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ABSTRACT. Let X be a continuum. The n-fold hyperspace Cn(X), n < ∞, is the space of all
nonempty closed subsets of X with at most n components. A topological property P is said to be a (an

almost) sequential decreasing strong size property provided that if µ is a strong size map for Cn(X),

{tj}∞j=1 is a sequence in the interval (t, 1) such that lim tj = t ∈ [0, 1) (t ∈ (0, 1)) and each fiber

µ−1(tj) has property P, then so does µ−1(t). In this paper we show that the following properties are

sequential decreasing strong size properties: being a Kelley continuum, local connectedness, continuum

chainability and, unicoherence. Also we prove that indecomposability is an almost sequential decreasing
strong size property.
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1. Introduction

In [12] and [13] F. Orozco-Zitli proved that atriodicity, containing no arc, irreducibility, indecom-
posability, being a Kelley continuum, local connectedness, continuum chainability and unicoherence
are sequential decreasing Whitney properties. Sequential decreasing strong size properties are the
natural generalization of sequential decreasing Whitney properties. We prove that being a Kelley
continuum, local connectedness, continuum chainability and unicoherence are sequential decreas-
ing strong size properties. Also we prove that indecomposibility is an almost sequential decreasing
strong size property.

2. Preliminaries

Given a metric space (Z, d) and a subset B of Z. If x ∈ Z and ε > 0, let Vdε (x) = {y ∈ X :
d(x, y) < ε} and N(ε,B) =

⋃
{Vdε (x) : x ∈ B}. We denote by cl(B) the closure of B in Z. Further,

diam(B) will denote the diameter of B. A continuum is a nonempty compact, connected, metric
space. A subcontinuum of a space Z is a continuum contained in Z.

The symbol N denotes the set of positive integers. LetX be a continuum. For each n ∈ N, Cn(X)
denotes the hyperspace of all nonempty closed subsets of X with at most n components; Cn(X) is
called the n-fold hyperspace of X (thus, C1(X) is the classical hyperspace of all subcontinua of X
and, as is customary, is denoted by C(X) instead of C1(X)). The symbol Fn(X) denotes the n-fold
symmetric product of a continuum X; that is, Fn(X) = {A ∈ Cn(X) : A has at most n points}.
We topologize these sets with the Hausdorff metric H, defined as follows: H(A,B) = inf{ε > 0 :
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A ⊂ N(ε,B) and B ⊂ N(ε,A)}, (see [10: p. 1]). We denote by H2 the corresponding Hausdorff
metric for C(Cn(X)). An order arc in Cn(X) is an arc α : [0, 1]→ Cn(X) such that if 0 ≤ s < t ≤ 1,
then α(s) ⊂ α(t) and α(s) 6= α(t).

A map means a continuous function. A size map for Cn(X) is a map ω : Cn(X) → [0, 1] such
that ω({x}) = 0 for each x ∈ X and ω(A) ≤ ω(B) if A ⊂ B for each A,B ∈ Cn(X). A strong size
map for Cn(X) is a map µ : Cn(X)→ [0, 1] such that

(i) µ(A) = 0 for each A ∈ Fn(X),

(ii) if A ⊂ B, A 6= B and B /∈ Fn(X), then µ(A) < µ(B)

(iii) µ(X) = 1 (see [2: p. 956]).

By Theorem 2.10 of [2: p. 958], every strong size map is monotone. Each set of the form µ−1(t)
for any strong size map for Cn(X) and any t ∈ [0, 1] is called a strong size level of Cn(X).

Let X be a continuum and let µ be a strong size map for Cn(X). Let A ∈ Cn(X). If t ∈ [0, µ(A)),
let C(A, t) = {B ∈ µ−1(t) : B ⊂ A and each component of A intersects B}. Also, if t ∈ [µ(A), 1), let
CtA = {B ∈ µ−1(t) : A ⊂ B and each component of B intersects A}. Notice that if t ∈ [µ(A), 1),
then CtA is closed in µ−1(t). If t ∈ [0, µ(A)), then C(A, t) is closed in µ−1(t). Then, for each
t ∈ [0, µ(A)), C(A, t) is a subcontinuum of µ−1(t) (see [2: Theorem 2.14, p. 959]).

A topological property P is said to be a sequential decreasing strong size property provided that
if µ is a strong size map for Cn(X), t ∈ [0, 1), {tj}j∈N is a sequence into the interval (t, 1) such
that lim tj = t and each fiber µ−1(tj) has property P, then so does µ−1(t).

