Título
Extracción de celulosa a partir de *Opuntia ficus* para la evaluación sobre la retención de flúor (F⁻)

TESIS QUE PRESENTA

I. A. I. Isael Fuentes Herrera

PARA OBTENER EL GRADO DE
MAESTRO EN CIENCIA DE MATERIALES

DIRIGIDA POR:

Dr. Víctor Varela Guerrero
Dra. Ma. Fernanda Ballesteros Rivas
Dr. Gonzalo Martínez Barrera

2018
Agradecimientos

Agradezco a la facultad de Ciencias Agrícolas en especial al Laboratorio de Bromatología por toda su atención y la facilidad para utilizar sus instalaciones, de igual manera al laboratorio de Microbiología de la Facultad de Química al Dr. Macario Morales Rodríguez, Centro de Investigación en Estudios Bióticos, a su laboratorio de Toxicología por todos los servicios prestados para llevar a cabo este trabajo de investigación. Y no menos importante el apoyo económico recibido por CONACYT.
Índice

Índice ......................................................................................................................... 3
Índice de Tablas ......................................................................................................... 6
Índice de ecuaciones ................................................................................................. 6
Resumen ..................................................................................................................... 7
Antecedentes ............................................................................................................. 9
  Nopal (Opuntia ficus) ............................................................................................. 9
Métodos de extracciones de celulosa ....................................................................... 9
  Mercerización .......................................................................................................... 9
  Blanqueo de fibras ................................................................................................ 10
  Hidrólisis ácida ..................................................................................................... 12
Celulosa y su funcionalización .................................................................................. 12
Hipótesis .................................................................................................................... 16
Objetivos .................................................................................................................... 17
  Objetivo General .................................................................................................. 17
  Objetivos particulares .......................................................................................... 17
Metas .......................................................................................................................... 18
II. Técnica de caracterización ................................................................................. 19
  Interacciones de la radiación y la materia ............................................................. 20
Métodos cuantitativos de Absorción ...................................................................... 21
  Transmitancia ........................................................................................................ 21
  Absorbancia .......................................................................................................... 21
Espectroscopia Ultravioleta Visible ........................................................................ 22
Espectroscopia Infrarroja ......................................................................................... 22
Microscopía ............................................................................................................... 23
III Metodología .......................................................................................................... 24
  Recolección de Materia Prima ............................................................................ 24
Determinación de Humedad ...................................................................................... 25
Determinación de extraíbles de acuerdo a la norma Tappi 204-cm-97 .................... 25
  Determinación de lignina soluble ....................................................................... 27
Determinación de celulosa ...................................................................................... 29
Determinación de alfa, beta y gamma celulosa ....................................................... 29
Determinación de cenizas conforme a la Norma Tappi 211-02 .................................................. 32
Métodos de extracción de celulosa .......................................................................................... 33
   Metodología 1 .................................................................................................................. 33
   Metodología 2 .................................................................................................................. 35
Películas de celulosa .......................................................................................................... 37
Soluciones y medición de iones flúor ................................................................................. 37
Determinación de fluoruros en aguas ................................................................................ 38
IV Resultados y Discusión ................................................................................................. 40
   Determinación de Humedad ......................................................................................... 40
   Extraíbles ....................................................................................................................... 40
   Cenizas .......................................................................................................................... 41
Determinación de ligninas ................................................................................................. 43
Celulosa .............................................................................................................................. 49
   Difracción de Rayos X ................................................................................................. 54
   Morfología ...................................................................................................................... 58
   Películas de celulosa ..................................................................................................... 61
Conclusiones ....................................................................................................................... 66
Bibliografía ........................................................................................................................... 68
Anexos ................................................................................................................................... 71
Índice de figuras

Figura 1 Funcionalización de la celulosa ................................................................. 14
Figura 2 Separación de la celulosa con el uso de líquidos iónicos .................................. 14
Figura 3 Molino eléctrico de martillos ........................................................................ 24
Figura 4 Determinación de extraíbles en el equipo Soxhlet ........................................ 25
Figura 5 Determinación de lignina ................................................................................. 26
Figura 6 Digestión de ligninas en el equipo Soxhlet......................................................... 27
Figura 7 Filtrado de la solución de NaOH ..................................................................... 29
Figura 8 Determinación de alfa celulosa, muestra en blanco ........................................ 30
Figura 9 Determinación de alfa celulosa, muestras tituladas ......................................... 31
Figura 10 Determinación de cenizas .............................................................................. 32
Figura 11 Metodología 1 para la extracción de celulosa ................................................ 33
Figura 12 Liofilización de muestras de celulosa .............................................................. 34
Figura 13 Mercerización de la fibra de nopal ................................................................ 35
Figura 14 Liofilización de muestras de celulosa ............................................................. 36
Figura 15 Películas de celulosa ...................................................................................... 37
Figura 16 Evaluación de películas de celulosa ............................................................... 39
Figura 17 EDS a cenizas de la fibra de nopal ................................................................. 42
Figura 18 Difractograma de las cenizas de la fibra de nopal .......................................... 43
Figura 19 Espectros de IR de la lignina insoluble .......................................................... 47
Figura 20 Espectros de IR de lignina soluble ................................................................. 48
Figura 21 Espectros IR de ligninas solubles e insolubles ................................................ 48
Figura 22 Espectros de IR de las muestras de celulosa de la metodología 1 ................. 53
Figura 23 Espectros de IR de la muestras de celulosa de la metodología 2 ...................... 53
Figura 24 Difractograma de la celulosa de ambas metodologías de extracción ............... 55
Figura 25 Difractograma de celulosa ........................................................................... 57
Figura 26 Celulosa Metodología 1 .................................................................................. 58
Figura 27 Celulosa Metodología 2 .................................................................................. 58
Figura 28 Micrografías de celulosa microcristalina ....................................................... 59
Figura 29 Micrografía de celulosa microcristalina .......................................................... 60
Figura 30 Celulosa Tratamiento 1 .................................................................................. 60
Figura 31 Resumen del análisis bromatológico de la fibra de nopal .................................. 61
Figura 32 Película de celulosa SEM ............................................................................. 62
Figura 33 Película de celulosa por Microscopio Óptico .................................................... 62
Figura 34 Película evaluada a 1 ppm de iones Flúor ....................................................... 64
Índice de Tablas

Tabla 1 Tipos de espectroscopías.......................................................... 19
Tabla 2 Métodos de instrumentación................................................... 20
Tabla 3 Diluciones de Flúor .................................................................. 38
Tabla 4 Resultado de la humedad en la fibra ...................................... 40
Tabla 5 Resultado de la cantidad de extraíbles en la fibra .................... 40
Tabla 6 Resultados de la determinación de cenizas en la fibra de nopal ... 41
Tabla 7 Procedimientos para la extracción de ligninas......................... 43
Tabla 8 Dilución de las soluciones de lignina y sus absorbancias .......... 45
Tabla 9 Interpretación de las intensidades de los espectros de IR de las ligninas...................................................... 45
Tabla 10 Cuantificación de celulosa .................................................... 50
Tabla 11 Resultados de la composición de la celulosa en la fibra de Nopal 50
Tabla 12 Interpretación de las señales de IR en las muestras de celulosa 51
Tabla 13 Determinación de la cristalinidad de la celulosa por DRX ........ 56
Tabla 14 Determinación de planos cristalográficos ............................. 57
Tabla 15 Asignación de planos ............................................................ 57
Tabla 16 Peso de celulosa ................................................................. 61
Tabla 17 Absorbancia para la determinación de iones Flúor.................... 62
Tabla 18 Porcentajes de remoción de iones Flúor de las películas de celulosa ................................................................. 64

Índice de ecuaciones

\[ A = -\log_{10} T = \log PoP \]  \hspace{1cm} (1) ......................................................... 21
\[ \text{% Humedad} = \text{Peso inicial} \ 1 \ g - \text{peso seco} \ g \ast 100 \] \hspace{1cm} (2) ......................................................... 25
\[ \text{Extraíbles} \ % = A \ast 100W \] \hspace{1cm} (3) ......................................................... 26
\[ \text{%Lignina} = A \ast 100W \] \hspace{1cm} (4) ......................................................... 27
\[ \text{%lignina} = B \ast V \ast 1001000 \ast W \] \hspace{1cm} (5) ......................................................... 28
\[ BPura = \text{Abs}100 \] \hspace{1cm} (6) ......................................................... 28
\[ BDiluida = \text{Abs}100 \ast D \] \hspace{1cm} (7) ......................................................... 28
\[ D = VDEV0 \] \hspace{1cm} (8) ......................................................... 28
\[ \text{% celulosa} = \text{material} \ A - \text{material Bpeso de la muestra} \] \hspace{1cm} (9) ......................................................... 29
\[ \alpha - \text{celulosa} \ % = 100 - 6.85 \ast V2 - V1 \ast N \ast 20A \ast W \] \hspace{1cm} (10) ......................................................... 31
\[ \gamma - \text{celulosa} \ % = 100 - 6.85 \ast V4 - V3 \ast N \ast 20A \ast W \] \hspace{1cm} (11) ......................................................... 32
\[ \beta_{\text{celulosa}} \% = 100\% - (\alpha_{\text{celulosa}} \% + \gamma_{\text{celulosa}} \%) \] \hspace{1cm} (12) ......................................................... 32
\[ Cenizas\% = A \ast 100B \] \hspace{1cm} (13) ......................................................... 32
Resumen

El nopal pertenece a la familia de las cactáceas es una planta que se encuentra distribuida a lo largo del territorio nacional, se adapta fácilmente a climas desérticos y templados con gran facilidad de reproducción tanto sexual como asexual, se han encontrado vestigios de su uso como comida desde la época prehispánica y en la actualidad prevalece el consumo de nopal, así mismo sirve como alimento para ganado y se han diversificados sus usos y aplicaciones como aglutinantes, adherentes, antioxidantes y diferentes extraíbles de su mucilago [1]. Los cladodios y/o raquetas están constituidas por una cutícula cerosa, almidón, mucilago, y fibra. La fibra del nopal se ordena en forma de red que cubre el interior al almidón y el mucilago. La fibra está constituida por una estructura fibrilar que a su vez se fragmentan en microfibrillas, las cuales se constituyen de lignina celulosa y hemicelulosa.

La tendencia actual es la adquisición de materiales que sean sustentables y renovables, por ello se ha puesto mucho énfasis en la celulosa cristalina debido a la gran cantidad de área superficial, así como a la cantidad de grupos hidroxilos que se pueden funcionalizar, sus propiedades mecánicas y diferentes aplicaciones en la tecnología. Un paso fundamental para la extracción de la celulosa es la separación de las fibrillas en sus constituyentes, para ello se ha desarrollado una gran variedad de métodos y al mismo tiempo se ha probado una gran cantidad de reactivos para conseguir una separación exitosa. Entre los reactivos comúnmente usados están: el hidróxido de sodio e hidróxido de potasio para la separación de lignina y hemicelulosa, también compuestos como peróxido de hidrógeno, ácido acético, ácido nítrico, hipoclorito de sodio, clorito de sodio como oxidantes. La fragmentación de la celulosa amorfa y cristalina se lleva acabo con hidrólisis ácida [2, 3].

