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Abstract

A continuum is a non-degenerate connected compact metric space. Let X and
Y be continua such that X x Y is unicoherent. An element (p,q) € X xY
makes a hole in X x Y if (X xY) — {(p,q)} is not unicoherent. In this paper,
we characterize the elements (p,q) € X x Y such that (p,q) makes a hole in
X xY, where X and Y are smooth dendroids.
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property (b)
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1. Introduction

Unicoherence is an important topological property. It arose during the study
of topological properties of the Euclidan spaces, cubes, spheres, real projective
spaces, Hilbert cube and non-separating Peano subcontinuum of the 2-sphere.
Since its introduction, this concept has seen a increasing interest among topol-
ogist having as result a lot of papers in the literature related to it. To the
present day, there are unsolved question about unicoherence. Intuitively, we
can say that a connected space will be unicoherent if it has no “holes”. The

unicoherence is not a hereditary property. Based in this last fact, our interest
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is aimed at characterizing the points of a unicoherent space such that its com-
plement, as a subspace of the original space, is also unicoherent. In intuitive
terms, the points of this class make a “hole” in the space. The classification
of the points that make a hole in a unicoherent space has been used to distin-
guish spaces, especially in hyperspaces of continua (see [I] and [2]). Naturally,
one can wonder about the classification of the points that make a hole in other
topological structures.

In formal terms, a connected topological space Z is unicoherent if whenever
Z = AU B, where A and B are connected closed subsets of Z, we have AN B
is connected, and an element z of a unicoherent space Z makes a hole in Z if
Z — {z} is not unicoherent.

In this paper, we are interested in the following problem.

Problem. Let X and Y be continua such that X x Y is unicoherent. For which

elements (p,q) € X XY, (p,q) makes a hole in X x Y.

Theorems in Section [4] in the current paper give a partial solution to our

problem, namely, when X and Y are smooth dendroids.

The use of continuous function of a given space to the unit circumference in
the Euclidean plane has been the most powerful tool to study unicoherence. The
known results until now of this technique are not easily applicable for the case
of the space that results from removing a point to the product of two smooth
dendroids. This leads us to introduce a completely novelty method using this

class of continuous functions to show that a metric space is unicoherent.

2. Notation and auxiliary results

The symbols R and N represent the set of real numbers and the set of positive
integers, respectively.

A point z of a connected topological space Z is called cut point (non-cut
point) if Z — {z} is not connected (connected). The set Cut(Z) consists of all
cut points of Z and let NCut(Z) = Z — Cut(Z).
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The subspace [0, 1] of the real line R with the usual topology is denoted by
I. An arc is any space homeomorphic to 1.

By an end point of an arcwise connected topological space Y, we mean end
point in the classical sense, which means a point that is a non-cut point of any
arc in Y that contains it. The set of all end points of Y is denoted by E(Y).

The word map stands for a continuous function.

Given a topological space Y, a subspace X of Y is said to be a deformation
retract of Y if there exists a map h : Y x I — Y such that h(y,1) = y for every
yeY, Y x{0}) =X, and h(z,0) = z for every z € X.

A topological space Y is said to be contractible if there exists y € Y satis-
fying that {y} is a deformation retract of Y. In this case, the map h is called
contraction from Y to {y}.

Convention: when the domain of a sequence in a metric space X is under-
stood from the context, or is not relevant to the discussion, for sake of simplicity,
we write (wy) instead of {wy}72 . For a metric space X, let S(X) be the set of

all pairs ({(wg), wy) where (wy) is a sequence in X converging to wy € X.

The result bellow is well know.

Proposition 2.1. Let X and Y be metric spaces, let xg € X and let f :
X — Y be a function. Then, f is continuous at xo if and only if for each

((xn),x0) € S(X) there exists a subsequence (f(zn,)) of (f(xn)) such that
((f (&), f(x0)) € S(Y).

A map f from a connected topological space Z into the unit circumference
centred at the origin in the Euclidean plane S' has a lifting if there exists a
map h : Z — R such that f = expoh, where exp is the exponential map of R
onto S* defined by exp(t) = (cos(27t),sin(27t)). A connected topological space
Z has property (b) if each map from Z into S! has a lifting.

The next results appear in the literature, we present them due that they will

be used frequently in our main theorems.
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Proposition 2.2. [3, Proposition 9, p. 2001] Let Z be a topological space. If
Z is contractible, then Z has property (b).

Theorem 2.3. [/, Théoréme 6°, p. 168] Let Z be a connected metric space. If
Z has property (b), then Z is unicoherent.

Theorem 2.4. [5, Theorem 4, p. 407] Let Z be a connected topological space,
let zo € Z, let f : Z — St be a map and let t € exp~1(f(20)). If f has a lifting,
then there exists a map h: Z — R such that f = expoh and h(z) = t.

The next result is obtained immediately from [6] (3), p. 64]

Proposition 2.5. Let X be a connected metric space and let f : X — S' be
a map. If hi,ho : X — R are liftings of f and there exists xo € X such that
h1(.130) = hg(ﬂfo), then hl = h2.

The property (b) is a topological property and each arc has property (b).
Both facts will be used repeatedly without mentioning why is true throughout

this paper.

Theorem 2.6. [}, Théoréme 3°, p. 168] Let Z be a connected metric space. If
there exist closed subsets A and B of Z having property (b) such that AN B is
connected and Z = AU B, then Z has property (b).

The symbol Fg denotes the harmonic fan, that is Fg = [J{Jx : k € NU{0}},
where Jo = {(¢,0) : t € I} and Ji, = {(¢, ) : t € I'} are contained in R? for each
k € N. Given (I,7) € (NU{0}) x I, define J;(r) = {(t,u) € J, : t <r}.

Given a continuum X, we define its hyperspace C(X) as the space of all

subcontinua of X endowed with the Hausdorff metric (see [7, p. 9]).

Concerning to the convergence of a sequence in C(X), we will use the follow-
ing equivalence without mentioning explicitly: if (Aj) is a sequence in C(X),
then z € lim Ay if and only if there exists a sequence (zj) satisfying that
limz, = 2 and zp € Ay for each k € N.

A Whitney map for C(X) (see [T, p. 105]) means a map p : C(X) — I that

satisfies the following conditions:
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e For any A, B € C'(X) such that A C B and A # B, ux(A4) < pux(B)
o u({z}) =0 for every z € X,
o u(X)=1.

For any continuum X, by [7, Theorem 13.4, p. 107], there exists a Whitney map
for C(X).

A dendroid is an arcwise connected, hereditarily unicoherent continuum.
Let X be a dendroid. The symbol xy denote the unique arc from z to y, for
each pair of elements z, y € X such that z # y and zy = {z} when z = y.

A dendroid Z is smooth at v if for each ((a,),a) € S(Z), then ({va,),va) €
S(C(Z)). A continuum Z is a smooth dendroid if it is a dendroid and there
exists a point v in Z such that Z is smooth at v. For sake of simplicity, we say
that a pair (Z,v) is a smooth dendroid provided that Z is a smooth dendroid

at v.

3. Results auxiliaries

We define an auxiliary function which will be useful in proofs of the next

results.
Let (X, v) a smooth dendroid and fix g a Whitney map for C'(X). Definegy :

X x I — X by gx(x,t) is the only point of vz such that u(vgx(z,t)) = tu(vz).

Lemma 3.1. Let (X,v) a smooth dendroid. Then gx satisfies each one of the

following conditions.

(3.111) gx is well defined.

us (3.112) gx is continuous.

(B-13) If v € X — {v} and gx(z,t) = gx(z,s), thent = s.

(3.114) For each x € X, gx(x,0) = v. Moreover, if (z,t) € (X —{v}) x I, then

gx(z,t) = v if only if t = 0.



(3.115) For each x € X, gx(x,1) = x. Moreover, if (x,t) € (X — {v}) x I, then
120 gx(x,t) =x if only if t = 1.

