , q)} has property (b). Invoke

Theorem 2.3 to prove that X ⇥ Y � {(vX , q)} is unicoherent.
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Corollary 4.2. Let (X, vX) and (Y, vY ) be smooth dendroids and let p 2 X. If

vY 2 E(Y ), then (p, vY ) does not make a hole in X ⇥ Y .

Theorem 4.3. Let (X, vX) and (Y, vY ) be smooth dendroids and let (p, q) 2640

X ⇥ Y . If p 2 Ncut(X)� E(X) and q 2 Y � E(Y ), then (p, q) does not make

a hole in X ⇥ Y .

Proof. In light of Corollary 3.7, we need to prove that there exists a covering

U of (X ⇥ Y )� {(p, q)} such that (X ⇥ Y )� {(p, q)} is U -covered with respect

property (b) and (X ⇥ Y )� {(p, q)} is a U -Maya space.645

Set Z = X ⇥ Y � {(p, q)} and fix z 2 vXp � {vX , p}. For each T 2 �Y (q),

let U(T ) = ((X ⇥ (�Y
q
[ T ))� {(p, q)})[ ({z}⇥ Y ). Consider U = {U(T ) : T 2

�Y (q)}. Notice that U is a covering of Z and, by Lemma 3.13, each element of

U has property (b).

Let us argue that Z is U�covered with respect to property (b). Consider650

M = {z} ⇥ Y . Let T 2 �Y (q) be arbitrary. We have that M \ U(T ) = M is

connected. Now, notice that if T1, T2 2 �Y (q), then U(T1)\U(T2) 6= ;. Assume

that T1 6= T2. Define L(U(T1), U(T2)) = ((X ⇥ �Y
q
) � {(p, q)}) [ ({z} ⇥ Y ).

For sake of simplicity, L will represent to L(U(T1), U(T2)). Observe that L is

a connected subset of Z and Lemma 3.12 ensures that L has property (b) .655

Moreover these sets satisfy: U(T1) \ U(T2) = L \ U(T1) = L \ U(T2) = L and

L \ M = M are connected, and (U(T1) \ M) [ (U(T2) \ M) = M = L \ M .

Thus, L fulfilling the conditions in the definition. Hence, Z is U�covered with

respect to property (b).

Now, in order to prove that Z is a U�Maya space, let (h(xk, yk)i, (x0, y0)) 2660

S(Z) be arbitrary. Taking subsequences, if it is necessary, by Lemma 3.4, we

may assume that for each k 2 N there exists Tk 2 �Y (q) satisfying that yk 2 Tk

and we only consider the following cases .

Case I. y0 6= q and z 2 vXxk for every k 2 N.
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Then we may assume that each yk 6= q. Let T0 2 �Y (q) be such that y0 2 T0.665

Consider V = {U(Tk) : k 2 N [ {0}}. In light of (3.8.4), we may consider the

mapping g⌦X
z

and g⌦Y
q
. Define ' : FH ! Z by

'(t, u) =

8
<

:
(z, g⌦Y

q
(yl, 2t)) if (t, u) 2 Jl and t  1

2

(g⌦X
z
(xl, 2t� 1), yl) if (t, u) 2 Jl and

1
2  t

to get a map. Observe that (0, 0) 2 '
�1(

T
V). Now, we are going to prove that

'
�1(U(Tk)) is connected for each k 2 N [ {0}. Let k 2 N [ {0} be arbitrary.

Set A = {l 2 N [ {0} : either yk 2 Tl or xk = z} and B = {l 2 N [ {0} : yk /2670

Tl and xk 6= z}.

Claim 1.
S

l2N[{0}
Jl(

1
2 ) ✓ '

�1(U(Tk)).

Observe that if (t, u) 2
S

l2N[{0}
Jl is such that t  1

2 , then '(t, u) 2 {z}⇥Y ✓

U(Tk). Hence, we obtain that Jl(
1
2 ) ✓ '

�1(U(Tk)) for each l 2 N [ {0}.