Las aplicaciones de la celulosa son muy variadas, desde mejorar las propiedades mecánicas como materiales composites, películas delgadas para aplicaciones ópticas, removedor de contaminantes en aguas residuales [4, 5]. Nuestro interés se centra en la absorción de contaminantes presentes en las aguas. Es sabido que posee una gran capacidad para la remoción de cationes por los tres grupos hidroxilos que presenta en cada una de sus
moléculas del monómero. Y que se puede funcionalizar para absorber iones. Pero ¿Cómo saber si de manera natural puede remover contaminantes iónicos, como lo es el flúor?

El flúor es problema en muchos países como Estados Unidos, China, India e incluso en México el problema con el ion flúor se localiza en la zona centro-norte del país teniendo referencia en municipios de Juventino Rosas, Salamanca, San Luís de la Paz en el estado de Guanajuato debido a la presencia que supera el límite permisible de flúor en aguas subterráneas (1.5 mg/L), las cuales son consumidas por la población local generando fluorosis en dientes y huesos [6]. Este problema se origina debido a que la hidroxiapatita se encuentra en las estructuras óseas, la cual puede ser sustituida al absorber el ion flúor por el grupo hidroxilo debido a su semejanza en longitud de sus radios atómicos (0.133 nm flúor, 0.137 nm del grupo hidroxilo).
Antecedentes

Nopal (Opuntia ficus)

En la actualidad se ha pensado en diseñar materiales de fuentes renovables para generar el cuidado del ambiente y por la eminentes escasez de petróleo que se avecina, una de las alternativas la biomasa, a la que se ha volteado a ver debido a que es una fuente importante para producir combustibles limpios y extracción de celulosa principalmente. La biomasa se puede extraer de cualquier especie de plantas ya que están constituida por carbohidratos. Nuestro interés se centra en la planta de nopal (Opuntia ficus Indica) [7].

El nopal es originario de México se calcula que hay entre 150000 ha. sembradas con este cultivo, entre sus usos más comunes es el fruto conocido como tuna que sirve como alimento al igual que los cladodios es una de las plantas más reconocidas entre las más de 150 especies de Opuntia, ha servido como alimento para ganado, para consumo humano (tuna y cladodio inmaduro), en medicina, planta huésped para la producción de cochinilla, etc.[1]

Las plantas de cactus cuentan con hojas suculentas las cuales al madurar logran tener una consistencia robusta y muy fuerte a igual que los cladodios es una de las plantas más reconocidas entre las más de 150 especies de Opuntia, ha servido como alimento para ganado, para consumo humano (tuna y cladodio inmaduro), en medicina, planta huésped para la producción de cochinilla, etc.[1]

Métodos de extracciones de celulosa

Mercerización

En 1884 John Mercer observó el efecto de la hidrólisis alcalina y en 1850 presentó una patente para mejorar la fuerza y la capacidad de teñido con el uso de una solución de NaOH, en honor a su descubrimiento se instituyo en nombre de mercerización o hidrólisis alcalina. El efecto de la mercerización está relacionada con el tamaño de los hidratos de hidróxido de sodio (NaOH, xH2O). La concentración de la solución de NaOH determina el valor de x o el
tamaño del hidrato. Una solución diluida tiene hidratos de mayor tamaño, que causan la hinchazón de la fibra de algodón al entrar en la fase amorfa. A altas concentraciones, el volumen de hidratos es más pequeños causando un menos hinchamiento pero teniendo la capacidad de penetrar en la fase cristalina [8].

Por otra parte, los pretratamientos de la biomasa conducen a una despolimerización excesiva de los polisacáridos. La presencia de lignina en la biomasa es el principal obstáculo recalcitrante ya que actúa como una barrera protectora, aislante y refuerzo de la misma, así la mejor opción para la disrupción de la celulosa es la hidrólisis alcalina, mejorando la susceptibilidad de los polisacáridos restantes. Su mecanismo envuelve la saponificación de los enlaces éster intermoleculares, como por ejemplo en el xilano como entrecruzaste [7]. Es muy común es uso de Hidróxido de Sodio pues promueve la descomposición del intermedio por neutralización [9].

**Blanqueo de fibras**

El blanqueo o la oxidación de la biomasa es esencial para la separación de los constituyentes de las microfibrillas de este modo podemos separar la lignina, celulosa y le hemicelulosa. Hay una infinidad de procedimientos para blanquear las fibras así como metodologías de obtención de fibrillas entre los reactivos más usados está el hidróxido de sodio, hidróxido de potasio, peróxido de hidrógeno, ácido peracético, hipoclorito de sodio, clorito de sodio.

**Hipoclorito de sodio**

A pH ácidos (pH 5) el hipoclorito de sodio se hidroliza para formar ácido hipocloroso y a pH sumamente bajos se descompone evitando que tenga acción de blanqueo. Las mejores condiciones de blanqueo son a pH de 9 por 45 minutos a concentraciones de 2-3 glp activo de cloro. El hipoclorito debe ser eliminado después del blanqueo ya que daña las fibras por la diminución del pH [10].
Clorito de sodio

Es un agente oxidante, es estable a pH altos y se tiene que activar con ayuda de ácidos y generadores ácidos (cloroacetato, trietanolamina, persulfato de amonio) para disminuir el pH después del blanqueo ya que se descompone en ClO$_2$ g que es liberado a pH menores a 6 [10].

Peróxido de hidrógeno

El peróxido de hidrógeno en solución en un pH ácido es estable y se descompone en presencia de luz ultravioleta.

\[
\text{H}_2\text{O}_2 \Rightarrow \text{H}^+ + \text{O}_2\text{H}
\]

\[
\text{HO}_2 \Rightarrow \text{HO}^- + [\text{O}]
\]

\[
\text{H}_2\text{O}_2 + \text{OH}^- \Rightarrow \text{OOH}^- + \text{H}_2\text{O}
\]

Puede ser activado a pH alcalinos, los iones perhidroxi (OOH) son los agentes blanqueadores que al descomponerse proporcionan oxígeno los cuales oxidan los compuestos orgánicos a pH encima de 10 la formación de grupos perhidroxi se descomponen tan rápido que generan oxígeno molecular evitando así el blanqueamiento.

Para que actué como un agente oxidante -por lo general es utilizado hidróxido de sodio [10]. La separación de las fibras puede realizarse por diferentes métodos y compuestos, los principales compuestos para realizar la des lignificación son: hidróxido de sodio, peróxido de hidrógeno, ácido acético, ácido nítrico e incluso hipoclorito de sodio. El hipoclorito de sodio con un potencial redox de 1400 a 1550 mV, el H$_2$O$_2$ con un potencial de 810 a 840 mV.

Ácido peracético

El ácido peracético es una solución de equilibrio consistente por peróxido de hidrógeno y ácido acético (1:6 como acetato anhídrido) en presencia de un ácido mineral fuerte como es el ácido sulfúrico por cuatro horas. El exceso de acético anhídrido puede generar una reacción secundaria indeseable al producir peróxido diacétilo altamente explosivo. Sin
embargo es común usar activadores como perboratos, oxígeno o nitrógeno acétilado o compuestos como tetracetilatiendiamina[11].

Pasa ser usado como agente blanqueador para tejidos de algodón, el ácido peracético puede ser generado al reaccionar peróxido de hidrógeno con un activador. Los activadores son precursores de perácidos in situ en solución alcalina del peróxido de hidrógeno. A pH arriba de 5, el ácido peracético forma oxígeno activado, este actúa como el agente blanqueador por lo que a un pH 6 - 7, temperatura de 70 - 80 °C y un tiempo de 20-60 minutos (dependiendo de la temperatura), son las condiciones más favorables para su uso como agente blanqueador.

Hidrólisis ácida

Si los carbohidratos poliméricos son tratados con agentes acuosos ácidos, dos tipos de reacciones importantes pueden ocurrir, la hidrólisis glucósida y la deshidración. La ruptura ácida del enlace glucósidica ha sido estudiada por más de un siglo. La degradación ocurre en simples glucósidos, disacáridos y oligosacáridos, finalmente en el rompimiento del enlace glucosil-oxígeno ocurriendo mediante la protonación inicial de uno de los átomos oxígeno-hemiacetal de forma como ácido conjugado[12].

Celulosa y su funcionalización.

La celulosa forma un polímero paracristalino unido por los carbonos β1-4–D- glucanos, a través de fuerzas de Van der Waals y enlaces de hidrógeno logrando formar micro fibrillas [13].

La celulosa en cada monómero cuenta con tres grupos hidróxilos, estos tienen gran afinidad con cationes de metálicos y metaloides, es por eso, ha sido ampliamente utilizada para remover contaminantes metálicos en solución. Sin embargo, los cuerpos de agua contaminados pueden contener tanto especies químicas en forma de cationes, como aniones en solución, siendo el caso de la zona norte del municipio de Juventino Rosas (estado de
Guanajuato) donde se puede encontrar Arsénico (As), Flúor (F-) y Radón (Ra) en los cuerpos de agua subterráneos ocasionando un gran problema a la salud humana [6].

Como se ha mencionado la celulosa tiene la capacidad para retener metales pesados pero los reactivos utilizados para obtener celulosa a partir de las matrices orgánicas influyen en los grupos hidroxilos dando como resultado diferentes grupos funcionales que son dependientes del reactivo como se puede observar en la Fig. 1. La modificación química puede cambiar varias propiedades de la celulosa tal como el carácter hidrológico, higroscopicidad, la capacidad de absorber o rechazar una molécula [14]. Los mecanismos para cambiar la funcionalidad de la celulosa pueden ser la hidrólisis ácida, esterificación, halogenación, oxidación, y el uso de líquidos iónicos

La hidrólisis ácida es un mecanismo para extraer partículas cristalinas, aún en la actualidad no se completado de entender esté mecanismo, el proceso preferentemente remueve (Hidroliza) la región amorfa dentro de las fibrillas de celulosa [12, 15].

La esterificación usa calor para convertir ácido cítrico a ácido cítrico anhídrido el cual puede ser muy reactivo con los grupos hidroxilos celulósicos. La esterificación incremental el contenido de carboxilos [14].

La halogenación presenta otro tipo de modificación a la celulosa Tashiroy and Shimura (1982) sintetiza clorodeoxycelulosa (al reaccionar polvo de celulosa con cloruro de tionilo en solvente de dimetilformamina) [14].

La oxidación los derivados de celulosa son inducidos por oxidación un ejemplo sería el uso de peróxido de di hidrógeno_La esterificación de muchos esteres de celulosa son preparados por reacción alcalina con haloides orgánicos

Los líquidos iónicos se pueden considerar como sales fundidas a bajos punto de ebullición y han sido muy atractivos desde los años 60’s por la fuerza aérea de los Estado Unidos, la primer generación consistían en la mezcla de compuestos binarios como cloruro de aluminio (AlCl₃) y generalmente se da en dos pasos: la formación de un catión deseado y el intercambio de un anión producido. El intercambio del anión involucra la dirección de la sal haloídeo como un fuerte acido de Lewis para la formación de complejos aniones o la formación de líquidos iónicos por la adición de una sal metálica que precipita el ion
desconocido (R. Finkelstein) [16]. Idealmente todos los enlaces de hidrogeno dentro de las microfibras pueden ser rotos durante el proceso de disolución.