A topological property P is said to be an almost sequential decreasing strong size property
provided that if µ is a strong size map for Cn(X), t ∈ (0, 1), {tj}j∈N is a sequence into the interval
(t, 1) such that lim tj = t and each fiber µ−1(tj) has property P, then so does µ−1(t).

Let σ : C(Cn(X)) → Cn(X) be a function given by σ(A) =
⋃
{A : A ∈ A}, by [3: p. 23], σ is

a map and, by [6: Lemma 7.2, p. 250]) it is well defined; it is clear that σ is onto. The map σ is
called the union map.

A continuum X is said to be decomposable provided that X can be written as the union of two
proper subcontinua. A continuum which is not decomposable is said to be indecomposable.

A continuum X is said to be unicoherent provided that whenever A and B are subcontinua of
X such that A ∪B = X, then A ∩B is connected.

A continuum X is called a Kelley continuum provided that given any ε > 0 there exists δ > 0
such that if p, q ∈ X with d(p, q) < δ and p ∈ A ∈ C(X), then there exists B ∈ C(X) such that
q ∈ B and H(A,B) < ε.

A continuum X is continuum chainable if for each ε > 0 and each pair of points p 6= q in X,
there is a finite sequence of subcontinua {C1, . . . , Cr} of X such that diam(Ci) < ε, p ∈ C1, q ∈ Cr
and Ci ∩ Ci+1 6= ∅ for every i ≤ r − 1.

Remark 2.1. It can easily be proved that a continuum X is a Kelley continuum if and only if
for every point p ∈ X and for each ε > 0, there exists δ > 0 with the property that if A ∈ C(X),
p ∈ A and q ∈ Vdδ (p), then there exists B ∈ C(X) such that q ∈ B and H(A,B) < ε.

3. Preliminary Results

Lemma 3.1. Let X be a continuum. Let {Ak}k∈N and {Bk}k∈N be sequences of Cn(X) such that
limAk = A and limBk = B. If and each component of Bk intersects Ak for each k ∈ N, then each
component of B intersects A.
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P r o o f. Let C be a component of B and let x ∈ C. Then there exists a sequence {xk}k∈N such
that limxk = x and xk ∈ Bk for each k ∈ N. For every k ∈ N, let Ck be the component of Bk
such that xk ∈ Ck. Since {Ck}k∈N is a sequence of elements of C(X), by the compactness of C(X)
we may assume that {Ck}k∈N converges to some element D of C(X). Notice that D ⊂ C. Since
Ak ∩ Ck 6= ∅ for each k ∈ N, A ∩ D 6= ∅. Hence A ∩ C 6= ∅. Therefore, every component of B
intersects A. �

Lemma 3.2. Let µ be a strong size map for Cn(X). Then for each ε > 0, there exists δ > 0
such that if A,B ∈ Cn(X) satisfy that each component of B intersects A, A ⊂ N(δ,B) and
|µ(A)− µ(B)| < δ, then H(A,B) < ε.

P r o o f. Suppose that the lemma is false for some ε > 0. Then there are two sequences {Ak}k∈N
and {Bk}k∈N in Cn(X) such that, for each m ∈ N, Am ⊂ N( 1

m , Bm), each component of Bm
intersects Am, |µ(Am)−µ(Bm)| < 1

m and H(Am, Bm) ≥ ε. We assume, without loss of generality,
that limAk = A for some A ∈ Cn(X) and limBk = B for some B ∈ Cn(X). Notice that A ⊂ B.
We will prove that A = B. If B ∈ Fn(X), by Lemma 3.1, A = B. Now if B /∈ Fn(X), by the
continuity of µ, µ(A) = µ(B). Thus, A = B. Since limBk = B = A and limAk = A, there exists
m ∈ N such that H(Am, Bm) ≤ H(Am, A) +H(Bm, A) < ε, a contradiction. �

Lemma 3.3. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). If t ∈ (t0, 1) and A ∈
C(µ−1(t)), then

⋃
{C(A, t0) : A ∈ A} is a subcontinuum of µ−1(t0).