(3.116) For each (z,t) € X x I, gx({z} x [0,t]) = vgx(z,1).

PRrROOF. First, for each ¢t € I, from the inclusion g(v,t) € vvo = {v}, it follows
that g(v,t) = v. Now, let (z,t) € (X — {v}) x I be arbitrary. Note that
A= {vz:z € vx}isan arcin C(X) whose end points are {v} and {vz}. Since
s 0= p({v}) < tu(ve) < p(ve), by the continuity of the one-to-one map p .4,
there exists an unique point gx(x,t) € va such that p(vgx(z,t)) = tu(ve). The

proof of |(3.111) is complete.

Applying Proposition [2.1] we are going to show that gx is continuous at
each point of X x I. Let (xg,t9) € X x I be arbitrary. Let ({(zx,tx)), (xo,%0)) €
1w S(X xT). We may assume that there exists yo € X such that ({gx (zk,tx)),y0) €
S(X). Now, since gx (zx, tx) € vz for each k € N and ((vay), vzg) € S(C(X)),
we obtain that yg € vxg. By the continuity of p and fact that X is smooth
at v, we have p(vyg) = lim p(vgx (xg,tr)) = limégu(vag) = top(veg). Then,
9x (xo,t0) = yo. This finishes the proof of .

135 Next, we shall argue[[3.1]3). Our assumptions guarantee that u(vgx (z,t)) =
w(vgx (x,s)) and p(va) > 0. Hence, by the definition of gx, we deduce that
tu(ve) = sp(ve). This implies that ¢ = s.

Observe that the first part of and of is a consequence of the
definition of gx and the second part of both follows from |(3.1}3).

140 In order to show [[3.1]6), let (z,t) € (X — {v}) x I be arbitrary. Hence,
p(vx) > 0. First, let s € [0,¢]. Then gx(z,s),g9x(z,t) € va satisfy that
plvgx(x,s)) = su(ve) and p(vgx(z,t)) = tu(vz). So, since either vgx(x,s) C
vgx(z,t) and vgx(x,t) C wvgx(z,s), by the choice of s, we conclude that
vgx(z,s) C vgx(x,t). This implies that gx(x,s) € vgx(z,t). Hence, from

us  the continuity of gx (see[[3.1[2)), it follows that gx ({z} x [0,]) is a subcon-

tinuum of the arc vgx (z,t) containing its end points gx (x,0) = v and gx (z,t).

Then gx ({z} x [0,t]) = vgx(x,t). Clearly,|(3.1}6) holds whenever x = v.
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The map gx will be used constantly in this paper without mentioning its
definition explicitly.
As a consequence of Lemma [3.1] and Proposition we have the following

result.

Corollary 3.2. Let X be a smooth dendroid. Then X is contractible and so X

has property (b).

The continuum Fp is a smooth dendroid and hence Fy has property (b).

This fact will be used repeatedly throughout this paper.

Theorem 3.3. Let X and Y be connected metric space having property (b) and
let (z,y) € X xY. Then (X x {y}) U ({z} xY) has property (b).

PROOF. Since property (b) is a topological property, we obtain that X x {y}
and {z} x Y have property (b). Now, by Theorem we deduce that (X x

{y}) U ({z} x Y) has property (b).

In order to give necessary and sufficient conditions to any metric space have

property (b), we introduce the following notions.

For a family V of subsets of X, a map ¢ from any topological space into X
is called monotone with respect to V provided that for each V€ V, o= 1(V) is

connected.

Let U be a covering of a connected metric space X. Then, X is said to be U-
covered with respect property (b) provided that each element of & has property
(b), there exists a connected closed subset M of X having property (b) such
that M NU is connected and non-empty for all U € U and if U,V € U such that
UNV # 0, then there exists a connected subset L(U, V) of X having property
(b) and L(U,V) fulfils each one of the following conditions U NV C L(U,V),
UnM)u(VnM)C LUV)NM, the sets L(U,V)NU, L(U,V) NV and
L(U,V) N M are non-empty connected subsets of X. For ((xr),z0) € S(X),
the space X is said to be U-Maya space at ((xy), o), if there exist a subset V
of U such that NV # 0 and {zy : k € NU{0}} C JV, a Hausdorff space F'
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having property (b) and a map ¢ : F — X which is monotone whit respect to
V fulfilling o= (N V) # 0 and some ((yx),y0) € S(F) satisfies that p(y) = xp
for each k € NU {0}. The space X is said to be U-Maya space if and only if X
is U-Maya space at each ((zx),zo) € S(X).

Lemma 3.4. Let X be metric connected space and let U be a covering of X. If
U € U has property (b), then X is U-Maya space at each ({xr),xo) € S(U).

PrOOF. Let ((zx),zo) € S(U) be arbitrary. Consider V = {U}, F = U and
¢ : F ' — X Dbe the inclusion map. Notice that F has property (b), V # 0,
{zr : k e NU{0}} C UV, ({(zk),z0) € S(F) satisfies that ¢(z)) = =z for each
k € NU {0} and ¢ is monotone with respect to V such that ¢=*(V) # 0. So,

V, F, ¢ and (xy) satisfy the required properties.

Lemma 3.5. A connected metric space X has property (b) if and only if there
exists a covering U of X such that X is U-covered with respect property (b)
and X is a U-Maya space.

PROOF. The necessity follows from the fact that X is { X }—covered with respect

property (b) and X is a {X }—Maya space.

Suppose that exists a covering U of X such that X is U-covered with respect
property (b) and X is a U-Maya space. We will show that X has the property
(b). To this end, let f : X — S be a map.

Since X is U-covered with respect property (b), there exists a connected
closed subset M of X fulfilling the conditions in the definition. Then M has
property (b), therefore there exists a map v : M — R such that f|p; = expoy.

Now, for each U € U, let zy € U N M. The assumption each U € U
has property (b), Theorem and the equality f|ys = expoy guarantee the
existence of a map Sy : U — R in such way f|y = expofy and Sy (zv) = v(2v).

Define 8 : X — R by f(z) = fu(z) if x € U. To see that § is well defined, let
x € X be arbitrary and let U,V € U be such that z € UNV. As a consequence
of the fact that U NV # ) there exists a connected subset L(U, V') of X having
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property (b) and satisfying the required properties of the definition. Denote
L(U,V) by L. Fix a € LN M. Applying Theorem since f(a) = expoy(a)
there exists a map A : L — R fulfilling f|r = expo) and A(a) = v(a). Now, let
us argue that A(z) = By (z) = By (z).

Since L N M is connected, v(a) = Aa) and expo(y|rnm) = flonm =
expo(A|znar) the equality v|znar = A znar follows from Proposition This
and the inclusions zy € UNM C LN M imply Mzy) = v(2v). Now, by
the choice of By, it follows that Sy(zy) = v(z2v) = A(zy). Observe that
expo(Arnv) = flonu = expo(BulLnu). Now, invoke Proposition to prove
that A|lznu = Bulonu. Our assumptions ensure that © € U NV C L and so
AMz) = By(xr). Similarly, we deduce A(z) = By (z). In conclusion fy(x) =
Bv ().

From the definition of 3, it follows that f = expof.

To check the continuity of £, using Proposition [2.1, we are going to show
that S is continuous at each point of X. Let xg € X be arbitrary and let
({zr), o) € S(X). It suffices to prove that there exists a subsequence (xy,) of
(zr) such that ((B(x,)), B(x0)) € S(R).

By hypothesis we deduce that X is a Y-Maya space at ((zx),zo), so there
exist a subset V of U, a Hausdorff space F having property (b), ({(yx),%0) € S(F)
and a map ¢ : F — X which is monotone with respect to V fulfilling the
conditions in the definition.

The continuity of ¢ and of f implies that f oy : F — S is continuous. Fix
c € o 1(NV). Since F has the property (b), by Theorem there exists a
map h : F — R such that f o ¢ = expoh and h(c) = o p(c).