**Figura 1 Funcionalización de la celulosa**

El presente trabajo tiene como objetivo extraer celulosa de la fibra de Opuntia ficus Indica usando una hidrólisis ácida (ácido clorhídrico) para que los grupos hidroxilos queden libre y los hidrógenos puedan tener interacción con los aniones flúor y por fenómeno de electronegatividad puedan retenerse los iones fluoruros de la solución.

El fluoro de sodio se disocia en iones flúor y cationes sodio en medio acuoso y los oxígenos tendrán interacción con el sodio y los iones flúor tendrán interacción con los hidrógenos de los grupos hidroxilos, cómo funcionan en los líquidos iónicos y lo ejemplifica la Figura 2.- Separación de celulosa con el uso de líquidos iónicos.

**Figura 2 Separación de la celulosa con el uso de líquidos iónicos**

Otro fenómeno relacionado con la absorción de flúor ocurre en la hidroxiapatita, el cual el ion fluoruro puede sustituir al grupo hidroxilo de la hidroxiapatita formando fluoroapatita.
es probable que está absorción está relacionado con los radios iónicos. El orden de los radios son el fluoruro (0.133 nm) ion hidroxilo (0.137 nm) debido a los radios iónicos del fluoruro más pequeños. Los aspectos importantes que debemos considerar para la remoción de iones flúor es el pH ya que con el aumento del pH podemos generar una baja capacidad de absorción [17].
Hipótesis

La capacidad de retención de iones flúor en solución, estará influenciadas por el tipo de tratamiento de extracción de la celulosa de la fibra de *Opuntia ficus Indica*.
Objetivos

Objetivo General

Extraer celulosa de la fibra de Opuntia ficus indica, con un tratamiento a por hidrólisis ácida para propiciar grupos hidroxilos libre y así generar la retención de iones flúor en solución.

Objetivos particulares

- La generación de una metodología de obtención de fibra a partir de los cladodios de Opuntia ficus Indica
- Evaluar la capacidad de sorción de iones de flúor sobre películas de celulosa.
Metas

- Recolectar los cladodios y obtener la fibra.
- Tamizar la fibra por medio de un molino de martillos con un tamiz del número #60.
- Someter la fibra a dos diferentes tratamientos para obtener celulosa.
- Generar soluciones de Fluoruro de sodio anhidro para evaluar la capacidad de retención y generar una isoterma (1, 2 y 3 ppm).
- Medir la capacidad de retención por medio de un espectrofotómetro Uv-Vis a 570 nm en absorbancia.
- Realizar micrografías a la celulosa obtenida antes y después se someterlas al contacto con las soluciones de NaF.
II. Técnica de caracterización

Las técnicas de caracterización son métodos analíticos que se basan en la espectroscopía atómica y molecular. La espectroscopía trata con la interacción de varios tipos de radiación en especial la radiación electromagnética. La radiación electromagnética es un tipo de energía que adopta varias formas; las más reconocibles son la luz y el calor. Las manifestaciones menos obvias son los rayos gamma, rayos X, Ultravioleta, microondas y radiofrecuencia. En la Tabla 1 podemos observar los tipos de espectroscopia y el tipo de transición cuántica [18].

<table>
<thead>
<tr>
<th>Tipo de espectroscopia</th>
<th>Intervalo habitual de longitud de onda*</th>
<th>Intervalo habitual de número de onda, cm⁻¹</th>
<th>Tipo de transición cuántica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisión de rayos gamma</td>
<td>0,005-1,4 Å</td>
<td>---</td>
<td>Nuclear</td>
</tr>
<tr>
<td>Absorción, emisión, fluorescencia y difracción de rayos X</td>
<td>0,1-100 Å</td>
<td>---</td>
<td>Electrones internos</td>
</tr>
<tr>
<td>Absorción ultravioleta de vacío</td>
<td>10-180 nm</td>
<td>$1 \times 10^6$ a $5 \times 10^4$</td>
<td>Electrones de enlace</td>
</tr>
<tr>
<td>Absorción, emisión y fluorescencia ultravioleta visible</td>
<td>180-780 nm</td>
<td>$5 \times 10^4$ a $1,3 \times 10^6$</td>
<td>Electrones de enlace</td>
</tr>
<tr>
<td>Absorción infrarroja y dispersión Raman</td>
<td>0,78-300 μm</td>
<td>$1,3 \times 10^3$ a $2,3 \times 10^9$</td>
<td>Rotación/vibración de moléculas</td>
</tr>
<tr>
<td>Absorción de microondas</td>
<td>0,75-3,75 mm</td>
<td>13-27</td>
<td>Rotación de moléculas</td>
</tr>
<tr>
<td>Resonancia de espín electrónico</td>
<td>3 cm</td>
<td>0,33</td>
<td>Espín de los electrones en un campo magnético</td>
</tr>
<tr>
<td>Resonancia magnética nuclear</td>
<td>0,6-10 m</td>
<td>$1,7 \times 10^{-2}$ a $1 \times 10^3$</td>
<td>Espín de los núcleos en un campo magnético</td>
</tr>
</tbody>
</table>

* 1 Å = $10^{-10}$ m = $10^{-8}$ cm  
1 nm = $10^{-9}$ m = $10^{-7}$ cm  
1 μm = $10^{-6}$ m = $10^{-4}$ cm

Fuente: [18]
Interacciones de la radiación y la materia.

Las muestras se pueden estimular al aplicarles energía en forma de calor, energía eléctrica, luz, reacciones químicas o radiación. Por lo general, la materia se encuentra en su estado energético más bajo, es decir su estado basal, y al recibir un estímulo de algún tipo de energía en especial radiante, parte de esta energía se transfieren a la materia aumentando su estado energético, es decir su estado excitado. Al hacer incidir energía de este tipo se puede adquirir información relacionada con el analito al medir la radiación absorbida, difundida, transmitida, como resultado de la excitación. Por lo tanto, la respuesta del analito está en función de la energía suministrada, en las técnicas de espectrometría la energía suministrada es definida en intervalos del espectro electromagnético por las cual podemos observar y estudiar diferentes propiedades como emisión, absorción, refracción, dispersión, etc., como se observa en la Tabla 2 [18].

<table>
<thead>
<tr>
<th>Propiedades</th>
<th>Métodos instrumentales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisión de la radiación</td>
<td>Espectroscopia de emisión (rayos X, UV, visible, de electrones, Auger); fluorecencia, fosforescencia y luminiscencia (rayos X, UV y visible)</td>
</tr>
<tr>
<td>Absorción de la radiación</td>
<td>Espectrofotometría y fotometría (rayos X, UV, visible, IR); espectroscopía fotoacústica; resonancia magnética nuclear y espectroscopía de resonancia de espin electrónico</td>
</tr>
<tr>
<td>Dispersión de la radiación</td>
<td>Turbidimetría; nefelometría, espectroscopía Raman</td>
</tr>
<tr>
<td>Refracción de la radiación</td>
<td>Refractometría; interferometría</td>
</tr>
<tr>
<td>Difracción de la radiación</td>
<td>Métodos de difracción de rayos X y de electrones</td>
</tr>
<tr>
<td>Rotación de la radiación</td>
<td>Polarimetría; dispersión rotatoria óptica; dicroismo circular</td>
</tr>
<tr>
<td>Potencial eléctrico</td>
<td>Potenciometría; cronopotentiometría</td>
</tr>
<tr>
<td>Carga eléctrica</td>
<td>Colombimetría</td>
</tr>
<tr>
<td>Corriente eléctrica</td>
<td>Polarografía; amperometría</td>
</tr>
<tr>
<td>Resistencia eléctrica</td>
<td>Conductimetría</td>
</tr>
<tr>
<td>Masa</td>
<td>Gravimetría (microbalanza de cristal de cuarzo)</td>
</tr>
<tr>
<td>Razón masa a carga</td>
<td>Espectrometría de masas</td>
</tr>
<tr>
<td>Velocidad de reacción</td>
<td>Métodos cinéticos</td>
</tr>
<tr>
<td>Propiedades térmicas</td>
<td>Gravimetría y volumetría térmica; calorimetría de barrido diferencial; análisis térmico diferencial; métodos de conductividad térmica</td>
</tr>
<tr>
<td>Radiactividad</td>
<td>Métodos de activación y de dilución isotópica</td>
</tr>
</tbody>
</table>

Tabla 2 Métodos de instrumentación

Fuente: [18]
Métodos cuantitativos de Absorción

Los métodos cuantitativos de absorción requieren dos medidas: una antes de que el haz pase a través del medio que contiene el analito ($P_0$) y otra después ($P$). Dos términos que se usan ampliamente en la espectrometría por absorción y que se relacionan con la cociente, son la transmitancia y la absorbancia [18].

Transmitancia

Un haz de radiación paralela antes y después de que haya pasado a través de un medio que tiene un espesor $b$ (cm) y una concentración $c$ de una especie absorbente. Como consecuencia de las interacciones entre los fotones y los átomos o las moléculas absorbentes, la potencia del rayo se atenúa de ($P_0$) y ($P$). La transmitancia $T$ del medio es entonces la fracción de la radiación incidente transmitida por el medio [18].

Absorbancia

La absorbancia $A$ de un medio se define mediante la ecuación

$$A = -log_{10} T = \log \frac{P_0}{P}$$  \hspace{2cm} (1)

Ley de lamber Beer

En el caso de la radiación monocromática, la absorbancia es directamente proporcional a la longitud $b$ de la trayectoria a través de un medio y la concentración $c$ de la especie absorbente. Esta relación se representa con $A=abc$

Donde $a$ es una constante de proporcionalidad que se llama absorbividad. La magnitud de $a$ depende de las unidades de $b$ y $c$

Con la radiación infrarroja las desviaciones instrumentales respecto a la ley de Beer son más comunes que con la radiación ultravioleta y visible por que las bandas de absorción son relativamente estrechas. Al trabajar en el infrarrojo, a menudo se prescinde totalmente del absorbente de referencia y la intensidad del haz que atraviesa la muestra se compara con la
de un haz que no atraviesa obstáculos. En ambos casos, la transmitancia resultante es por lo general menor que 100%, incluso en regiones del espectro donde la muestra no absorbe [18].