Claim 2.
S
l2A

Jl ✓ '
�1(U(Tk)) .675

From Claim 1, it follows that Jl(
1
2 ) ✓ '

�1(U(Tk)) for each l 2 A. Now, let

l 2 A be arbitrary and let (t, u) 2 Jl be such that t � 1
2 . If yl 2 Tk, by (3.8.5),

we have that '(t, u) 2 (X ⇥ Tk) � {(p, q)} ✓ U(Tk). Under the assumption

xk = z, by the definition of g⌦X
z
, we obtain that '(t, u) 2 {z}⇥Y ✓ U(Tk). So,

the inclusion Jl ✓ '
�1(U(Tk)) holds.680

Claim 3. Jl(
1
2 ) = Jl \ '

�1(U(Tk)) for each l 2 B.

Let l 2 B be arbitrary. The inclusion Jl(
1
2 ) ✓ Jl\'

�1(U(Tk)) is guaranteed

by Claim 1. Next, let (t, u) 2 Jl be such that '(t, u) 2 U(Tk). Since yk /2 �Y
q
[Tl,

we obtain that '(t, u) 2 {z} ⇥ Y . From our assumption xk 6= z and (3.1.4), it

follows that t 6> 1
2 . So, (t, u) 2 Jl(

1
2 ).685

From claims 1, 2 and 3, we infer that '�1(U(Tk)) =

✓ S
l2A

Jl

◆
[
✓ S

l2B

Jl(
1
2 )

◆

is connected. Therefore, ' is monotone with respect to V.

Finally, notice that '(1, 1
k
) = (xk, yk) for all k 2 N and so, V, FH , ' and

h(1, 1
k
), (1, 0)i 2 S(FH) satisfy the required properties.
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Case II. y0 6= q and z /2 vXxk for each k 2 N.690

From our assumption y0 2 Y �{q}, we may assume that {yk : k 2 N} ✓ Y �

{q}. Let T0 2 �Y (q) be such that y0 2 T0. Consider V = {U(Tk) : k 2 N[{0}}.

In light of (3.8.5), we can consider the mapping g⌦Y
q
. Define ' : FH ! Z by

'(t, u) =

8
>>><

>>>:

(z, g⌦Y
q
(yl, 3t)), if (t, u) 2 Jl and t  1

3 ,

(gX(z, 2� 3t), yl), if (t, u) 2 Jl and
1
3  t  2

3 ,

(gX(xl, 3t� 2), yl), if (t, u) 2 Jl and
2
3  t.

Then ' is a map. Let us show that ' is monotone with respect to V. Let

k 2 N[{0} be arbitrary. Set A = {l 2 N[{0} : yl 2 Tk} and B = {l 2 N[{0} :695

yl /2 Tk}. We are going to prove the following claims.

Claim 1.
S

l2N[{0}
Jl(

1
3 ) ✓ '

�1(U(Tk)).

If (t, u) 2
S

l2N[{0}
Jl is such that t  1

3 and by (3.8.5), then '(t, u) 2 {z} ⇥

Y ✓ U(Tk). Hence, Jl(
1
3 ) ✓ '

�1(U(Tk)) for each l 2 N [ {0}.

Claim 2.
S
l2A

Jl ✓ '
�1(U(Tk)).700

Let (t, u) 2
S
l2A

Jl be arbitrary. In light of Claim 1, we only need to assume

that t � 1
3 . Then '(t, u) 2 (X⇥Tk)�{(p, q)} ✓ U(Tk). So, (t, u) 2 '

�1(U(Tk)).

Claim 3. Jl(
1
3 ) = Jl \ '

�1(U(Tk)) for each l 2 B.