Now, let us argue h(yx) = S o o(yx) = B(ay) for all k € NU {0}.

Let £ € NU {0} be arbitrary. Choose V € V in such way z, € V.
Then ¢~ (V) is connected. Now, since expoh = expo(f3 o ¢), we obtain that
expo(hl|,-1(vy) = expo(fBop|,-1(v)) = expof|y op = expofly 0. Finally, the
inclusion ¢ € ¢~1(V) and Proposition imply that h|,-1vy) = By o @. Thus,
h(yx) = Bvop(yr) = Bv(ak) = B(xr). To conclude, observe that the continuity
of h guarantees that lim 5(zx) = B(xo).
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Theorem 3.6. Let X andY be connected metric spaces and let (p,q) € X xY.
If there exists a coveringU of (X xY)—{(p,q)} such that (X xY)—{(p,q)} is
U-covered with respect property (b) and (X xY)—{(p,q)} is a U-Maya space,
then (X xY) —{(p,q)} has property (b).

PROOF. The connectedness of (X x Y) — {(p,q)} follows from [8, Lemma 2.2,
p. 26]. Now, our assumptions and Lemma ensure that (X xY) — {(p,q)}
has property (b).

Corollary 3.7. Let X and Y be continua such that X XY is unicoherent and
let (p,q) € X x Y. If there exists a covering U of (X xY) —{(p,q)} such that
(X xY)—{(p,q)} is U-covered with respect property (b) and (X xY)—{(p,q)}
is a U-Maya space, then (p,q) does not make a hole in X x Y.

PROOF. A consequence of Theorem [3.6]and Theorem [2.3]is the unicoherence of
(X xY)—{(p,q)}, and so (p, q) does not make a hole in X x Y.

For a smooth dendroid (X,vx) and p € X, set Iy = {z € X : p ¢ vxa} U
{p}, QY = {z € X : p € vxax} and if p satisfies that QY — {p} # 0, then
Ax(p) denotes the family of subsets of the form S U {p} of X where S is an

arc-component of X — {p}.

Lemma 3.8. Let (X,vx) and (Y,vy) be smooth dendroids and (p,q) € X xY.

Then each one of the following statements holds.

B8l1) gx (T)F x 1) =T}.

25 (3.812) The subset T, of X is connected, vx € T, and T')X is contractible.

[3:813) If ¢ # vy, then the set (X x IY) —{(p,q)} is contractible and so it has

property (b).

(3.814) The set 0 is a subcontinuum of X and (Q,X,p) is a smooth dendroid.

(3-85) gox(I'x I) =T for each T' € Ax(p).

0 ([3.8/6) Each element of Ax(p) has property (b).

10
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(B8/7) If T € Ax(vx) is such that y ¢ T and s € I, then gx(y,s) € T if only if
s=0.

PROOF. In order to show |([3.8/1), let (x,t) € I',' x I be arbitrary. Observe
that the condition z € Fl)f implies that vxx C F;f. Thus, ﬂ 6) ensures that
gx(z,t) € T)X. Then the inclusion gx(I';" x I) € I'; holds. Now, in light of

n 5), we deduce that 1"5;( C gX(Fg< x I).

The connectedness of I follows from facts that vx € {vxz : z € T}
and T'Y = J{vxz : 2 € I','}. Now, the equality of ﬂ 1) and the conditions
|(]3.1}4) and M?’lb) guarantee that 9X|F§><I : I‘ff x I — I‘ff is a contraction.
Therefore, Ff is contractible. Then n 2) is true.

We shall argue |(3.813). Set Z = (X xTI)) — {(p,¢)}. In order to get
a contraction of A, define G : A x I — A by G((z,y),t) = (9x(x,t), gy (y,1)).
First, let ((a,b),t) € Ax I be arbitrary. By[(3.8[1), we deduce that G((a,b),t) €
X x FZ’. Now, we need to show that G((a,b),t) # (p,q). To this end, suppose
to the contrary that G((a,b),t) = (p,q). Thus, gx(a,t) = p and gy (b,t) = gq.
Since b € I‘qy, we infer that b = ¢ and, by 7 we get ¢ = 1. Hence,
a = gx(a,1) = p. In conclusion, (a,b) = (p,q), a contradiction. On the other

hand, the continuity of G follows from [(3.1}2)| Finally, the conditions |(3.1}4)
and [(3.15) guarantee that G is a contraction.

Observe that p € ({pz : © € O} and X = U{pz : = € F}. Hence,
QX is connected. To show that € is closed in X, let ((zx),z) € S(X) be such
that each x; € fo . Our assumption (X,vy) is a smooth dendroid guarantees
that ((vxzk),vxx) € S(C(X)). Since p € vxxy for each k € N, we infer that
p €vxx and sox € Qf. This shows that Q;( is closed in X. Therefore fo is

a subcontinuum of X. Hence, we conclude that |(3.8]4)| holds.

In order to prove , let T € Ax(p) be arbitrary. First, we are going
to argue the inclusion gox (T'xI)CT. Let (z,t) € T x I be arbitrary. Notice
that the condition € T implies that pz C T. Thus, by [[3.1]6), we obtain that
gox (z,t) € T. Now, in light of , we deduce that T C gox (T x I).

11
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A consequence of Proposition and the fact that gox : T x I — T'is
a contraction (see [(3.8]5), [(3.114)| and |(3.115)) is that T" has property (b). So,

(3.816) holds.
We are going to prove the first part of |(3.8/7). Our assumption y ¢ T
implies that y € X — {vx} and vxy NT = {vx}. So, by|[(3.1l6), we have that

9x(y,s) € gx({y} x ) NT = {vx} = {9x(y,0)}. Applying|(3.1}4), we infer
that s = 0. The second part is immediate, if s = 0, then gx(y,0) =vx € T.

Results below will be essential in the proof of the main theorems in the next

section.

Lemma 3.9. Let (X,vx) and (Y,vy) be smooth dendroids and let (p,q) € X x

Y. If T € Ax(p), then T XY —{(p,q)} is {(T x {y}) U({z} xY) : (x,y) €
(T — {p}) x (Y — {q})}-covered with respect property (b).

PRrROOF. Set Z= (T xY)—{(p,q)}, E=T —{p} and G =Y — {q}. For each
(r,y) € Ex G, let U(z,y) = (T x {y}) U ({z} xY). Define U = {U(x,y) :
(z,y) € E x G}. Observe that U is a covering of Z.

First, by Corollary and , Y and T have property (b). Thus, The-
orem guarantees that each element of U has property (b).

Next, fix r € G. Set M = T'x{r}. Notice that M is a connected closed subset
of Z having property (b). Also, M NU(z,r) = M and M NU(z,y) = {(x,7)}
are connected for each (z,y) € E x (G —{r}).

Finally, let z,w € E and y,z € G be arbitrary. We have that U(x,y) N
U(w,z) # 0. Set J = zw. Since E is arcwise connected, we infer that J C E.
Define L(U(z,y),U(w,2)) = (J x Y)UU(x,y). For sake of simplicity, L will
represent to L(U(z,y),U(w,z)). By [9 (7.5)], we conclude that J x Y has
property (b). Hence, since (J x Y)NU(z,y) = (J x {y}) U {z} xY)) is
connected, by Theorem we obtain that L has property (b). Observe that
U(z,y) NU(w,z) € L. We have that U(w,z) N L = U(w,z) if z = y and
Uw,z) N L = (J x{z}) U ({w} xY) otherwise. Thus, the sets LN M =

12



320

325

330

335

340

M, U(z,y) N L = U(x,y) and U(w,z) N L are connected and the equality
Uz, y) nM)U (U(w,z) N M) = M = LN M holds. Thus L fulfils all our
requirements.

In conclusion, Z is U —covered with respect to property (b).

Let X and Y be metric spaces. For a subset Z of X x Y, the set of all
elements ({(zx,yx)), (0,%0)) of S(Z) such that each subsequence ((x,,yx,)) of
((zr,yr)) satisfies that the sets {xy, : j € N} and {yx, : j € N} are infinity will
be represented by S*(Z). This notation will be used for the rest of the paper.