P r o o f. Let B =
⋃
{C(A, t0) : A ∈ A}. We will prove that B is closed. Let {Bk}k∈N be a sequence

in B such that limBk = B for some B ∈ Cn(X). Then, there exists a sequence {Ak}k∈N in A
such that, for each k ∈ N, Bk ∈ C(Ak, t0). Since A is compact, we may assume that limAk = A
for some A ∈ A. Then, B ⊂ A and B ∈ µ−1(t0). By Lemma 3.1, each component of A intersects
B. Thus, B ∈ C(A, t0). Hence B ∈ B.
On the other hand, suppose that B is not connected. Then, there are two nonempty disjoint closed
subsets L1 and L2 of B such that B = L1 ∪ L2.

For each i ∈ {1, 2}, let L∗i = {A ∈ A : C(A, t0) ⊂ Li}. Notice that L∗1 and L∗2 are nonempty
disjoint subsets of A and L∗1 ∪ L∗2 = A. Let i ∈ {1, 2}. In order to prove that L∗i is closed, let
{Ak}k∈N be a sequence in L∗i converging to an element A ∈ A. Since {C(Ak, t0)}k∈N is a sequence
of elements of C(µ−1(t0)). By compactness we may assume that the sequence {C(Ak, t0)}k∈N
converges to an element D ∈ C(µ−1(t0)). Thus, since

⋃
k∈N

C(Ak, t0) ⊂ Li and Li is closed, D ⊂ Li.

Now, we need to show that D ⊂ C(A, t0). Let B ∈ D. Then, there exists a sequence {Bk}k∈N in
B such that, for each k ∈ N, Bk ∈ C(Ak, t0) and limBk = B. Then, B ⊂ A and B ∈ µ−1(t0). By
Lemma 3.1, B ∈ C(A, t0). We have shown that D ⊂ C(A, t0). Thus, since C(A, t0) is connected,
C(A, t0) ⊂ Li. Hence A ∈ L∗i and L∗i is closed. Therefore, A is not connected, a contradiction.
This completes the proof that B is a subcontinuum of µ−1(t0). �

The proof of the following lemma is similar to the one given for Lemma 3.2 of [8: p. 106] (see
[10: Lemma 14.8.1, p. 406]).

Lemma 3.4. Let µ be a strong size map for Cn(X). If A ∈ Cn(X) and t ∈ (µ(A), 1), then CtA is
arcwise connected.

Lemma 3.5. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). If t ∈ (t0, 1] and A ∈
C(µ−1(t0)), then

⋃
{CtA : A ∈ A} is a subcontinuum of µ−1(t).

P r o o f. Let S =
⋃
{CtA : A ∈ A}. Using similar ideas as in Lemma 3.3 we can prove that S is

closed in µ−1(t). Now suppose S is not connected. Then, there exist two nonempty disjoint closed
subsets F1 and F2 of S such that S = F1 ∪ F2. For each i ∈ {1, 2}, let L∗i = {A ∈ A : CtA ⊂ Fi}.
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Notice that L∗1 and L∗2 are nonempty disjoint subsets of A and L∗1 ∪ L∗2 = A. Let i ∈ {1, 2}. In
order to prove that L∗i is closed, we consider a sequence {Ak}k∈N in L∗i converging to an element
A ∈ A. Since {CtAk

}k∈N is a sequence of elements of C(µ−1(t)). By compactness we may assume

that {CtAk
}k∈N converges to an element D ∈ C(µ−1(t)). Thus, since

⋃
k∈N

CtAk
⊂ Fi and Fi is closed,

D ⊂ Fi. Now, we need to show that D ⊂ CtA. Let B ∈ D. Then there exists a sequence {Bk}k∈N
in S such that, for each k ∈ N, Bk ∈ CtAk

and limBk = B. Then A ⊂ B and B ∈ µ−1(t). By

Lemma 3.1, B ∈ CtA. We have shown that D ⊂ CtA. Thus, since CtA is connected (see Lemma 3.4),
CtA ⊂ Fi. Hence A ∈ L∗i and L∗i is closed. Therefore, A is not connected, a contradiction.
This completes the proof that S is a subcontinuum of µ−1(t). �

For the following, it is known that if A ∈ C(Cn(X)), then σ(A) ∈ Cn(X), see [7: Lemma 7.2].

Lemma 3.6. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). If A is a nondegenerate
subcontinuum of µ−1(t0) and t ∈ [t0, µ(σ(A))), then X(A, t) = {B ∈ µ−1(t) : there exists a
subcontinuum B of A such that σ(B) = B} is a subcontinuum of µ−1(t).