Let l 2 B be arbitrary. First, let (t, u) 2 Jl \ '
�1(U(Tk)) be arbitrary. The705

condition yl /2 �Y
q
[ Tk implies that '(t, u) 2 {z} ⇥ Y . Now, since z /2 vXxl

and (3.1.5) holds, we have that t 6> 1
3 . Thus, Jl \ '

�1(U(Tk)) ✓ Jl(
1
3 ). The

inclusion Jl(
1
3 ) ✓ Jl \ '

�1(U(Tk)) follows from Claim 1.

Thus, in light of claims 1, 2 and 3, we have that '�1(U(Tk)) =

✓ S
l2A

Jl

◆
[

✓ S
l2B

Jl(
1
3 )

◆
is connected. So, ' is monotone with respect to V.710

Observe that '(1, 1
k
) = (xk, yk) for all k 2 N and (0, 0) 2 '

�1(
T

V). Then

V, FH , ' and h(1, 1
k
), (1, 0)i 2 S(FH) fulfil all our requirements.
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Case III. y0 = q.

Then x0 6= p and so we may assume that each xl 6= p. Consider V = {U(Tk) :

k 2 N}. Observe that {(xk, yk) : k 2 N [ {0}} ✓
S

V. Define ' : FH ! Z by

'(t, u) =

8
<

:
(gX(xl, 2t), vY ), if (t, u) 2 Jl and t  1

2 ,

(xl, gY (yl, 2t� 1)), if (t, u) 2 Jl and
1
2  t,

to get a map.

Now, we shall prove that ' is monotone with respect to V. Let k 2 N be715

arbitrary. Set A = {l 2 N : either yl 2 Tk or xl = z} and B = {l 2 N : yl /2

Tk and xl 6= z}. For each l 2 N, let el 2 [ 12 , 1] be the unique point such that

gY (yl, 2el � 1) = q (see (3.1.6)). Let us show the following claims.

Claim 1. J0 ✓ '
�1(U(Tk)).

If t 2 I, then '(t, 0) 2 (X ⇥ �Y
q
)� {(p, q)} ✓ U(Tk). This proves that J0 is720

a subset of '�1(U(Tk)).

Claim 2.
S
l2A

Jl ✓ '
�1(U(Tk)).

Let (t, u) 2
S
l2A

Jl be arbitrary. The inclusion (t, u) 2 Jl(
1
2 ) and the definition

of ' guarantee that '(t, u) 2 (X ⇥ �Y
q
) � {(p, q)} ✓ U(Tk). Now, since either

yl 2 Tk or xl = z, if (t, u) 2 Jl is such that t � 1
2 , then either '(t, u) 2725

(X⇥ (�Y
q
[Tk))�{(p, q)} or '(t, u) 2 {z}⇥Y . Thus, Jl ✓ '

�1(U(Tk)) for each

l 2 A.

Claim 3. Jl(el) = Jl \ '
�1(U(Tk)) for each l 2 B.

Let l 2 B be arbitrary. First, if (t, u) 2 Jl(el), then '(t, u) 2 (X ⇥ �Y
q
) �

{(p, q)} ✓ U(Tk). This shows that Jl(el) is contained in Jl \ '
�1(U(Tk)).730

Second, let (t, u) 2 Jl be such that '(t, u) 2 U(Tk). Our assumptions yl /2 Tk

and xl 6= z imply that '(t, u) 2 (X ⇥ �Y
q
)� {(p, q)}. Assume that t � 1

2 . Then

'(t, u) 2 {xl} ⇥ g({yl} ⇥ [0, 2el, 1]). By (3.1.3), we infer that t  el. Thus,

(t, u) 2 Jl(el).
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So, from claims 1, 2 and 3, we deduce that '
�1(U(Tk)) =

✓ S
l2A

Jl

◆
[735

✓ S
l2B

Jl(el)

◆
is connected. Thus, ' is monotone with respect to V.