Lemma 3.10. Let (X,vx) and (Y,vy) be smooth dendroids and let (p,q) €
XxY. IfT € Ax(p), then T XY —{(p,q)} has property (b).

PrOOF. In light of Theorem it suffices to show the existence of a covering
Uof (TxY)—{(p,q)} such that (T x Y) — {(p,q)} is U-covered with respect
property (b) and (T' x Y) — {(p,q)} is a U-Maya space.

Set Z = (T xY)—A{(p,q)}, E=T —{p} and G =Y — {¢q}. For each
(r,y) € Ex G, let U(z,y) = (T x {y}) U ({z} xY). Define U = {U(x,y) :
(z,y) € E x G}. Observe that U is a covering of Z. Lemmaguarantees that
Z is U-covered with respect property (b).

In order to prove that Z is a U-Maya space, let ({(z,yx)), (0, y0)) € S(Z)
be arbitrary. Taking subsequences, if it is necessary, by Lemma we may
assume that (((zx,yr)), (zo,y0)) € S*(Z) and we only need to consider the

following cases.
Case I. {z;,: ke NU{0}} C E.

Fix w € G. Consider V = {U(zg,w) : k € NU{0}}. Observe that {(zx,yx) :
ke NU{0}} CUV and (p,w) €N V.
Define ¢ : Fyg — Z by

(gQé( (24,3t),w) if (f,u) € Jy and t < %
ot,u) =< (x1,9y(w,2—3t)) if (t,u) € J; and % <t< %
(z1, 9y (yi, 3t —2)) if (t,u) € J; and % <t
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Let us show that ¢ is monotone with respect to V. Let k € N U {0} be
arbitrary. In order to prove that =1 (U(xy,w)) is connected, define A = {I €
NU{0} : z = x;} and B = {l € NU{0} : x) # 2;}. We shall prove the following
claims.

Claim 1. | Ji(3) C o U (wk, w)).
1eNU{0}

If (t,uy e U Jl(%), by [(3.815), then ¢(t,u) € T x {w} C U(zg,w).
1eNU{0}

Claim 2. | J; C o Y (U(xg,w)).
leA

If (t,u) € U Ji and t > 1, then o(t,u) € {zx} x Y C U(ay, w). From
I€EA
this and Claim 1, we can conclude that J; is a subset of ¢ ~!(U(x,w)) for each

le A.

Claim 3. J; N~ (U(xk, w)) = Ji(3) for each | € B.

Let | € B be arbitrary. Claim 1 guarantees that J;(3) € ¢~ (U(zy, w)).
Now, from the definition of ¢, the inclusion (¢,u) € J; N~ (U(zk, w)) and the
inequality x # x; imply that ¢t < %. Thus, J; N ¢~ (U(xk,w)) is a subset of
J(3)-

Next, invoke our last claims to show that o= '(U(zy,w)) = (U Jl> U
leA

< U Jl(:l,’)> is connected.
1€B
Finally, notice that (0,0) € ¢™'(NV) and ¢(1, }) = (&, yx) for all k € N.

Thus, V, Fg, ¢ and ((1, +), (1,0)) € S(Fy) fulfil all our requirements.
Case II. {z) : k € N} C E and zp = p.

Then yo # q. So, we may assume that {yr : k € N} C G. Fix z € E and
consider V = {U(z,yx) : k € N}. Then (z,vy) € (V. Let ¢ : Fyg — Z be
define by

(ZagY<yl73t))7 if (t,u) S Jl and t S %
w(t,u) = (gQé( (2,2—=3t),y), if(t,u)€ Jyand i <t<2
(gﬂif ($l73t - 2)ayl)7 if (tvu) S Jl and % S t
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In order to prove that ¢ is monotone with respect to V, let k € NU {0} be
arbitrary and, set A={l e NU{0}:y; =y} and B={l e NU{0} : y; # yx}.
The following claims will give that =1 (U(z,yx)) is connected.

Claim 1. {J Ji(3) S (U(z,m)).
leNU{0}

If (t,buye U Ji(3), then o(t,u) € {z} x Y C U(z,yx). This guarantees
leNU{0}
the inclusion J;(3) € ¢~ *(U(2, yx) for each I € NU {0}.

Claim 2. {J J; € o (U(z,yx)).
leA

Let (t,u) € |J J; be arbitrary. In light of Claim 1, we only need to suppose
I€A

that ¢ > 1. By|(3.815), we have that ¢(t,u) € T x {yx} C U(z, yx)-
Claim 3. Ji(3) = JiN¢ *(U(z,yx)) for each | € B.

Let | € B be arbitrary. Claim 1 ensures that J;(3) € J; N (U(z, yx))-
Now, if (¢t,u) € J; is such that p(t,u) € U(z,yx), since yi # yi, then o(t,u) €

{z} x Y and t < . The proof of our claim is complete.

Thus, claims 1, 2 and 3 imply that o= (U(z,yx)) = < U Jl) u < U Jl(:l,’)>
is connected. el v

On the other hand, we have ¢(1, ) = (zx,ys) for each k € N and (0,0) €
e HNV). So, V, Fy, ¢ and ((1,7),(1,0)) € S(Fg) satisfies all our require-
ments.

In conclusion, Z is a U-Maya space.

Lemma 3.11. Let (X,vx) and (Y,vy) be smooth dendroid and let (p,q) €
XXY. Ifz € vxp—{vx,p} and T € Ay (q), then ({z} xY)U(X xT)—{(p,q)})
has property (b).

Proor. In light Theorem we need to prove that there exists a covering U

of ({z} x Y) U ((X xT) = {(p,q)}) such that ({z} x Y)U (X xT) = {(p,q)})
is U-covered with respect property (b) and ({z} x Y)U (X xT) — {(p,q)}) is
a U-Maya space.
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Set Z={z} xY)U(XxT)—{(p,9)}), E={2} xYand G=(X xT) —
{(p,q)}. Consider U = {F,G}. Notice that U is a covering of Z and U # 0.

Let us argue that Z is U —covered with respect to property (b).

By Corollary and Lemma [3.10} we conclude that each element of U
has property (b). Now, set M = E = L(E,G). We have that M and L are
connected closed subsets of Z having property (b). The sets M N E = E and
M NG = {z} x T are connected. Thus M satisfies the required properties of
our definition. For sake of simplicity, L will represent to L(E,G). Observe that
the inclusions ENG = {2} xT C Land (ENM)U(GNM) C LN M hold
and the sets LNE =FE, LNG = {2z} x T and LN M = M are connected and
non-empty. Thus, L fulfilling the conditions in the definition. We can conclude
that Z is U—covered with respect to property (b).

Now, in order to prove that Z is a i{—Maya space, let ({(x, yx)), (0, %0)) €
S(Z) be arbitrary. Taking subsequences, if it is necessary, by Lemma and
since F is a closed subset of Z, we only need to assume that each (zy,yx) €

G — B, (z0,y0) € £ — G and ({(wk, y)), (z0,y0)) € S*(2).

The assumptions (zg,yo) € F — G and each (zy,yx) € G — E imply that
xo =2, Yo € Q}I/ — T and zp # z for each k € N. Hence, we may assume that

p ¢ {xy:keN}and g ¢ {yx : k € N}. We will consider two cases:

Case 1. z € vyxy for each k € N.

In light of ﬂ 4), we may consider the mappings goy and gox. Let ¢ :
Fy — Z be defined by

(Z’gQY (yl72t))7 if (t,u) S Jl and t S %
@(t’u) = ? .

(9ox (x1,2t — 1),y1), if (t,u) € Jy and § <

Notice that ¢ is well defined, the continuity of ¢ follows from [(3.111)} ¢©(0,0) €
MU and so o~ H(OU) # 0.