**Espectroscopía Ultravioleta Visible**

En la espectrometría por absorción molecular en las regiones ultravioletas y visibles se observan absorbividades moleculares (valores que van desde 105 L/mol cm) la absorción por parte de una especie atómica o molecular M se puede considerar como un proceso de dos etapas. La primera de ellas consiste en una excitación electrónica. El producto de la absorción del fotón por la especie es una especie excitada (10⁻⁸ a 10⁻⁹ s). Entre los procesos de relajación se supone la conversión de la energía de excitación en calor. Reemisión de fluorescencia o fosforescencia. Por lo general la absorción de radiación es el resultado de la excitación de los electrones de enlace. Debido a esto, las longitudes de onda de las bandas de absorción se pueden correlacionar con los tipos de enlaces de la especie en estudio. Por lo tanto la espectroscopia de absorción molecular es valiosa para identificar grupos funcionales o moléculas. La determinación de compuestos que contienen grupos absorbentes [18].

**Espectroscopía Infrarroja**

La región infrarroja del espectro comprende radiación con un numero de onda que varía entre 12800 y 10 cm⁻¹ o longitudes de onda de 0.78 a 1000 micrómetros, se divide en tres regiones infrarrojo, cercano, medio y lejano La espectrometría de absorción y reflexión en el infrarrojo medio es la principal herramienta para determinar la estructura de especies orgánicas y bioquímicas [18]

La radiación infrarroja no tiene la suficiente energía para producir la clase de transiciones electrónicas que se encuentran en las radiaciones ultravioleta y visible; la absorción de radiación infrarroja se limita en gran parte a especies moleculares para las cuales existen pequeñas diferencias de energía entre los distintos estados vibraciones y rotacionales [18].
Para absorber radiación infrarroja, una molécula debe sufrir un cambio neto en el momento dipolar cuando vibra o gira. Solo en estas circunstancias el campo eléctrico alternante de la radiación puede interactuar con la molécula y modificar la amplitud de alguno de sus movimientos [18].

**Microscopía**

El microscopio electrónico de barrido es el más utilizado por su alta resolución y económicamente accesible que otros microscopios. Esto es posible gracias a una fuente de electrones, los cuales son acelerados en un rango de energía de 1-40 keV. El diámetro del haz al pasar por las lentes reduce su diámetro y colocando un pequeño haz de electrones enfocado sobre la superficie de la muestra con un tamaño inferior a 10 nm. Al interactuar con la superficie de aproximadamente 1 nm de profundidad se generar las señales para formar una imagen punto por punto, se recoge la señal para construir la imagen. Las dos señales más utilizadas para producir imágenes son electrones secundarios y retrodispersados. Estos electrones son recogidos por un detector de electrones Everhart-Thornley [18]. Los electrones retrodispersados se producen por la dispersión elástica que afecta las trayectorias de los electrones del haz dentro del espécimen sin alterar la energía cinética del electrón [18].

La dispersión inelástica da lugar a una transferencia de energía de los electrones del haz a los átomos del espécimen generando electrones secundarios. La dispersión inelástica puede promover a los electrones de manera floja de la banda de valencia a la banda de conducción, estos electrones del espécimen, se propaga a través de la muestra si el electrón secundario retiene suficiente energía, cuando alcanza la superficie para superar la energía de barrera superficial, escapará del sólido. La mayoría de los electrones expulsados tienen energías menores a 10 eV [18].

El flujo de la información consiste en la localización de exploración en el espacio X-Y y un conjunto correspondiente de intensidades [18].
III Metodología

Recolección de Materia Prima

La recolección de materia prima se realizó en la localidad de San Diego Alcalá, Municipio de Temoaya, estado de México, con cladodios longevos de Opuntia ficus-indica, los cuales se cortaron, se les realizó un corte vertical respecto al eje del cladodio y se dejó al sol por varios días para obtener el secado del mucílago y demás compuestos, una vez seco, se procede a separar la fibra y dejarla en una estufa a 60°C por 24 horas antes de su molienda con un molino de matillos obteniendo un tamaño de partícula menor a 0.25 mm (Tamiz No. 60) de la marca General Electric prestado por el Laboratorio de Bromatología de la Facultad de Ciencias Agrícolas UAEMEex.
Una vez obtenida la fibra de nopal se determinó humedad, extraíbles, lignina, celulosa (Alfa, Beta, & Gamma) y cenizas por métodos físicos-químicos, así mismo se caracterizó con ayuda de espectroscopía IR y UV-Vis, y microscopía electrónica.

**Determinación de Humedad**

Se colocó un gramo de muestra en un horno de secado a 105 °C por una hora y por diferencia de peso se determinó el porcentaje de humedad.

\[
\% \text{ Humedad} = \left( \frac{\text{Peso inicial (1 g)} - \text{peso seco (g)}}{\text{peso seco (g)}} \right) \times 100
\]  \hspace{1cm} (2)

**Determinación de extraíbles de acuerdo a la norma Tappi 204-cm-97**

Con esta técnica se puede remover grasas, ceras, resinas, esteroles con acetona y el agua caliente remueve componentes solubles como taninos, gomas, materia coloreada.
Se colocó 1 gramo de muestras seca en 150 ml de acetona en el equipo Soxhlet se dejó a temperatura de ebullición o mayor de manera a que se puedan realizar 24 reflujos por al menos por 3 horas. Posteriormente se filtra con agua caliente se deja secar en un horno a 60°C hasta evaporar el agua y se procede a pesar.

Extraibles % = \frac{A+100}{W} \tag{3}

Donde:
A = peso de los extraíbles, g
W = peso de la muestra de prueba, g

**Determinación de lignina de acuerdo a la Norma Tappi 222**

De acuerdo a la norma Tappi t222 para la determinación de lignina insoluble en ácido en maderas y pulpas también conocido como método Klason.

Se colocó un gramo de fibra sin humedad y libre de extraíbles en 15 ml de solución de ácido sulfúrico al 72% por dos horas en agitación constante en baño frío.

Una vez pasado el tiempo se pasó a un matraz y se realiza una disolución al 3% agregó agua destilada (300 y 400 ml) nuevamente se agrega agua destilada a hasta llegar a un volumen total de 575 ml y se deja a ebullición suave por cuatro horas con ayuda de un condensador de reflujo (sin cartucho de extracción, pare evitar perdida de lignina).
Se dejó el material insoluble que se asentará por una noche. Sin agitar el precipitado se decanta o sifonar la solución sobre nadante. Fue necesario tomar una porción del filtrado antes de diluir sin agua para la determinación de la lignina soluble. La lignina insoluble se traspasa a un crisol y se deja secar en un horno a 105 °C hasta alcanzar peso constante (24 horas).

**Determinación de lignina soluble**

Para la determinación de lignina soluble en medio ácido se necesita la ayuda de un espectrofotómetro ultravioleta a una longitud de onda de 205 nm en valores de la absorbancia (0.2-0.7) si los valores son mayores se tendrá que realizar diluciones [19].

Para determinar la lignina insoluble

\[
\% \text{Lignina} = \frac{A \times 100}{W}
\]

Donde

A= peso de la lignina, g

W= peso de la muestra seca, g
Para determinar la lignina soluble

\[ \% \text{lignina} = \frac{B \cdot V + 100}{1000 + W} \]  \hspace{1cm} (5)

\[ B_{\text{pura}} = \frac{Abs}{100} \]  \hspace{1cm} (6)

\[ B_{\text{diluida}} = \frac{Abs}{100} \cdot D \]  \hspace{1cm} (7)

\[ D = \frac{V_D}{V_0} . \]  \hspace{1cm} (8)

Donde:

V=volumen del filtrado total

W= peso de la muestra

B= cuando los valores están en el rango de absorbancia de 0.2-0.7 se toma \( B_{\text{pura}} \) y se realizan diluciones se toma \( B_{\text{diluida}} \)

\( V_D = \) Volumen diluido

\( V_0 = \) Volumen original del filtrado
Determinación de celulosa

Un gramo de muestra seca se le añade 15 ml de ácido acético al 80% y 1.5 ml de ácido nítrico concentrado y se deja en reflujo por 20 min. Esto es filtrado y lavado con etanol, secado a 100 a 105 ºC y pesado (A). Después es incinerado a 540 ºC (B) [20].

\[
% \text{celulosa} = \frac{\text{material A} - \text{material B}}{\text{peso de la muestra}} \quad (9)
\]

Determinación de alfa, beta y gamma celulosa

Determino las cantidades de celulosas de acuerdo a la norma Tappi T-203 cm-99 en pulpas.

Alfa celulosa

Se pesó un gramo de fibra libre de extraíbles y se coloca en un vaso de precipitado de 300 ml con 100 ml de solución de hidróxido de sodio al 17.5 % en agitación constante por treinta minutos al transcurrir este tiempo se le agregan 100 ml de agua destilada y se deja en agitación constante por 30 minutos más.

Figura 7 Filtrado de la solución de NaOH
Se filtró la solución y se retiras los primeros 10 ml posteriormente se tomaron 25 ml y se agregan 10 ml de dicromato de potasio al 0.5 N en un matraz de 250 ml y se añaden 50 ml de ácido sulfúrico concentrado (97%) se colocó en un baño a baja temperatura y dejar reposar por lo menos por 15 minutos y agregar 50 ml de agua destilada fría y por último agregar 4 gotas de difenilamina como indicar y titular con sulfato ferroso amoniacal al 0.1 N.

Figura 8 Determinación de alfa celulosa, muestra en blanco
Cálculos

\[
\alpha – celulosa \% = 100 - \frac{6.85(V_2 - V_1) \times N \times 20}{A \times W}
\]  

(10)

Donde:

\(V_2\) = titulación de la fibra filtrada (ml)

\(V_1\) = titulación del blanco (ml)

\(N\) = normalidad exacta del sulfato ferroso amoniacal

\(A\) = volumen de la pulpa filtrada usada en la oxidación (ml)

\(W\) = Peso seco de la fibra.

Gamma celulosa

Se pipetearon 25 ml de filtrado en un matraz de 50 ml y se aforó con ácido sulfúrico al 3 N₂.

Se calentó por pocos minutos en baño maría (70-90 °C). Se dejó reposar por varias horas se decantó y/o filtro en su caso centrífugar 3500 rpm por 30 minutos hasta obtener una solución clara.
Se pipetaron 25 ml de la solución transparente y 5 ml de Dicromato de potasio 0.5 N en un matraz de 300 ml y agregaron 45 ml de ácido sulfúrico concentrado.

Reposo por 15 minutos y luego se procedió a titular como la metodología anterior.

Se hizo un Blanco sustituyendo al filtrado con la solución de 12.5 ml Hidróxido de sodio al 17.5% más 12.5 ml de agua destilada y aforar con 25 ml de solución de ácido sulfúrico al 3N.