Observe that '(1, 1
k
) = (xk, yk) for all k 2 N. In conclusion, V, FH , ' and

h(1, 1
k
), (1, 0)i 2 S(FH) satisfy the required properties.

Therefore, Z is a U�Maya space.

Corollary 4.4. Let (X, vX) and (Y, vY ) be smooth dendroids and let (p, q) 2740

X ⇥ Y . If p 2 X � E(X) and q 2 Ncut(Y )� E(Y ), then (p, q) does not make

a hole in X ⇥ Y .

Theorem 4.5. Let (X, vX) and (Y, vY ) be smooth dendroids and let (p, q) 2

X ⇥ Y . If either p 2 E(X) � {vX} or q 2 E(Y ) � {vY }, then (p, q) does not

make a hole in X ⇥ Y .745

Proof. Set Z = (X ⇥Y )� {(p, q)}. To show that Z is unicoherent, by Propo-

sition 2.2 and Theorem 2.3, it su�ces to verify that Z is contractible.

Define  : Z ⇥ I ! Z by

 ((x, y), t) = (gX(x, t), gY (y, t))

for each ((x, y), t) 2 Z ⇥ I. To check that  is well defined, let ((x, y), t) 2

Z ⇥ I be arbitrary. Suppose that  ((x, y), t) = (p, q). Then gX(x, t) = p and

gY (y, t) = q.750

Suppose p 2 E(X)� {vX}. By the definition of gX , we obtain that p 2 vXx

and, our assumption implies p = x. Hence, gX(p, t) = p. Thus, by (3.1.5), the

equalities t = 1 and y = q hold. So (x, y) = (p, q) /2 Z, a contradiction. We

conclude that  ((x, y), t) 2 Z and  is well defined.

The continuity of  follows from the fact that gX and gY are continuous (see755

(3.1.2). Finally, using (3.1.4) and (3.1.5), it can be proved that  ((x, y), 1) =

(x, y) and  ((x, y), 0) = (vX , vY ) for each (x, y) 2 Z. We conclude that Z is

contractible.
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Theorem 4.6. Let X and Y be continua such that X ⇥ Y is unicoherent and

let (p, q) 2 X ⇥ Y . If (p, q) 2 Cut(X) ⇥ Cut(Y ), then (p, q) makes a hole in760

X ⇥ Y .

Proof. Since X�{p} is not connected, there exist non-degenerate subcontinua

H and G of X such that X = H [G and H \G = {p}. Notice that (H ⇥ Y )�

{(p, q)} and (G⇥Y )�{(p, q)} are connected closed subsets of (X⇥Y )�{(p, q)}

whose union is (X ⇥ Y ) � {(p, q)} and their intersection is homeomorphic to765

Y � {q} which is not connected. This proves that (X ⇥ Y ) � {(p, q)} is not

unicoherent.

Classification

Theorem 4.7. Let (X, vX) and (Y, vY ) be smooth dendroids and let (p, q) 2

X ⇥Y . Then (p, q) makes a hole in X ⇥Y if only if (p, q) 2 Cut(X)⇥Cut(Y ).770

Proof. Let (p, q) 2 X ⇥ Y be such that (p, q) makes a hole in X ⇥ Y . First,

notice that X = E(X) [ Cut(X) [Ncut(X), Y = E(Y ) [ Cut(Y ) [Ncut(Y ),

E(X) ✓ Ncut(X) and E(Y ) ✓ Ncut(Y ). Second, since (p, q) makes a hole in

X⇥Y , by Theorem 4.1, Corollary 4.2 and Theorem 4.5, we infer that p /2 E(X)

and q /2 E(Y ). So, we deduce that p 2 Cut(X) [ (Ncut(X) � E(X)) and775

q 2 Cut(Y ) [ (Ncut(Y ) � E(Y )). From Theorem 4.3 and Corollary 4.4, it

follows that p 2 Cut(X) and q 2 Cut(Y ).

The converse follows from Theorem 4.6.
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