The connectedness of ¢~ 1(E) and ¢~ 1(G) shall be a consequence of the

below claims.
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Claim 1. | Ji(3) C ¢ 1(G) Ny 1(E).
leN

Let | € N be arbitrary and let (¢, u) € J; be such that ¢ < 1. Then ¢(t,u) € E
and, by [(3.8l5), ¢ (t,u) € G. This implies that (t,u) € ¢~ 1(G) N p~1(E).

Claim 2. J, C E.

Notice that @(Jo(%)) C E and, by the definition of gox and our assumption
z = xp, we obtain that ¢(t,0) € E for all ¢ € [, 1]. In conclusion, ¢(Jy) C E.

Claim 3. J;N¢ Y (E) = Ji(3) for each [ € N.

Let I € N be arbitrary. First, from the fact that x; # z, by for
each (t,u) € J; such that ¢(t,u) € E, we have that ¢ < 3. This implies that
JiNg~1(E) is a subset of J;(3). The inclusion J;(1) C J;Ny~1(E) is guaranteed
by Claim 1.

Claim 4. J J; C ¢~ 1(G).
leN

Let | € N be arbitrary. Claim 1 ensures that J;(3) C ¢ '(G). Next, if
(t,u) € J; satisfies that ¢t > %, from the fact that y, € T, by , we infer
that o(t,u) € G. Therefore, J; C ¢~(G) for each [ € N.

Claim 5. Jy N ¢ HG) = {(0,0)}.
By [(3.8l7) and from our assumption yo ¢ T, we infer that if ¢(yo,t) € G,

then ¢ = 0. This proves our claim.

Thus, from claims 1-5, it follows that ¢ ~1(E) = JoU |J Jl(%) and ¢~ 1(G) =
leN
\J Ji are connected. This implies that ¢ is monotone with respect to U.
lEN

Observe that ¢(1,1) = (wx,yx) for all k € N. In conclusion U, Fy, ¢ and
((1,7),(1,0)) € S(Fg) fulfil all our requirement.

Case II. z ¢ vxxy, for each k € N.

Our assumption and the facts that z € vxp — {p} and x9 = z imply that
p ¢ vxay for each k € NU {0}.
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Define ¢ : Fyg — Z by

(9x (21,2t),q), if (t,u) € Jy and t <
(1, gox (yi, 2t = 1)), if (t,u) € Jyand t >

1
Pt u) = :
2
to get a map. Notice that ¢(3,0) = (z,¢) € U and hence ¢~ *(NU) # 0.
Next, we are going to show that =1 (E) and ¢~1(G) are connected. To this

end, we prove the following claims.
Claim 1. JoNe 1(E) ={(t,0) € Jo: t > 3}.

First, let ¢ € I be such that ¢(¢,0) € E. Since zo = z, by [(3.1[5), we deduce
that ¢ > 1. This implies that Jo N ¢~ (E) C {(,0) € Jo : t > 3}. Now, if
t € [3,1], the equality zg = 2 and guarantee that ¢(¢,0) € E. The
conclusion is that {(¢,0) € Jo : t > 1} is a subset of ¢! (E). This proves our

claim.

Claim 2. o Y (E)N U J; = 0.
IEN

This claim follows from the fact that z ¢ gx({z;} x I) for each | € N (see
(3.116)).

Claim 3. {J J; C ¢ 1(G).
IEN

By |(3.8l5) and yi € T, we have that ¢(J;) C G for each [ € N.
Claim 4. Jo N 1 (G) = Jo(3).

The inclusion ¢ € T guarantees that ¢(J(3)) € G. On the other hand, if
t € I is such that ¢(t,0) € G, by n 7), we obtain that ¢ < % The proof of

this claim is finished.

Thus, by claim 1-4, we obtain that ¢~'(E) = {(t,0) € Jo : t > 1} and
¢ YG) = Jo(3) U U J; are connected. This implies that ¢ is monotone with
respect to U. e

Finally, notice that ¢(1, %) = (zg,yx) for all k € N. Therefore, U, Fy, ¢
and ((1, 1), (1,0)) € S(F) fulfil all our requirements.

We have that Z is a U/ —Maya space.
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Lemma 3.12. Let (X,vx) and (Y,vy) be smooth dendroid and let (p,q) €
XxY. If z€ vxp—{vx,p}, then (X xF;’) —{(p, )} U{z} xY) has property
(0).

PROOF. For sake of simplicity, set Z = (X x I'}) = {(p,q)}) U({z} x Y). In
light of Theorem [3.6] if suffices to prove that exists a covering U of Z such that
Z is U—covered with respect to property (b) and Z is a U/ —Maya space.

First, set B = (X xTY) = {(p,q)} and G = {z} x Y. Consider U = {E,G}.
Notice that U is a covering of Z and (U # 0. Second, Corollary [3.2] and [(3.8]3)
guarantees that each element of & has property (b). Now, set M = G = L(E, G).
Then M and L are connected closed subsets of Z having property (b). Observe
that M NG = G and M N E = {z} x I'Y are connected. The symbol L
will represent to L(E,G). Notice that L is a connected closed subset of Z
having property (b). These sets satisfy: ENG = {z} x qu CL LNG =G,
LNE = {z} xI"Y are connected, LNM = M # ( and (GNM)U(ENM) C LNM.
Thus, L fulfilling the conditions in the definition. This finishes the proof of that
Z is U—covered with respect to property (b).

In order to prove that Z is /—Maya space, let ({(zk,yx)), (Zo,%0)) € S(Z)
be arbitrary. Taking subsequences, if it is necessary, by Lemma and the
condition G is a closed subset of Z, we only need to assume that {(zg,yx) : k €
N} CE -G, (x0,y0) € G— E and ({(zk, yx)), (To,%0)) € S*(Z).

The assumptions (zg,y0) € G — E and each (zy,yr) € F — G guarantee that
z0 =z, 90 € W —{q} and z ¢ {z : k € N}. Thus, we may assume that z; # p
and yy, # q for each k € N.

Now, we consider two cases.
Case 1. z € vxyxy for each k € N.

By , we can consider the mapping gax. Let ¢ : Fg — Z be defined

by
(z, 9y (y1,2t)), if (t,u) € Jy and t <
(9ax (1,2t = 1),y1), if (t,u) € Jyand t >

1
plt,u) = :
§.
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Observe that ¢ is a map and (0,0) € =1 (NU).
Now, we shall prove the claims below to argue the connectedness of p~1(E)

and p~1(G).

Claim 1. | Ji(3) C ¢ 1(E) N~ H(G).
leN

From the definition of ¢, it follows that ¢(J;(1)) € G. Now, if I € N, the
inclusion y; € I'Y and ﬂ 1) guarantee that ¢(t,u) € E for each (t,u) € Ji(3).

Claim 2. |J J; C o~ }(E).
lEN

If (t,u) € U Jyand t > &, since y; € I'Y , then ¢(t,u) € E. This and Claim
IEN
1 prove that ¢(J;) is contained in E for each [ € N.

Claim 3. Jy(e) = Jo N~ }(E) where e < £ is such that gy (yo,2e) = q.

By ﬂ 6), we deduce that ¢(Jo(e)) € {z} x I'} C E. Then Jy(e) C Jo N
@ ' (E). Now, let t € I such that (t,0) € E. From the fact that yo € Q) —{q},
it follows that ¢ < 3. Hence, gy (yo,2t) € ). This implies that gy (yo,2t) €
vyq = gy ({yo} x[0,2¢]) and so t < e (see|(3.113)). We conclude that JoNy 1 (E)
is a subset of Jy(e).

Claim 4. ¢~ *(G) N J; = Ji(3) for each | € N.

Let | € N be arbitrary. Claim 1 ensures that J;(1) is contained in ¢~!(G).
Next, let (t,u) € J; be such that ¢(t,u) € G. Since z # x;, by |(3.1]4), we have

that t < % This proves our claim.
Claim 5. Jy C o }(G).
By the definition of gox, it follows that »(¢,0) € G for all t € I.