Figura 10 Determinación de cenizas

Cálculos

\[ γ - \text{celulosa} \% = 100 - \frac{6.85 \times (V_4 - V_3) \times N \times 20}{A \times W} \]  

Donde:

\( V_3 \) = titulación de la fibra filtrada (ml)
\( V_4 \) = titulación del blanco (ml)
\( N \) = normalidad exacta del sulfato ferroso amoniacal
\( A \) = volumen de la pulpa filtrada usada en la oxidación (ml)
\( W \) = Peso seco de la fibra

Para la determinación de \( \beta \)-celulosa

\[ β_{\text{celulosa}} \% = 100\% - (α_{\text{celulosa}} \% + γ_{\text{celulosa}} \%) \]  

Determinación de cenizas conforme a la Norma Tappi 211-02

Se tomó un gramo de fibra molida y se colocó en crisoles de porcelana previamente pesado dejándolos en una estufa de calcinación a 525 ºC por 24 horas, una vez cumplido el tiempo se dejó que las muestras llegaran a temperatura ambiente constante y se volvieron a pesar para determinar el porcentaje de cenizas se utilizó la ecuación:

\[ \text{Cenizas}\% = \frac{A+100}{B} \]  

\( A \) =
Donde:

A: peso de la cenizas, g
B: peso del espécimen de prueba, g libre de humedad.

Métodos de extracción de celulosa

Metodología 1

El primer método para la extracción fue retomado por él que reportó [21] haciéndole las siguientes modificaciones:

- Se colocó un gramo de fibra con 100 ml de acetona pura en el equipo Soxhlet (sin cartucho de extracción) por 3 horas a ebullición constante.
- Una vez terminado se centrifugó y se lavó con agua destilada a 3000 rpm por 5 minutos repitiendo este paso por lo menos 3 veces y se retiró el sobrenadante.
- En un vaso de precipitado se agregó la fibra y 20 ml de solución de NaOH al 0.5 M por veinte minutos a una temperatura aproximada entre 84 a 90 °C en agitación constante, se deja enfriar.

*Figura 11 Metodología 1 para la extracción de celulosa*
• Se centrifuga y se lava con agua destilada a 3000 rpm por 5 minutos al menos por tres veces se repite y se retira el sobrenadante.
• A la fibra se agregó 20 ml de solución CH₃COOH/H₂O₂ (10 ml de ácido acético glacial concentrado (99%) y 10 ml de Peróxido de Hidrogeno al 35%) se dejó a agitación constante por cuatro horas a temperatura ambiente.
• Se centrifugó y se lavó con agua destilada a 3000 rpm por 5 minutos al menos por tres veces se repite y se retiró el sobrenadante.
• La fibra sobrante se coloca en un vaso de precipitado y se le agrego 20 ml de ácido clorhídrico al 30% en agitación constante por una hora a 90 °C aproximadamente, se dejó enfriar.
• Se centrifugo y se lavó con agua destilada a 3000 rpm por 5 minutos al menos por tres veces se repito y se retiró el sobrenadante.
• Después de hacer el lavado y centrífugado con soluciones de agua destilada/ etanol (80:20, 60:40, 40:60, 20:80 y 0:100 respectivamente) cambiando las concentraciones has que el etanol sea puro.
• Una vez se liofiliza a -51 °C a presión de 0.05 mbar el tiempo necesario, para caracterización.

*Figura 12 Liofilización de muestras de celulosa*
Metodología 2

La segunda metodología fue reportada por [22] en la cual se le hicieron las siguientes modificaciones:

- Se colocó un gramo de fibra en 100 ml de acetona en el equipo Soxhlet por 3 horas a ebullición contante (> 60 °C)
- Una vez terminado se centrifugó y se lavó con agua destilada caliente a 3000 rpm por 5 minutos repitiendo este paso por lo menos 3 veces y se retiró el sobrenadante
- En un vaso de precipitado se agregó la fibra y 20 ml de solución de NaOH al 0.5 M por veinte minutos a una temperatura aproximada entre 84 a 90 °C en agitación constante, se deja enfriar.

Figura 13 Mercerización de la fibra de nopal

- Se centrifugó y se lavó con agua destilada a 3000 rpm por 5 minutos al menos por tres veces se repite
- Se colocó la fibra sobrante en un vaso de precipitado con 15 ml de H₂O₂ al 35% por una hora en agitación constante
• Se centrifugó -y se lavó con agua destilada a 3000 rpm por 5 minutos al menos por tres veces se repite_
• Se colocan 10 ml de HNO₃ / 10 ml de ácido acético glacial concentrado a 84°C por una hora en agitación constante a temperatura ambiente.
• Se centrifugó -y se lavó con agua destilada a 3000 rpm por 5 minutos al menos por tres veces se repite.
• La fibra sobrante se colocó en un vaso de precipitado y se le agregaron 10 ml de ácido clorhídrico al 30% en agitación constante por dos horas a temperatura ambiente.
• Se centrifugó y se lavó con agua destilada a 3000 rpm por 5 minutos al menos por tres veces se repite y se retiró el sobrenadante.
• Para la caracterización se hicieron múltiples lavados y se centrifugó con soluciones de agua destilada/etanol (80:20, 60:40, 40:60, 20:80 y 0:100 respectivamente) cambiando las concentraciones hasta que el etanol sea puro.
• Una vez se liofilizó a -51 °C a presión de 0.05 mbar el tiempo necesario (>24 horas) (Las dos liofilizadoras utilizadas fueron de la marca LABCONCO).
Películas de celulosa

Para la creación de las películas de celulosas se utilizó la metodología 2 para la obtención de celulosa omitiendo los lavados con etanol y la liofilización. Del cual se tomaron 0.2 gramos de celulosa húmeda y se dispersaron en 3 ml de agua destilada y se zonificó por 10 minutos.

Para la solución de cross-linker (1% en peso de ácido sulfúrico 1M, 1.5% en peso de Glutaldehido y 97.5% en peso de agua) y solución de alcohol polivinilico (PVA) 0.5 M.

Para la deposición de las películas se tomó 1 ml de PVA más 0.1 ml de Cross-linker y 0.2 ml de solución de celulosa (peso promedio de 4.3 mg).

Se dejó en una estufa a 45 °C por 24 horas.

Soluciones y medición de iones flúor

Se pesaron 0.0221g de NaF y se aforo a 1000 ml una vez tenida la solución a 10 mg (10 ppm) se diluyo la solución madre para generar soluciones de 1, 2, 3, ppm de acuerdo a la norma NMX-AA-077-SCFI-2001.
Se pesó 0.133 g de cloruro de circonio y se disolvió en 25 ml de agua destilada, se añadieron 350 ml de ácido clorhídrico y se aforó a 500 ml.

Para la disolución SPANDS (2(Parasulfonilazo) 1,8 hidroxi-3,6 naftalendisulfonato de sodio) se pesa 0.958 g se disolvieron en agua y se aforó a 500 ml, Se debe proteger de la luz ya que es fotosensible.

Reactivo circonio en medio ácido-SPANDS (1:1) Mezclar en igual proporción.

Para la disolución de referencia se toma una alícuota de 10 ml de reactivo circonio en medio ácido- SPANDS y se afora a100 ml con agua.

Se diluyeron 7 ml de ácido Clorhídrico aforar a 10 ml con agua y agregar a la disolución de blanco y agregar a la disolución de referencia. Al mezclarla es usada como punto cero.

Determinación de fluoruros en aguas

Se colocaron en contacto las películas de celulosa con 6 ml de las soluciones de flúor 1, 2 y 3 ppm por separado por 6 horas a temperatura ambiente el experimento se repitió por duplicado.

Posteriormente las soluciones se diluyeron a las siguientes concentraciones debido a que solo se pueden leer en un rango de 0 a 1.4 mg/L en el espectrofotómetro UV.

<table>
<thead>
<tr>
<th>Solución Original</th>
<th>Solución Diluida a</th>
<th>Aforo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ppm F-</td>
<td>0.2 ppm F-</td>
<td>10 ml</td>
</tr>
<tr>
<td>2 ppm F-</td>
<td>0.4 ppm F-</td>
<td>10 ml</td>
</tr>
<tr>
<td>3 ppm F-</td>
<td>0.6 ppm F-</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

Se tomaron 5 ml de cada muestra y se agregó 1 ml de solución circonio en medio ácido-SPANDS, se agitaron y se leyeron a 507 nm en absorbancia.
Figura 16 Evaluación de películas de celulosa
IV Resultados y Discusión

Determinación de Humedad

Cabe mencionar que se realizó un primer secado para poder facilitar la molienda, ya que posee un gran porcentaje de humedad que dificulta la molienda y la determinación se realizó meses después para eliminar los problemas de humedad que pudieran interferir por la molienda.

<table>
<thead>
<tr>
<th>Peso Húmedo</th>
<th>Perdida peso</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0001</td>
<td>7.48%</td>
</tr>
<tr>
<td>1.0001</td>
<td>7.36%</td>
</tr>
<tr>
<td>1.0000</td>
<td>7.24%</td>
</tr>
<tr>
<td>Promedio</td>
<td>7.36%</td>
</tr>
</tbody>
</table>

Tabla 4 Resultado de la humedad en la fibra

La propiedad higroscópica o contenido de humedad de la fibra está relacionada por la matriz polimérica de la fibra que la constituye, su longevidad de la planta como lo reporta Aquino et. al. 2007 en [23]. Sin embargo la celulosa y hemicelulosa tienen la capacidad de absorber humedad del ambiente, pero en condiciones de saturación—ocasionaría la degradación por hidrólisis, dejando así un esqueleto de lignina similar como ocurre en la madera [24]. De modo que la fibra perderá gradualmente sus propiedades mecánicas en ambientes muy húmedos. Como se observa en los resultados de la tabla (4), muestra que la fibra de nopal tiene un porcentaje de humedad relativamente alto (7.36 %), que pudiese estar directamente relacionado con la cantidad de celulosa y hemicelulosa pero se tendría que hacer un estudio más profundo para relacionar ambas cantidades.

Extraíbles

<table>
<thead>
<tr>
<th>1.0000</th>
<th>0.8901</th>
<th>10.99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0000</td>
<td>1.8410</td>
<td>7.95%</td>
</tr>
<tr>
<td>2.0000</td>
<td>1.7410</td>
<td>12.95%</td>
</tr>
<tr>
<td>3.0000</td>
<td>2.8025</td>
<td>6.58%</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>9.61%</td>
</tr>
</tbody>
</table>

Tabla 5 Resultado de la cantidad de extraíbles en la fibra
En la anterior tabla 5 podemos concluir que la cantidad de extraíbles es de 9.61% es aún mayor que el porcentaje de humedad y no pudimos separar el solvente y los extraíbles para poder realizar espectroscopia de Infrarrojo y caracterizarlos, lo único que probablemente removimos grasas, ceras, resinas, esteroles con la acetona y el agua caliente puedo remover componentes solubles en agua como taninos, gomas, materia coloreada.