P r o o f. Define f : R→ R by f(s) = s− t0. Clearly, f is a homeomorphism. Define ω : C(A)→ R
by ω(B) = f(µ(σ(B))). Notice that:

(1) ω is a map;

(2) ω({D}) = 0 for each D ∈ A;

(3) if B1,B2 ∈ C(A), with B1 ⊂ B2, then ω(B1) ≤ ω(B2).

Thus, ω is a size map for C(A). Hence for each t ∈ [t0, µ(σ(A))], ω−1(f(t)) = {B ∈ C(A) :
µ(σ(B)) = t} is a subcontinuum of C(A) (see [11: p. 243]). Since X(A, t) = σ(ω−1(f(t))) and σ
is continuous, X(A, t) is a subcontinuum of µ−1(t). �

Lemma 3.7. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). If A ∈ µ−1(t0) and
r ∈ (t0, 1), then there exists a subcontinuum A of µ−1(t0) such that A ∈ A and µ(σ(A)) = r.

P r o o f. Let α : [0, 1] → C(µ−1(t0)) be an order arc such that α(0) = {A} and α(1) = µ−1(t0).
Since the composition µ◦σ ◦α is continuous, and µ(σ(α(0))) = t0 and µ(σ(α(1))) = 1, there exists
s ∈ (0, 1) such that µ(σ(α(s))) = r. Note that α(s) ∈ C(Cn(X)) because C(µ−1(t0)) ⊂ C(Cn(X)).
Clearly, A = α(s) has the required properties, and the lemma is proved. �

Lemma 3.8. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). If A,B ∈ µ−1(t0) and
A 6= B, then there exists s ∈ (t0, 1) such that if A,B ∈ C(µ−1(t0)), A ∈ A, B ∈ B and µ(σ(A)),
µ(σ(B)) ∈ (t0, s), then σ(A) 6= σ(B).

P r o o f. Let a ∈ Ar B and let ε > 0 be such that Vdε (a) ∩ B = ∅. Let δ > 0 be as in Lemma 3.2
for the number ε. Let s = min{t0 + δ, 1}. Let A and B two subcontinua of µ−1(t0) such that
A ∈ A, B ∈ B and µ(σ(A)), µ(σ(B)) ∈ (t0, s). Since µ(σ(B)) − µ(B) < δ, B ⊂ σ(B) and each
component of σ(B) intersects B (see [1: Lemma 3.1, p. 241]), by the choice of δ, H(B, σ(B)) < ε.
Thus σ(B) ⊂ N(ε, B). Therefore, A * σ(B) and σ(A) 6= σ(B) �

4. Main Results

Theorem 4.1. Local connectedness is a sequential decreasing strong size property.
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P r o o f. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). If {tj}j∈N is a sequence in (t0, 1]
converging to t0 and each fiber µ−1(tj) is locally connected, we will prove that µ−1(t0) is locally
connected. Let ε > 0. Let δ > 0 be as in Lemma 3.2 for the number ε

4 . Let tJ ∈ (t0, t0 + δ).

Since µ−1(tJ) is locally connected, by [14: 15.7, p. 23], there exists a finite set {A1, . . . ,Am} of

subcontinua of µ−1(tJ) such that diam(Ai) < ε
4 for each i ≤ m, and µ−1(tJ) =

m⋃
i=1

Ai. For each

i ∈ {1, . . . ,m}, define Bi =
⋃
{C(A, t0) : A ∈ Ai}.

Now we will prove that µ−1(t0) =
m⋃
i=1

Bi. Notice that by Lemma 3.3, for each i ≤ m, Bi

is a subcontinuum of µ−1(t0). On the other hand if D ∈ µ−1(t0), there exists an order arc
α : [0, 1] → Cn(X) such that α(0) = D and α(1) = X. Since µ ◦ α : [0, 1] → [0, 1] is a mapping,
there exists s ∈ (0, 1) such that µ(α(s)) = tJ . Notice that α(s) ∈ Ai for some i ∈ {1, . . . ,m}
and α(0) ⊂ α(s) by definition of order arc. So, D ∈ C(α(s), t0, n) ⊂ Bi. Thus µ−1(t0) =

m⋃
i=1

Bi.