Thus, from claims 2-5, it follows that =1 (E) = Jo(e)U |J J; and p~1(G) =
IEN

Jou U Jl(%) are connected. This proves that ¢ is monotone with respect to i.
lEN

Notice that ¢(1, %) = (a,yx) forall k € N. So, U, Fpy, ¢ and {(1, %), (1,0)) €
S(Fg) satisfy the required properties.
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Case II. z ¢ vxay, for each k € N.

Our assumption and the choice z € vxp — {vx,p} imply that p ¢ vxzy for
each k € NU {0}.
Define ¢ : Fyg — Z by

b

(9x(z1,2t),vy), if (t,u) € Jyand t <

o(t,u) =
(21, 9y (g1, 2t — 1)), if (t,u) € J; and t >

N= N

to get a map. Notice that (0,0) € = (NU).
Next, let us argue that ¢ is monotone with respect to &. To this end, we
are going to prove the following claims.
Claim 1. J J; C o (E).
IEN
By the definition of ¢, we deduce that ¢(J;(3)) € X x {vy} C E for each
l € N. Now, if (t,u) € J J is such that ¢t > %, by [(3.8/1), yx € F}; and x; # p,

leN
we have that o(t,u) € {2} x T} C E.

Claim 2. Jy(e) = Jo N ' (E) where e € [1,1] is such that gy (yo,2e — 1) =q.

First, notice that ¢(Jy(3)) € X x {vy'} C E. Second, by7 ift €[3,€,
then ¢(t,u) € {2z} x vyq C E. This proves that Jy(e) is a subset of p~!(FE).
Now, let ¢ € I be such that ¢(t,0) € E. Assume that t > 3. By then
©(t,0) € {z} x gy ({yo} x [0,2e — 1]). Hence, in light of [(3.1[3), we deduce that
t < e. In conclusion, Jo N~ (E) C Jy(e).

Claim 3. J; N }(G) =0 for each [ € N.

Let I € N be arbitrary. From the fact that z ¢ gx ({z;} x I), we deduce that

o(J) NG =10 (see((3.1[6)). This shows our claim.
Claim 4. JoNe 1(G) ={(t,0) € Jy:t > 1}.

Ift e [%, 1], since zp = z, we obtain that ¢(t,u) € G. Hence, {(¢,0) € Jy :
t > 1} is a subset of p71(G). Now, let t € I be such that ¢(t,0) € G. By
n 5), we deduce that ¢t > % This finishes the proof of our claim.
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So, invoke claims 1-4 to prove that o~ 1(E) = Jo(e) U |J J; and ¢~ }(G) =
lEN
{(t,0) € Jo : t > 1} are connected. This implies that ¢ is monotone with

respect to U.

Finally, we have cp(l,%) = (zk,yx) for all k € N. Hence, U, Fy, ¢ and
((1,2),(1,0)) € S(Fg) fulfil all our requirements.

Therefore, Z is a U —Maya space.

Lemma 3.13. Let (X,vx) and (Y, vy) be smooth dendroids, let (p,q) € X xY.
Ifpe Neut(X) — E(X),qe Y — E(Y), z € vxp— {vx,p} and T € Ay(q),
then (X x (Y UT)) —{(p,q)}) U ({z} x Y) has property (b).

PROOF. For sake of simplicity denote ((X x (T} UT)) —{(p,q)}) U ({z} xY)
by Z. To show that Z has property (b), by Theorem it suffices to verify
that there exists a covering U of Z such that Z is U—covered with respect to

property (b) and Z is a U—Maya space.

In order to define U, set E = (X xI'Y) —{(p,q)}) U({z} x Y) and G =
(X xT)—={(p,g)}) U ({z} xY). Consider U = {E,G}. Observe that U is a
covering of Z and (U # (. Next, we are going to show that Z is U —covered
with respect to property (b).

Notice that E and G has property (b) by Lemma and Lemma
Thus, each element of U has property (b).

Now, set M = {z} x Y. We have that M is a connected closed subset of Z
having property (b). Notice that MNE = M = M NG are connected. On other
hand, from the fact that p € Ncut(X) — E(X), we have that X x {¢} — {(p,¢)}
is connected. Hence, the equality ENG = M U ((X x {q}) — {(p,q)}) shows
that £ N G is connected. Now, take L(E,G) = G. Then L(E, G) has property
(b), the sets L(E,G)NE = ENG, L(E,G)NG =G and L(E,G)NM = M are
connected, the inclusion ENG C L(E, G) holds and (MNEYU(MNG) =M C
L(E,G)N M = M. This finishes the proof that Z is U-covered with respect to

property (b).
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In order to prove that Z is U-Maya space, let ({(zx,yx)), (Zo,%0)) € S(Z)
be arbitrary. Taking subsequences, if it is necessary, by Lemma and the
condition G is a closed subset of Z, we only need to assume that {(zg,yx) : k €
N} CE -G, (x0,y0) € G— E and ({(zx,yx)), (To,%0)) € S*(Z).

Since (zg,y0) € G — E, we obtain that x¢ # z and yo € T — {¢}. Thus, we
may suppose that {z; : k € N} € X — {2z} and {yx : k € N} CTY —{q}.

Taking subsequences, if it is necessary, we consider the following cases.
Case I. z € vxx; for each [ € N.

In light of [(3.8]4), we can consider the mapping gox. Let ¢ : Fy — Z be
defined by
(ZagY(yla2t))7 if (tau) €Jyand t < %a

o(t,u) = _ )
(9ax (@1, 2t — 1),y), if (t,u) € Jyand 5 <t.

Now, we are going to prove that ¢ is monotone with respect to ¢. To this

end, we shall show the following claims.

Claim 1. |J J(3) Ce Y(E)ne Y(q).
leNU{0}

If (t,u) € U Ji(3), then o(t,u) € {z} x Y € ENG. Hence, Ji(3) C
1eNU{0}
o Y E)N ¢ 1(G) for each | € NU{0}.
Claim 2. Jy C o }(G).

Let (t,u) € Jo be such that 3 <t. Since yo € T, by |(3.85), we deduce that
o(t,u) € (X xT) —{(p,q)} C G. This and Claim 1 imply that Jy C =1 (G).

Claim 3. J;(3) = J;N ¢ *(G) for each | € N.

Let [ € N be arbitrary. The inclusion J;(3) € J; N ¢~ (G) is guaranteed by
Claim 1. Since y; ¢ T, if (t,u) € J; is such that ¢(t,u) € G, then ¢(t,u) €

{z} x Y (see|(3.85)) and, by |(3.1l4) and @; # 2, we obtain that ¢ < I. This

shows that J; N~ (G) C Ji(3) for each I € N.

Claim 4. Jo(3) = JoNe Y(E).
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In light of Claim 1, we only need to prove that Jy N ¢~ (E) is a subset of
Jo(%). Let t € I be such that ¢(t,0) € E. If t were greater than 3, since zg # z,
by n 4), ¢(t,0) would be an element of (X x I'Y') — {(p,¢)} and this would
imply that yo € I'Y', a contradiction. We conclude that (¢,0) € Jo(3).

Claim 5. |J J; C o 1(E).
IEN
If (t,u) € J Ji is such that ¢ > 3, by |(3.8/1), we have that ¢(t,u) €

lEN
(X xTY) = {(p,q)}. This and Claim 1 prove that each J; is contained in

e (E).

Thus, by claims 1-5, we obtain that ¢~ (E) = Jo(3)U U J; and ¢~ *(G) =
IEN

Jou U Jl(%) are connected. We conclude that ¢ is monotone with respect to
” lEN

Observe that ¢(1, 1) = (zx,yx) for all k € N and (0,0) € ¢~ (). There-
fore, U, Fyr, ¢ and ((1, 1), (1,0)) € S(Fy) fulfil all our requirements.