Cenizas

<table>
<thead>
<tr>
<th>Tabla 6 Resultados de la determinación de cenizas en la fibra de nopal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de Fibra</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>1.0001</td>
</tr>
<tr>
<td>1.0000</td>
</tr>
<tr>
<td>1.0001</td>
</tr>
<tr>
<td>Promedio</td>
</tr>
</tbody>
</table>

La determinación de cenizas arroja que nuestra fibra posee un 10.65% de cenizas, en comparación con los resultados de [23] con un ±4.9% debido a que los cladodios que utilizamos como materia prima fueron más longevos reafirmando los citado en [23], al mencionar que las cenizas y los minerales incrementan con la longevidad de la planta, así mismo, la presencia o ausencia de minerales presentes en la fibra cambian conforme a las condiciones de suelo de cultivo. Los elementos que se observaron en el Microscopio Electrónico de Barrido marca JEOL JMC-6000 con ayuda del análisis elemental Energy Dispersive X-Ray Spectroscopy (EDS) fueron; Aluminio (Kα), Carbono (Kα), Magnesio (Kα), Oxígeno (Kα), Silicio (Kα), Fosforo (Kα), Azufre (Kα, Kβ), Cloro ((Kα, Kβ), Potasio (Kα, Kβ), Calcio (Kα,Kβ), el análisis se realizó a alto vacío y con una energía de 15 KeV.

Así mismo por medio de la técnica de Difracción de rayos X en el equipo marca Rigaku Ultima IV con Voltaje de 40 kV, corriente de 30 mA y Potencia de 3 kW con un rango de escaneo de 5 a 80 grados, con un tamaño de paso de 0.05 y velocidad de escaneo 1.0 en modo continuo con 1501 datos puntos con lo cual pudimos identificar minerales cristalinos como: sylvita (Cloruro de potasio), calcita (Carbonato de Calcio), lime (óxido de calcio), periclase (óxido de magnesio), y en muy pequeñas cantidades comparada con los demás.
minerales se encuentra la Vermiculita ((Mg, Fe$^{2+}$, Fe$^{3+}$)$_3$[(Al, Si)$_4$O$_{10}$](OH)$_2$·4H$_2$O) (Downs, 1993 #146).[25]. Encontrando lógica la presencia de minerales pues pueden ser absorbidas por la raíz de las plantas.

Figura 17 EDS a cenizas de la fibra de nopal
Determinación de ligninas

Para la determinación de lignina se cambiaron las condiciones la primer modificación consistió en una disolución a 3% de H$_2$SO$_4$ como lo indica la norma pero se llevó a ebullición por 4 horas se filtró y se dejó secar a 105° por 24 horas, el segundo procedimiento se realizó la disolución al 3% pasado 15 minutos después se agregó agua destilada para completar un volumen total de 575 ml de solución (agua/H$_2$SO$_4$) para someterla a ebullición por 4 horas, se filtró y se secó a 60° C por 24 horas.

Contenido de lignina insoluble

<table>
<thead>
<tr>
<th>Procedimiento a 360 ml ml</th>
<th>Procedimiento a 575 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.36</td>
<td>14.04%</td>
</tr>
<tr>
<td>7.37</td>
<td>14.00%</td>
</tr>
<tr>
<td>Promedio 7.86%</td>
<td>Promedio de 14.02%</td>
</tr>
</tbody>
</table>
Se tomó el porcentaje del procedimiento a 575 ml con un valor de 14.02%, para lignina insoluble debido a que esté procedimiento es el que marca la norma. Como se pudo observar la cantidad de solución (ácido sulfúrico-agua) y la temperatura afectan el porcentaje de lignina en casi un 44% en comparación con las dos metodologías realizadas en lignina insoluble. Y se analizó por espectroscopia de Infrarrojo marca Shimadzu modelo FTR-8000 (IR) para reconocer su estructura molecular en un rango de 4000-400 cm\(^{-1}\) en transmittancia a intervalos de 0.96. La lignina soluble se analizó por espectroscopia Ultravioleta Visible (UV-Vis) marca Shimadzu UV-2700 a 205 mn en absorbancia, para determinar su cantidad y determinar su estructura con IR. La lignina soluble se obtuvo del filtrado y se determinó en absorbancia en el rango de 0.2-0.7 por lo que se tuvieron que realizar disoluciones. La determinaciones de lignina por lo general se realizan a 280 nm debido a que la hidrólisis da lugar a la degradación de los carbohidratos tal como furfural y hidroximetilfurfural con una fuerte absorbancia a 280 nm, Maekawa et al, 1989 citado en [19] menciona que las mejores lecturas para la hacer la determinación de lignina solubles es a 205 nm para el método de Klason, con un valor de absorbividad de 110 g\(^{-1}\)cm\(^{-1}\). Como se pudo observar en los espectros de la imagen.

Gráfico 1 Resultados de las mediciones de lignina soluble en UV-Vis
Se tomó el promedio de ambos ambas pruebas dando un resultado de 4.07% de lignina soluble con máximos de 6.45 y un mínimo de 3.02%.

<table>
<thead>
<tr>
<th>Lignina Soluble</th>
<th>Lignina Insoluble</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>360 ml</td>
<td>360 ml</td>
<td></td>
</tr>
<tr>
<td>575 ml</td>
<td>575 ml</td>
<td>Grupos OH</td>
</tr>
<tr>
<td>3299</td>
<td>3301</td>
<td>CH₂ vibraciones asimétricas</td>
</tr>
<tr>
<td>2935</td>
<td>2937</td>
<td>CH₂ vibraciones simétricas, O-CH₃</td>
</tr>
<tr>
<td>2863</td>
<td>2850</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2846</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2332</td>
<td></td>
</tr>
<tr>
<td>1680</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1658</td>
<td></td>
<td>Estiramientos C=C del anillo aromático</td>
</tr>
<tr>
<td>1643</td>
<td>1652</td>
<td>Banda ancha de 1650-1580 Polieno</td>
</tr>
<tr>
<td></td>
<td>1653</td>
<td></td>
</tr>
<tr>
<td>1624</td>
<td>1626</td>
<td>Flexión O-H</td>
</tr>
<tr>
<td>1618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1600</td>
<td>1615</td>
<td>Grupos OH</td>
</tr>
<tr>
<td></td>
<td>1587</td>
<td></td>
</tr>
<tr>
<td>1543</td>
<td></td>
<td>Estiramiento del anillo aromático</td>
</tr>
<tr>
<td>1504</td>
<td>1503</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1503</td>
<td></td>
</tr>
<tr>
<td>1474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1445</td>
<td>1444</td>
<td>Deformaciones asimétricas CH₃, O-CH₃</td>
</tr>
<tr>
<td>1391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1308</td>
<td>1301</td>
<td>OH en plano,</td>
</tr>
<tr>
<td></td>
<td>1269</td>
<td></td>
</tr>
<tr>
<td>1225</td>
<td>1225</td>
<td>***De 1225~1175</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1209</td>
<td>1213</td>
<td>1213</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1206</td>
</tr>
<tr>
<td>1192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1158</td>
<td>1152</td>
<td></td>
</tr>
<tr>
<td>1103</td>
<td></td>
<td>1097</td>
</tr>
<tr>
<td>1050</td>
<td>1038</td>
<td>1057</td>
</tr>
<tr>
<td></td>
<td>1025</td>
<td>1023</td>
</tr>
<tr>
<td>1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>923</td>
<td></td>
<td>914</td>
</tr>
<tr>
<td>894</td>
<td></td>
<td></td>
</tr>
<tr>
<td>781</td>
<td></td>
<td></td>
</tr>
<tr>
<td>714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>689</td>
<td></td>
<td></td>
</tr>
<tr>
<td>651</td>
<td></td>
<td></td>
</tr>
<tr>
<td>608</td>
<td>607</td>
<td></td>
</tr>
<tr>
<td>580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>515</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*sustituyentes en aromáticos 1:2-**sustituyentes en aromáticos 1:2:4-
Se observa que en los espectro de la solución al 3% de H$_2$SO$_4$ se reduce la intensidad de 3300 cm$^{-1}$, la cual corresponde a los grupos OH, al igual las señales de los grupos CH son reducidos, en general la señal son menos intensas, puede verse a la degradación del monómero de la lignina.
Figura 20 Espectros de IR de lignina soluble

Figura 21 Espectros IR de ligninas solubles e insolubles
Con base las bibliografía referenciada y las señales mostradas en los espectros se determinó que el espectro corresponde al alcohol coniferilo (E)-4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenol) en lignina soluble y alcohol cumarínico (4-[(E)-3-Hydroxyprop-1-enyl]phenol) en lignina insoluble, [26], [27], [28], [29], [30], [31]. Así mismo se observó que la temperatura y al tener una solución de H₂SO₄ al 3% ocasionan la pérdida de grupo hidroxilos y la presencia de grupos CH₂ y CH₃ en la lignina y se ve una disminución en las señales como se observa en la figura 19.

**Celulosa**

La celulosa es el polímero natural más usado por la humanidad remontándonos desde la época de los egipcios con su uso en los papiros, en 1838 Payen Químico francés descubrió la fórmula química y fue el primero en separar celulosa. Staudinger en 1920 logró elucidar la estructura polimérica de la celulosa y desde entonces [3, 32].

De acuerdo con la metodología para cuantificar el porcentaje de celulosa en la fibra de nopal se realizaron tres ensayos con los siguientes resultados:

El experimento consistió en colocar un gramo de fibra de celulosa libre de extraíbles, se dejó en reflujo en el equipo Soxhlet por 20 minutos en una solución de 15 ml de ácido acético al 80 % y 1.5 ml de ácido nítrico concentrado una vez, pasado el tiempo se filtró con filtros de celulosa los cuales fueron pesados previamente y se realizaron lavados con etanol, se dejaron en un estufa de calcinación a 98°C por aproximadamente por 20 horas, se pesaron y se colocó un filtro sin muestra y se volvió a pesar para restar el peso del filtro en la muestra, posteriormente se calcino por una hora a 540°C en una estufa de calcinación y se pesaron las muestras al igual que en el paso anterior se colocó un filtro de celulosa sin muestra y se calcino para restar el peso del filtro utilizado en las muestras como se muestran en la tabla 10 con los resultados de las determinaciones.
Podemos concluir que el porcentaje promedio de celulosa en la fibra de nopal es de 35.78%.

Este método básicamente se fundamenta sobre la fuerza de la mercerización del NaOH en la celulosa ocasionando que los derivados solubles en el medio alcalino, se traten con ácido (ácético) y los productos re precipitados se recogen y se estiman. Se clasifican en celulosa alfa la cual es insoluble en la solución de NaOH, la celulosa beta es soluble además re precipitada por ácidos, y por último la celulosa gama no es re precipitada, permanentemente insoluble [33]. De acuerdo a la cuantificación que se realizó por titulación se obtuvo los siguientes resultados mostrados en la tabla 11.

| Tabla 11 Resultados de la composición de la celulosa en la fibra de Nopal |
|----------------------------|------------------|------------------|------------------|
|                         | Alfa celulosa | Beta celulosa | Gamma Celulosa  |
| Medición 1              | 76.10%        | 11.79%         | 12.11%           |
| Medición 2              | 76.26%        | 11.63%         | 12.11%           |
| Medición 3              | 77.97%        | 11.62%         | 10.41%           |
| Medición 4              | 75.85%        | 13.74%         | 10.41%           |
| Promedio               | 76.54%        | 12.19%         | 11.26%           |

Es importante mencionar que la diferenciación de los tipos de celulosas se realizó con la fibra de nopal de acuerdo al procedimiento de la norma Tappi T-203 cm-99, considerando valores promedios en celulosa alfa de 76.54%, celulosa beta 12.19% y celulosa gama 11.26%.