Finally we will show that diam(Bi) < ε. Let i ≤ m. Consider B ∈ Bi and A ∈ Ai, such that
B ∈ C(A, t0, n). Notice that |µ(A) − µ(B)| < δ. So, by the choice of δ, H(A,B) < ε

4 . Since
diam(Ai) < ε

4 , H(M,B) < ε
2 for each M ∈ Ai. Therefore, diam(Bi) < ε and by [14: 15.7, p. 23],

µ−1(t0) is locally connected. �

Theorem 4.2. Continuum chainability is a sequential decreasing strong size property.

P r o o f. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). Suppose that {tj}j∈N ⊂ (t0, 1]
is a sequence which converges to t0 and each fiber µ−1(tj) is continuum chainable.

In order to prove that µ−1(t0) is continuum chainable, let A1 6= A2 ∈ µ−1(t0). Let ε > 0 and
let δ > 0 be as in Lemma 3.2 for the number ε

4 . For A1 and A2, let s ∈ (t0, 1) be as in Lemma 3.8.

Let tJ ∈ (t0,min{t0 + δ, s}). By Lemma 3.7, for each k ∈ {1, 2}, there exists Mk ∈ C(µ−1(t0))
such that µ(σ(Mk)) = tJ and Ak ∈ Mk. By [1: Lemma 3.1, p. 241], Ak ∈ C(σ(Mk), t0) for
each k ∈ {1, 2}. By the choice of s, σ(M1) 6= σ(M2). Since µ−1(tJ) is continuum chainable,
there exists a finite sequence {A1, . . . ,Am} of subcontinua of µ−1(tJ) such that σ(M1) ∈ A1,
σ(M2) ∈ Am, Ai ∩ Ai+1 6= ∅ for each i < m and diam(Ai) < ε

4 , for each i ≤ m. By Lemma 3.3,

Bi =
⋃
{C(D, t0) : D ∈ Ai} is a subcontinuum of µ−1(t0), for each i ∈ {1, . . . ,m}. Clearly,

A1 ∈ B1, A2 ∈ Bm and Bi ∩ Bi+1 6= ∅ for each i < m. Let i ≤ m. Now we show that
diam(Bi) < ε. Let D ∈ Bi. We consider G ∈ Ai such that D ∈ C(G, t0). Since µ(G)− µ(D) < δ,
by the choice of δ, H(D,G) < ε

4 . So, since diam(Ai) < ε
4 , H(M,D) < ε

2 for each M ∈ Ai. Hence
diam(Bi) < ε. Since Ai ∩ Ai+1 6= ∅ for each i < m, Bi ∩ Bi+1 6= ∅ for each i < m. Therefore,
µ−1(t0) is continuum chainable. �

Theorem 4.3. The property of being a Kelley continuum is a sequential decreasing strong size
property.

P r o o f. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). Suppose that {tj}j∈N ⊂ (t0, 1]
is a sequence converging t0 and each fiber µ−1(tj) is a Kelley continuum.

We will prove that µ−1(t0) is a Kelley continuum. Suppose that the theorem is false for
some P ∈ µ−1(t0) and some ε > 0. By Remark 2.1, there are two sequences {Am}m∈N ⊂
C(µ−1(t0)) and {Qm}m∈N ⊂ µ−1(t0) such that, for each m ∈ N, P ∈ Am, H(P,Qm) < 1

m , and if

Qm ∈ G ∈ C(µ−1(t0)), H2(Am,G) ≥ ε. Let δ > 0 be as in Lemma 3.2 for the number ε
12 .

Let tJ ∈ (t0, t0 + δ). By Lemma 3.7, for each m ∈ N, there exists Dm ∈ C(µ−1(t0)) such that
Qm ∈ Dm and µ(σ(Dm)) = tJ . We may assume that limAm = A and limDm = D for some
A,D ∈ C(µ−1(t0)). Since limQm = P ∈ A and Qm ∈ Dm for each m ∈ N, we have P ∈ D. Thus,
P ∈ D ∩A and therefore, A ∪D ∈ C(µ−1(t0)).
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We prove that H2(A,A∪D) < ε
6 , . To this end, it is enough to prove that diam(D) < ε

6 proving
that H(σ(D), E) < ε

12 for every E ∈ D. Let E ∈ D, by [1: Lemma 3.1, p. 241], E ∈ C(σ(D), t0).
Since |µ(σ(D))−µ(E)| = |tJ − t0| < δ. By the choice of δ, H(σ(D), E) < ε

12 . Thus, diam(D) < ε
6 .

Hence H2(A,A ∪D) < ε
6 .