Case II. z ¢ vxa; for each [ € N.
Define ¢ : Fiy — Z by

(z, gy (y1, 3t)), if (t,u) € Jyand ¢t <
p(t,u) = (9x(2,2=3t),y1), if (t,u)€ J; and %
(9x (1,3t — 2),y1), if (t,u) € J; and 2 <.

Next, let us show the connectedness of ¢ ~1(E) and ¢~ 1(G).

Claim1. U Ji(3) Ce YE)ne Y(G).
leNU{0}

If (t,buye U Ji(3), then ¢(t,u) € {z} x Y C ENG. Hence, we obtain
1ENU{0}
that J;(3) Co H(ENG) =9 YE)N¢ ! (G) for each | € NU{0}.

Claim 2. |J J, C o 1(E).
leN
Let t be arbitrary. Claim 1 ensures that J;(3) € ¢~ *(E) for each | € N.
Now, let (t,u) € J; be such that ¢t > % Then, since y; € I‘};, we deduce that

o(t,u) € (X xIY) —{(p,q)} € E. Thus, ¢ '(E) contains .J; for each [ € N.
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Claim 3. Jy C o }(G).

Since yo € T, if t € [1,1], then ¢(t,0) € (X x T) — {(p,q)} € G. This and
Claim 1 show that Jy is a subset of p~1(G).

Claim 4. J;(3) = J;N ¢ *(G) for each | € N.

Let | € N be arbitrary. From Claim 1, it follows that J;(3) € J; N~ 1(G).
Now, let (t,u) € J; be such that ¢(t, u) € G. The inclusion y; € I'Y and n 1)
imply that ¢(t,u) € {z} x Y. Hence, by |(3.81), t < % and so J; Ny *(G) is

contained in J;(3).

Finally, from claims 1 and 2, it follows that Jo(3) U U J; € ¢ '(E). So,
leN

since Jo(5) U UJ Ji is a dense connected subset of Fyr, we infer that ¢~ (FE)
leN
is connected. On the other hand, claims 1, 3 and 4 guarantees that ¢~ *(G) =

JoU U Ji(3) is connected. Then ¢ is monotone with respect to .
IEN
We have that ¢(1, +) = (zx,yx) for all k € N, (0,0) € o~ (NU) and U, Fp,

¢ and ((1, ), (1,0)) € S(Fy) satisfy the required properties.

In conclusion, Z is a Y —Maya space.

4. Main Results

All results in this section together give the classification of points that make
a hole in the product of two smooth dendroids.
Each corollary below can be proved using similar arguments of the proof of

the previous theorem respectively.

Theorem 4.1. Let (X,vx) and (Y,vy) be smooth dendroids and let ¢ € Y. If
vx € E(X), then (vx,q) does not make a hole in X X Y.

PRrROOF. Our assumption vx € E(X) guarantees that X € Ax(vx). So, ap-
plying Lemma we obtain that X x Y — {(vx, ¢)} has property (b). Invoke
Theorem [2.3] to prove that X x Y — {(vx,q)} is unicoherent.
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Corollary 4.2. Let (X,vx) and (Y,vy) be smooth dendroids and letp € X. If
vy € E(Y), then (p,vy) does not make a hole in X X Y.

Theorem 4.3. Let (X,vx) and (Y,vy) be smooth dendroids and let (p,q) €
XXxY. Ifpe Newt(X) — E(X) and g € Y — E(Y), then (p,q) does not make
a hole in X xY.

PROOF. In light of Corollary we need to prove that there exists a covering
Uof (X xY)—{(p,q)} such that (X xY)—{(p,q)} is U-covered with respect
property (b) and (X xY) — {(p,q)} is a U-Maya space.

Set Z =X xY —{(p,q)} and fix z € vxp — {vx,p}. For each T € Ay (q),
let U(T) = (X x (LY UT)) —{(p,q)}) U ({z} x Y). Consider U ={U(T): T €
Ay (q)}. Notice that U is a covering of Z and, by Lemma each element of

U has property (b).

Let us argue that Z is U—covered with respect to property (b). Consider
M ={z} xY. Let T € Ay(q) be arbitrary. We have that M NU(T) = M is
connected. Now, notice that if Ty, Ty € Ay (q), then U(Ty)NU(T3) # 0. Assume
that Ty # Tb. Define L(U(T1),U(T2)) = (X xIY) = {(p,q)}) U ({z} x Y).
For sake of simplicity, L will represent to L(U(T}),U(Tz)). Observe that L is
a connected subset of Z and Lemma ensures that L has property (b) .
Moreover these sets satisfy: U(Th) NU(Te) = LNU(Ty) = LNU(Ty) = L and
LN M = M are connected, and (U(Ty) "N M)U{U(T2)NM) =M =LnNM.
Thus, L fulfilling the conditions in the definition. Hence, Z is U —covered with

respect to property (b)

Now, in order to prove that Z is a i{—Maya space, let ({(x, yx)), (0, Y0)) €
S(Z) be arbitrary. Taking subsequences, if it is necessary, by Lemma we
may assume that for each k € N there exists T}, € Ay (q) satisfying that y; € Ty

and we only consider the following cases .

Case 1. yg # ¢ and z € vxxy, for every k € N.
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Then we may assume that each yi # ¢. Let Ty € Ay (q) be such that yo € Tp.
Consider V = {U(Ty) : k € NU{0}}. In light of |(3.8/4), we may consider the
mapping gox and goy - Define ¢ : Fg — Z by

(2, 90y (u1,2t)) if (t,u) € J; and t <

o(t,u) = . .
(gax (v1,2t = 1),y) if (t,u) € Jyand 5 <

to get a map. Observe that (0,0) € ¢~ 1((V). Now, we are going to prove that
@ Y(U(Ty)) is connected for each k € NU {0}. Let k € NU {0} be arbitrary.
Set A={l e NU{0} : either y, € Ty or xx = 2z} and B={l e NU{0} : yx ¢
T, and zy # z}.
Claim 1. | Ji(}) C o (U(T1).

leNU{0}

Observe that if (t,u) € |J J;issuchthat ¢ < 1, then o(t,u) € {z}xY C
1eNU{0}

U(T}). Hence, we obtain that J;(3) € ¢ ' (U(T})) for each | € NU{0}.

Claim 2. | J, C o Y (U(Ty)) -
leA

From Claim 1, it follows that J;(3) € ¢~ *(U(T})) for each I € A. Now, let
| € A be arbitrary and let (t,u) € J; be such that ¢t > 1. If y; € Ty, by ,
we have that ¢(t,u) € (X x Tg) — {(p,q)} € U(Tx). Under the assumption
z = 2, by the definition of ggx, we obtain that ¢(t,u) € {2z} xY C U(T}). So,
the inclusion J; C ¢~ 1(U(T})) holds.

Claim 3. Ji(3) = Ji N *(U(T})) for each | € B.

Let | € B be arbitrary. The inclusion J;(3) € J;N¢ = (U(T)) is guaranteed
by Claim 1. Next, let (¢, u) € J; be such that o(t,u) € U(T}). Sinceyy ¢ '} UT;,
we obtain that ¢(t,u) € {z} x Y. From our assumption z; # z and [[3.1]4), it
follows that t # 2. So, (t,u) € Ji(3).

From claims 1, 2 and 3, we infer that o~ 1(U(T})) = ( U Jl> u < U Jl(%)>
is connected. Therefore, ¢ is monotone with respect to Vl.eA v

Finally, notice that ¢(1, %) = (zg,yx) for all k € N and so, V, Fg, ¢ and
((1,%),(1,0)) € S(F) satisfy the required properties.
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Case II. yy # ¢q and z ¢ vxxy for each k € N.

From our assumption yo € Y —{q}, we may assume that {y : k e N} CY —
{q}. Let Ty € Ay (q) be such that yo € Ty. Consider V = {U(T}) : k € NU{0}}.
In light of ﬂ 5), we can consider the mapping gy . Define ¢ : Fy — Z by

(ZangY (yla?’t))v lf (tvu) S Jl and t §
o(t,u) = (9x(2,2—=3t),y), if (t,u) € J; and %
(gX(xlaSt_2)vyl)7 if (t7u) eJl and % <t.