Las propiedades fisiológicas (tamaño, longevidad y medio ambiente) influyen de manera significativas sobre las cantidades de los componentes que constituyen la fibra de nopal [23].
En ambas metodologías se utilizaron un lavado con acetona ya que se observó mayor intensidad en los espectrogramas en las muestras que estuvieron libres de extraíbles, ya que la cera y las grasas dificultan la penetración de los reactivos para la degradación de la fibra.

Los pretratamientos de la biomasa conducen a una despolimerización excesiva de los polisacáridos. La presencia de lignina en la biomasa es el principal obstáculo recalcitrante ya que actúa como una barrera protectora, aislante y refuerzo de la misma, así la mejor opción para la disrupción de la celulosa es la hidrólisis alcalina o mercerización, mejorando la susceptibilidad de los polisacáridos restantes. Su mecanismo envuelve la saponificación de los enlaces éster intermoleculares, como por ejemplo el xilano como entrecruzaste [7]. Es muy común es uso de Hidróxido de Sodio pues promueve la descomposición del intermedio por neutralización [9].

Hidróxido de Sodio

Así mismo el método de extracción de celulosa, como el tipo de álcali usado influye sobre el tamaño, la forma y la calidad de la celulosa extraída, es por esto que decidimos probar dos diferentes métodos ya referenciados y hacer las modificaciones que se redactadas anteriormente. Siguiendo con los dos procedimientos se caracterizaron por espectroscopía de infrarrojo (IR), Difracción de Rayos X (DRX) y microscopía electrónica de barrido [34]. Mostrando en la siguiente tabla se dan la interpretación del espectrograma de Infrarrojo de ambas metodologías.

<table>
<thead>
<tr>
<th>Metodología 1</th>
<th>Metodología 2</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm⁻¹</td>
<td>cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>3334</td>
<td>3330</td>
<td>OH polimérico</td>
</tr>
<tr>
<td>2900</td>
<td>2900</td>
<td>CH</td>
</tr>
<tr>
<td>1726</td>
<td></td>
<td>C=O, ácido carboxílico</td>
</tr>
<tr>
<td>1641</td>
<td>1643</td>
<td>OH polimérico (16401615)</td>
</tr>
<tr>
<td>1631</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1450</td>
<td></td>
</tr>
<tr>
<td>1427</td>
<td></td>
<td>Torsión/estiramiento del carboxilo (1440-1390)</td>
</tr>
<tr>
<td>1422</td>
<td>1426</td>
<td></td>
</tr>
<tr>
<td>1366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330</td>
<td>1331</td>
<td></td>
</tr>
<tr>
<td>1316</td>
<td>1321</td>
<td>Torsión/estiramiento del carboxilo (1320-1200)</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td>1282</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1260</td>
<td>1262</td>
<td></td>
</tr>
<tr>
<td>1205</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1160</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>1106</td>
<td>Alcohol secundario</td>
</tr>
<tr>
<td>1053</td>
<td>1053</td>
<td>Alcohol primario</td>
</tr>
<tr>
<td></td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>1015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>953</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>895</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>660</td>
<td>Banda ancha torsión del enlace C-OH</td>
</tr>
</tbody>
</table>

Fuente de consulta:[2, 21, 35].

En el espectrograma se puede ver tres muestras de la misma metodología en las cuales hay una clara abundancia de grupos hidroxilos (3334 cm⁻¹), así como la intensidad en 1100 cm⁻¹ para las señales de los alcoholes primarios y secundarios, así mismo encontramos una la banda ancha del enlace C-OH, entre 600 y 500 cm⁻¹. Como señales más sobresalientes del espectrograma de la metodología 1.
En la metodología dos podemos constatar que la extracción de la celulosa es efectiva por el
metodología modificada reportada por [22], observando la misma banda ancha de los
grupos hidroxilos a 3330 cm\(^{-1}\), la señal del grupo de los alcoholes a 1160 cm\(^{-1}\) al igual que la
primer metodología una señal ancha a 600 y 500 cm\(^{-1}\), señal correspondiente a C-OH, solo
las intensidades en este espectrograma son menos intensas como se observa en la figura 23.
Se compararon los dos espectrogramas de las dos metodologías antes mencionadas en las cuales se observa una clara diferencia de intensidades esto se podría asumir que el tamaño de partícula obtenida en ambas metodologías influye en la intensidad de las señales, ya que con la ayuda de microscopía se pudo observar una diferencia de tamaño en ambos procedimientos de extracción. Al igual se hizo la comparación con la fibra de Nopal sin tratamiento químico alguno y no se observaron señales significativas para ser comparadas con las señales de las metodologías de celulosas.

Difracción de Rayos X

Como se mencionó anteriormente la celulosa está compuesta por unidades de D-glucopiranosas unidas por enlaces β(1→4) glucósidos. Se pueden encontrar cuatro diferentes alomorfos que han sido identificados por sus patrones característicos de difracción de rayos X en estado sólido. La celulosa de tipo I es la más abundante forma encontrada en la naturaleza. La celulosa tipo II puede ser preparada por dos diferentes tipos de rutas (mercerización y regeneración, está puede solubilizar o subsecuente re cristalización), las celulosas IIII y IIIII pueden ser formados de
celulosa tipo I con tratamientos con líquidos amónicos y la reacción es reversible, la celulosa tipo IV₁ y IV₁l pueden obtenerse de la celulosa tipo III₁ y III₁l respectivamente.[36]

La celulosa nativa del tipo 1 se ha tenido demasiada atención debido a su potencial en la producción de bioenergía, y se compone de más de una forma cristalina es decir una mezcla de dos polimorfos, celulosa I₁a y I₁β. La técnica de difracción de rayos X es usada para determinar y distinguir los dos tipos de fases nativas en la celulosa la I₁a , la cual tiene un arreglo triclínico y I₁β monoclínico como celdas unitarias. La celulosa I₁a y I₁β tienen diferentes patrón debido a los enlaces de hidrogeno y en los espectros de IR no son idénticos en la región de estiramiento de los OH[37], debido a que el hidroxilo libre presente en la macromolécula de la celulosa da origen de una serie de enlaces de hidrógeno intra e intermoleculares, los cuales son los responsables en dar diferentes arreglos cristalinos, que difieren en las dimensiones de la celda unitaria. [2].

El nivel de purificación así como el estado de individualizado y el contenido de humedad afectan su propiedades mecánicas [38]

*Figura 24 Difractograma de la celulosa de ambas metodologías de extracción*
Se analizó la muestra a Voltaje 40 kV Corriente 30 mA Potencia de 3 kW en un rango de escaneo 5 a 50 grados, a un paso de 0.02, velocidad de escaneo 1.0 en modo continuo en difractómetro de rayos X para polvos de la marca Rigaku. De modo que el difractograma analizado con ambas metodologías de extracción revela que es el mismo tipo de celulosa y que las metodologías usadas influyen de manera insignificativa en el tipo de celulosa extraída, es el tipo de celulosa tipo I, la cual presenta un intensidades en los ángulos 13, 15, 22 y 34.

<table>
<thead>
<tr>
<th>Ángulo</th>
<th>Intensidad</th>
<th>Ángulo</th>
<th>Intensidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.12</td>
<td>886.667</td>
<td>15.64</td>
<td>932.5</td>
</tr>
<tr>
<td>17.98 (Iₐm)</td>
<td>750</td>
<td>18.22 (Iₐm)</td>
<td>756.667</td>
</tr>
<tr>
<td>22.56 (I₀₀₂)</td>
<td>1649.17</td>
<td>22.78 (I₀₀₂)</td>
<td>1454.17</td>
</tr>
<tr>
<td>35.02</td>
<td>726.667</td>
<td>34.82</td>
<td>551.667</td>
</tr>
<tr>
<td>Cristalinidad</td>
<td>54.52%</td>
<td>Cristalinidad</td>
<td>47.96%</td>
</tr>
</tbody>
</table>

Podemos concluir que la extracción celulosa en ambos métodos da como resultado una diferencia del 6.56% de cristalinidad a favor de la metodologías de Vieyra et al, 2015 por lo que pudiese ser resultado de la agresividad de ambas metodologías pero en mayor influencia por la hidrólisis ácida sufrida en la segunda metodología se logró una mayor fragmentación de la celulosa cristalinas teniendo una cristalinidad del 47.96% en la metodología 2 en comparación con la metodología 1 que obtuvimos un 54.54% de cristalinidad. En el difractograma con línea base observamos intensidades a 13°, 15°, 20°, 22° y 34° los cuales para poder determinar los planos utilizamos el software XpodwerX con el cual obtuvimos planos correspondientes a una estructura monoclinica, con un ángulo de β= 96.4°.
**Tabla 14 Determinación de planos cristalográficos**

<table>
<thead>
<tr>
<th>2θ</th>
<th>d-spacing</th>
<th>counts</th>
<th>Area</th>
<th>Plane XpowderX</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.045</td>
<td>6.7813</td>
<td>101.4/6.2</td>
<td>159996</td>
<td>100</td>
</tr>
<tr>
<td>15.225</td>
<td>5.8146</td>
<td>140.3/2.4</td>
<td>159996</td>
<td>010</td>
</tr>
<tr>
<td>20.087</td>
<td>4.4170</td>
<td>140.1/2.4</td>
<td>159996</td>
<td>-1-10</td>
</tr>
<tr>
<td>22.911</td>
<td>3.8785</td>
<td>539.7/6.2</td>
<td>159996</td>
<td>001</td>
</tr>
<tr>
<td>35.135</td>
<td>2.5520</td>
<td>660/0.5</td>
<td>159996</td>
<td>-201</td>
</tr>
</tbody>
</table>

**Figura 25 Difractograma de celulosa**

**Tabla 15 Asignación de planos**

<table>
<thead>
<tr>
<th>2θ</th>
<th>[39]</th>
<th>[37]</th>
<th>[40]</th>
<th>[41]</th>
<th>[42]</th>
<th>[43]</th>
<th>[44]</th>
<th>[36]</th>
<th>[45]</th>
<th>[46]</th>
<th>[47]</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 10-14</td>
<td>1-10</td>
<td>100</td>
<td>1-10</td>
<td>101</td>
<td>101</td>
<td>Cel l</td>
<td>100</td>
<td>1-10</td>
<td>100</td>
<td>1-10</td>
<td>101</td>
</tr>
<tr>
<td>~ 16-18</td>
<td>110</td>
<td>010</td>
<td>110</td>
<td>10-1</td>
<td>10-1</td>
<td>Cel l</td>
<td>010</td>
<td>110</td>
<td>010</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>~ 20-21</td>
<td>1-12</td>
<td>012</td>
<td>102</td>
<td>021</td>
<td>110</td>
<td>021</td>
<td>CEL l</td>
<td>10-1</td>
<td>Cel l</td>
<td>002</td>
<td>002</td>
</tr>
<tr>
<td>~ 22-25</td>
<td>002</td>
<td>110</td>
<td>002</td>
<td>002</td>
<td>002</td>
<td>002</td>
<td>200</td>
<td>200</td>
<td>002</td>
<td>CEL l</td>
<td>002</td>
</tr>
<tr>
<td>~ 34-36</td>
<td>1-2-3 = 1-1-4</td>
<td>023</td>
<td>004</td>
<td>040</td>
<td>004</td>
<td>040</td>
<td>004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
El tipo de ángulo y la diferencia de la longitud de los ejes de la celda unitaria hacen que se asignen diferentes índices de Miller a cada difractograma [48]. Por ello es necesario poder hacer un mejor análisis sobre la estructura de la celulosa, se obtienen las mismas intensidades para la estructura monoclinica que para la estructura triclinica pudiendo haber una diferencia en los trabajos mencionados anteriormente deduciendo que tenemos una estructura monoclinica más metaestable y menor reactiva que la estructura triclinica [2, 45]. Al recapitular los resultados de difracción y los espectros de IR encontramos señales muy parecidas, pero con intensidades diferentes aun así ambas metodologías pueden ser favorables para la extracción de celulosa. Pero como definir ¿Cuál es la mejor opción para la fabricación de las películas de celulosa? Esta pregunta se resolvió al conocer su morfología.