Then ¢ is a map. Let us show that ¢ is monotone with respect to V. Let
k € NU{0} be arbitrary. Set A= {l e NU{0} : y; € T},} and B = {l e NU{0} :
yr ¢ Tr}. We are going to prove the following claims.
Claim 1. U Ji(3) C o ' (U(Th)).
leNU{0}

If (t,u) € |J J;is such that ¢ < & and by |(3.8]5), then ¢(t,u) € {z} x
1ENU{0}
Y C U(Ty). Hence, Ji(3) C ¢~ *(U(T})) for each I € NU {0}.

Claim 2. U J; C o Y (U(Ty)).
leA

Let (t,u) € | J; be arbitrary. In light of Claim 1, we only need to assume
leA

that t > %. Then ¢(t,u) € (X xTy)—{(p,q)} € U(Tx). So, (t,u) € o~ ({U(Tk)).

Claim 3. Ji(3) = Ji N~ (U(T})) for each | € B.

Let | € B be arbitrary. First, let (¢t,u) € J; N~ 1(U(T})) be arbitrary. The
condition y; ¢ T U T}, implies that o(t,u) € {z} x Y. Now, since z ¢ vx
and (3.1[5)| holds, we have that ¢ ¥ 1. Thus, J; N~ (U(T})) € Ji(3). The
inclusion J;(3) € Jy N~ H(U(Ty)) follows from Claim 1.

Thus, in light of claims 1, 2 and 3, we have that ¢~ 1(U(T})) = ( U Jl) U

leA

( U Jl(§)> is connected. So, ¢ is monotone with respect to V.
I€B

Observe that ¢(1, 1) = (zx,yx) for all k € N and (0,0) € ¢~ *(NV). Then
V, Fi, ¢ and ((1, 1), (1,0)) € S(Fg) fulfil all our requirements.
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Case I1I. yo = q.

Then zy # p and so we may assume that each x; # p. Consider V = {U(T}) :
k € N}. Observe that {(zg,yx) : k € NU{0}} CUV. Define ¢ : Fy — Z by
(9x (x1,2t),0y), if (t,u) € Jyand t < 3,

p(t ) = _ .
(xlvgY(yl72t - 1))7 if (tau) € J; and 3 <t

to get a map.

Now, we shall prove that ¢ is monotone with respect to V. Let k € N be
arbitrary. Set A ={l € N: either yy € Ty orz; =z} and B={l e N:y ¢
Ty and 2; # z}. For each | € N, let ¢; € [%, 1] be the unique point such that
gy (y1,2e; — 1) = g (see[(3-1[6)). Let us show the following claims.

Claim 1. Jy C o H(U(T})).

If t € I, then ¢(t,0) € (X xTY) — {(p,q)} € U(T%). This proves that J is

a subset of =1 (U(T%)).
Claim 2. U J; C o Y (U(Ty)).
leA
Let (t,u) € |J J; be arbitrary. The inclusion (¢,u) € J;(3) and the definition

leA
of ¢ guarantee that o(t,u) € (X x I'Y) — {(p,q)} € U(T%). Now, since either

y € T or xp = 2z, if (t,u) € J; is such that ¢ > %, then either p(t,u) €
(X x(TYUTk)—{(p.q)} or p(t,u) € {z} x Y. Thus, J; C ¢~ }(U(T})) for each

le A
Claim 3. Ji(e;) = J; N Y (U(T})) for each | € B.

Let | € B be arbitrary. First, if (t,u) € Ji(e;), then o(t,u) € (X xTY) —
{(p,q)} € U(T%). This shows that Ji(e;) is contained in J; N ¢~ (U(Ty)).
Second, let (¢t,u) € J; be such that ¢(¢t,u) € U(Tk). Our assumptions y; ¢ Ty,
and x; # z imply that p(t,u) € (X X qu) —{(p,q)}. Assume that ¢t > % Then
o(t,u) € {a} x g({ui} x [0,2¢;,1]). By [BI]3), we infer that ¢ < ¢;. Thus,
(t,u) € Ji(er).
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So, from claims 1, 2 and 3, we deduce that =1 (U(T})) = (U Jg) U
leA

( U Jl(el)) is connected. Thus, ¢ is monotone with respect to V.
1€B
Observe that ¢(1, 1) = (zx,yx) for all k € N. In conclusion, V, Fy, ¢ and

((1,7),(1,0)) € S(Fu) satisfy the required properties.

Therefore, Z is a U —Maya space.

Corollary 4.4. Let (X,vx) and (Y,vy) be smooth dendroids and let (p,q) €
XxY. Ifpe X —E(X) and g € Ncut(Y) — E(Y), then (p,q) does not make
a hole in X x Y.

Theorem 4.5. Let (X,vx) and (Y,vy) be smooth dendroids and let (p,q) €
X xY. If either p € E(X) — {vx} or g € E(Y) — {vy}, then (p,q) does not
make a hole in X x Y.

PROOF. Set Z = (X xY)—{(p,q)}. To show that Z is unicoherent, by Propo-
sition [2.2] and Theorem it suffices to verify that Z is contractible.
Define ¥ : Z x I — Z by

\If((l‘, y)v t) = (gX (.CE, t)v gY(y7 t))

for each ((x,y),t) € Z x I. To check that ¥ is well defined, let ((z,y),t) €
Z x I be arbitrary. Suppose that U((z,y),t) = (p,q). Then gx(x,t) = p and

gy (y,t) = q.

Suppose p € E(X) — {vx}. By the definition of gx, we obtain that p € vxz
and, our assumption implies p = z. Hence, gx(p,t) = p. Thus, by [[3.1[5), the
equalities t = 1 and y = ¢ hold. So (z,y) = (p,q) ¢ Z, a contradiction. We
conclude that ¥((z,y),t) € Z and ¥ is well defined.

The continuity of ¥ follows from the fact that gx and gy are continuous (see
(3.112)l Finally, using [(3.1]4) and |(3.1]5), it can be proved that ¥((x,y),1) =
(z,y) and ¥((z,y),0) = (vx,vy) for each (z,y) € Z. We conclude that Z is

contractible.
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Theorem 4.6. Let X and Y be continua such that X XY 1is unicoherent and
let (p,q) € X xY. If (p,q) € Cut(X) x Cut(Y), then (p,q) makes a hole in
X xY.

PROOF. Since X —{p} is not connected, there exist non-degenerate subcontinua
H and G of X such that X = H UG and HNG = {p}. Notice that (H xY) —
{(p,q)} and (GxY)—{(p,q)} are connected closed subsets of (X xY)—{(p,q)}
whose union is (X x Y) — {(p,¢)} and their intersection is homeomorphic to
Y — {q} which is not connected. This proves that (X x Y) — {(p,¢)} is not

unicoherent.

Classification

Theorem 4.7. Let (X,vx) and (Y,vy) be smooth dendroids and let (p,q) €
X xY. Then (p,q) makes a hole in X XY if only if (p,q) € Cut(X) x Cut(Y).

PROOF. Let (p,q) € X x Y be such that (p,q) makes a hole in X x Y. First,
notice that X = E(X) U Cut(X)U Ncut(X), Y = E(Y) U Cut(Y) U Neut(Y),
E(X) C Ncut(X) and E(Y) C Ncut(Y). Second, since (p,q) makes a hole in
X xY, by Theorem 4.1} Corollary [£.2|and Theorem [4.5] we infer that p ¢ E(X)
and ¢ ¢ E(Y). So, we deduce that p € Cut(X) U (Ncut(X) — E(X)) and
q € Cut(Y)U (Neut(Y) — E(Y)). From Theorem and Corollary it
follows that p € Cut(X) and g € Cut(Y).

The converse follows from Theorem [4.6]
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