Morfología

La respuesta a la pregunta anterior fue contestada al realizar varios experimentos tras ver su dispersión de la celulosa a lo largo de la película, y se corroboró con la microscopía óptica y electrónica. Como se en la figura 25 que fue tomada con ayuda del microscopio óptico, donde se puede observar que aún hay aglomeraciones de fibrillas fuertemente unidas en la metodología 1, al contrario de figura 27 la metodología 2, que solo se pueden observar aglomeraciones de celulosa.

Figura 26 Celulosa Metodología 1  Figura 27 Celulosa Metodología 2
Al hacer la dispersión y ser observadas por microscopía electrónica pudimos determinar que la celulosa tenía una gran variedad de tamaños que podrían difundirse fácilmente por lo cual fue el método que elegimos para poder realizar las películas de celulosa.

Como se puede observar en la imagen 27 pudimos encontrar una gran variedad de partículas heterogéneas de celulosa de tamaños micrométricos.

*Figura 28 Micrografías de celulosa microcrystalina*
En general podemos decir que la extracción de la celulosa de la fibra de Nopal depende de la longevidad de la planta influyendo en la cantidad a extraer, y la importancia de manipular los tiempos así como los reactivos influyen de manera directa en la metodología obteniendo tamaños de partículas más finas. Podemos agregar que la fibra posee poca
lignina en comparación con otros residuos (corn stover and nut shells)[7]. Una gran cantidad de extraíbles al igual que cenizas como se puede ver en la tabla 30.

Figura 31 Resumen del análisis bromatológico de la fibra de nopal

<table>
<thead>
<tr>
<th>Determinación</th>
<th>Porcentaje en peso</th>
<th>Tipos de celulosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad</td>
<td>7.36%</td>
<td>α-celulosa</td>
</tr>
<tr>
<td>Extraíbles</td>
<td>9.61%</td>
<td>β-celulosa</td>
</tr>
<tr>
<td>Cenizas</td>
<td>10.65%</td>
<td>γ-celulosa</td>
</tr>
<tr>
<td>Lignina Insoluble</td>
<td>14.02%</td>
<td></td>
</tr>
<tr>
<td>Lignina Soluble</td>
<td>4.76%</td>
<td></td>
</tr>
<tr>
<td>Celulosa</td>
<td>35.78%</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>17.82%</td>
<td></td>
</tr>
</tbody>
</table>

Películas de celulosa

Para determinar la cantidad de celulosa que se está presente en cada película se hizo la dilución de 0.2 g de celulosa/acuosa en 3 ml de aguas destilada y se pesaron los recipientes vacíos- posteriormente se agregaron los 0.2 ml de celulosa- diluida y se pesaron por último se ingresaron a una estufa a 45 ºC por 24 horas para generar la solidificación de la película y se peso una vez que la celulosa solidificó y formó un aglomerado, determinó el peso promedio de la celulosa promedio utilizada en cada películas como se muestras en la tabla 15.

Tabla 16 Peso de celulosa

<table>
<thead>
<tr>
<th>Recipiente</th>
<th>Recipiente más celulosa diluida</th>
<th>Peso de la celulosa (gramo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0278</td>
<td>3.2188</td>
<td>0.0003</td>
</tr>
<tr>
<td>3.0037</td>
<td>3.1977</td>
<td>0.0003</td>
</tr>
<tr>
<td>3.0798</td>
<td>3.2793</td>
<td>0.0004</td>
</tr>
<tr>
<td>3.0565</td>
<td>3.2539</td>
<td>0.0004</td>
</tr>
<tr>
<td>1.6705</td>
<td>1.8624</td>
<td>0.0005</td>
</tr>
<tr>
<td>1.6918</td>
<td>1.8359</td>
<td>0.0002</td>
</tr>
<tr>
<td>1.714</td>
<td>1.9103</td>
<td>0.0006</td>
</tr>
<tr>
<td>1.7191</td>
<td>1.9203</td>
<td>0.0005</td>
</tr>
<tr>
<td>1.8443</td>
<td>2.0322</td>
<td>0.0005</td>
</tr>
<tr>
<td>1.7178</td>
<td>1.9156</td>
<td>0.0006</td>
</tr>
<tr>
<td>Promedio</td>
<td></td>
<td>0.00043</td>
</tr>
<tr>
<td>Máximo</td>
<td></td>
<td>0.0006</td>
</tr>
<tr>
<td>Mínimo</td>
<td></td>
<td>0.0002</td>
</tr>
</tbody>
</table>
Las películas de celulosa se fueron evaluadas con 3 soluciones de flúor a 1, 2 y 3 ppm por dos repeticiones para evaluar en potencial de remoción, debido a que fue a nivel experimental se hicieron disoluciones de las soluciones para poderlas leer en el espectrofotómetro de UV a 570 nm.

Las películas una vez creadas se dejaron en contacto con las soluciones de flúor por seis horas una cantidad de 6 ml de solución, posterior a para su medición obteniendo los siguientes resultados.

**Tabla 17 Absorbancia para la determinación de iones Flúor**

<table>
<thead>
<tr>
<th>Soluciones en ppm</th>
<th>Abs</th>
<th>Test 1 Abs</th>
<th>Test 2 Abs</th>
<th>Test 3 Abs</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.62</td>
<td>0.6819</td>
<td>0.6789</td>
<td>0.6694</td>
<td>0.67673333</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5228</td>
<td>0.5561</td>
<td>0.5454</td>
<td>0.6244</td>
<td>0.5753</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4535</td>
<td>0.6055</td>
<td>0.5084</td>
<td>0.5823</td>
<td>0.5654</td>
</tr>
</tbody>
</table>
Antes de analizar la gráfica es necesario mencionar que la curva de calibración tiene un coeficiente de correlación de \( r^2 = 0.9907 \), siendo la absorbancia inversamente proporcional a la concentración de iones flúor debido a la diminución del color, y este método cubre el rango de 0 mgF⁻/L a 1.4 mgF⁻/L. Ya que el fluoruro reacciona con el Zirconilo del complejo Zr-SPANDS formando otro ion complejo incoloro (ZrF₆)⁴⁻ [49].

Gráfico 3 Promedio de la remoción de iones Flúor de las películas de celulosa.
Podemos resumir que ocurrió una sorción en las películas de celulosas en concentraciones de 1 ppm la remoción puede llegar a ser de un 73 % y conforme aumenta la concentración de iones flúor su capacidad se ve disminuida la capacidad a un 46% o incluso a un 25% en estos resultados pudieron tener algunas intervención sobre la disolución de la celulosa usada en las películas.

Al realizar microscopía electrónica a las películas de celulosa evaluadas con las soluciones de flúor no se pudo observar una evidencia de la alteraron la morfología de la celulosa, solo se observaron aglomeraciones como se muestra en la figura 33. Es importante mencionar que las películas de celulosa presentaron una deformación después del contacto con las
soluciones de flúor. Esto pudo verse a la hidratación de la celulosa y del polímero afectando su estructura y perdiendo su efecto de memoria.
Conclusiones

En las metodologías para la extracción de celulosa se utilizó reactivos de bajos costos, que pueden ser reciclados para hacer aún más amigable el proceso con el ambiente además de disminuir el tiempo de contacto con los reactivos logrando un disminución en el tiempo de extracción pero sacrificando el tamaño de partículas a extraer obteniendo whiskeys de celulosa microcristalina. Cabe mencionar que el proyecto fue pensado para la zonas en las que no se tiene acceso a tecnologías para la remoción de iones Flúor, siendo esté una alternativa para la explotación de sus recursos y la remoción de Flúor de bajo costo.

La funcionalización de la celulosa con ácido clorhídrico confirma nuestra hipótesis y se corrobora con la presencia en la banda a 3330 cm\(^{-1}\) confirman la presencia de grupos OH abundantes como era de esperarse posee celulosa del tipo I y se confirmar con la espectrofotometría de Infrarrojo sus señales son muy semejantes en ambas metodologías pero con diferentes intensidades que pudiese referirse al tamaño de partícula encontrada en cada metodología ya que la segunda metodología posee un tamaño de partículas en micrómetros en cambio la primer metodología solo se obtuvieron cúmulos de celulosa y fragmento de celulosa sin degradas con tamaños grandes como se puede constatar con ayuda de la microscopía. En el análisis de la difracción de rayos X se observan las intensidades en los ángulos 13, 15, 20, 22 y 34 correspondientes a celulosa I\(\beta\) la cual posee propiedades útiles para su uso en composites por sus propiedades mecánicas ampliamente estudiadas con una estimación de la cristalinidad para la primer metodología de 54.54% y la segunda metodología con un 47.96%, además observamos que su capacidad para remover iones Flúor podría verse debido a la interacciones intermoleculares como lo enlaces de hidrógeno es del 73% en soluciones de 1 ppm, en soluciones de 2 ppm su capacidad disminuye drásticamente a un 25% y en soluciones de 3 ppm su capacidad aumenta a un 46%, pudimos interpretar que la celulosa diluida con la cual se elaboraron las películas de celulosa no fue adecuada pues hubo una variación muy alta, sin embargo como se ha reportado en la gran mayoría de trabajos la biomasa tiene gran capacidad para remover cationes en especial cationes de metales pesados, cabría realizar estudios más profundos sobre la remoción de ambas partículas contaminantes y su comportamiento.
Podemos concluir que la cactácea Opuntia ficus Indica posee varias moléculas de interés para la industria farmacéutica e alimenticia a pesar de no ser una planta con cantidades altas de celulosa su gran adaptación en ambientes inhóspitos así como su rápido crecimiento hacen considerarla como materia prima de fácil acceso, posee poca cantidad de ligninas las cuales pueden ser fácilmente removidas disminuyendo los costos de remoción, posee una gran cantidad de cenizas en comparación con otras biomasa.
Bibliografía


Anexos