Notice that σ(D) ∈ X(A∪D, tJ). Since µ−1(tJ) is a Kelley continuum, there exists η > 0 such
that if L ∈ µ−1(tJ) and H(σ(D), L) < η, then there exists B ∈ C(µ−1(tJ)) such that L ∈ B and
H2(X(A ∪D, tJ),B) < ε

12 .

Let M ≥ 1 be such that H2(AM ,A) < ε
12 and H2(D,DM ) < η. Note that H(σ(D), σ(DM )) < η.

To prove this part, we take a point x ∈ σ(D). By definition there exists D ∈ D such that x ∈ D,
since H2(D,DM ) < η, there is DM ∈ DM such that H(D,DM ) < η. So, there exists dM ∈ DM ⊂
σ(DM ) such that d(x, d) < η. Therefore, x ∈ N(η, σ(DM )). Thus, σ(D) ⊂ N(η, σ(DM )). Similarly
we can prove that σ(DM ) ⊂ N(η, σ(D)). Then H(σ(D), σ(DM )) < η. Let B ∈ C(µ−1(tJ)) be such
that σ(DM ) ∈ B and H2(X(A ∪D, tJ),B) < ε

12 .

Let G =
⋃
{C(G, t0) : G ∈ B}. By Lemma 3.3, G ∈ C(µ−1(t0)). Since σ(DM ) ∈ B and

QM ∈ C(σ(DM ), t0), QM ∈ G.

Now we prove that H2(A∪D,G) < ε
4 . Let R ∈ A∪D. Since µ(σ(A∪D)) ≥ tJ , by Lemma 3.7,

there exists L ∈ C(A ∪ D) such that R ∈ L and µ(σ(L)) = tJ . Notice that R ∈ C(σ(L), t0) (see
[1: Lemma 3.1, p. 241]). So, µ(R) = t0, Thus, µ(σ(L))−µ(R) = tJ − t0 < δ and by the choice of δ,
H(σ(L), R) < ε

12 . Since σ(L) ∈ X(A ∪ D, tJ) and H2(X(A ∪ D, tJ),B) < ε
12 , there exists F ′ ∈ B

such that H(σ(L), F ′) < ε
12 . Let S ∈ C(F ′, t0). Since F ′ ∈ B, S ∈ G. Since B ∈ C(µ−1(tJ)) and

µ(F ′)− µ(S) < δ, by the choice of δ, H(S, F ′) < ε
12 . Thus, H(R,S) < ε

4 . Hence R ∈ N( ε4 ,G).
On the other hand, let G ∈ B and D ∈ C(G, t0). Since µ(G) − µ(D) < δ, by the choice of
δ, H(G,D) < ε

12 . Since B ⊂ N( ε12 , X(A ∪ D, tJ)), there exists F1 ∈ X(A ∪ D, tJ) such that
H(G,F1) < ε

12 . Since F1 ∈ X(A ∪ D, tJ), there exists L ∈ C(A ∪ D) such that F1 = σ(L) and
µ(σ(L)) = tJ . Let E1 ∈ L. By [1: Lemma 3.1, p. 241], E1 ∈ C(F, t0). Since µ(F1) − µ(E1) =
tJ − t0 < δ, by the choice of δ, H(E1, F1) < ε

12 . So, H(D,E1) < ε
4 . Thus, D ∈ N( ε4 ,A∪D). Hence

H2(A ∪D,G) < ε
4 .

Therefore, H2(AM ,G) ≤ H2(AM ,A) +H2(A,A∪D) +H2(A∪D,G) < ε
2 , a contradiction. �

Theorem 4.4. Unicoherence is a sequential decreasing strong size property.

P r o o f. Let µ be a strong size map for Cn(X) and let t0 ∈ [0, 1). Suppose that {tj}j∈N ⊂ (t0, 1]
is a sequence which converges to t0 and each fiber µ−1(tj) is unicoherent.

Notice that Fn(X) is unicoherent for each n ≥ 3 (see [5: Theorem 8, p. 177]). So, since
µ−1(0) = Fn(X), µ−1(0) is unicoherent for each n ≥ 3.

In order to prove the other cases, we assume that µ−1(t0) is not unicoherent. Let A1,A2 ∈
C(µ−1(t0)) be such that µ−1(t0) = A1 ∪A2 and A1 ∩A2 is not connected. Let F1 and F2 be two
nonempty disjoint closed subsets of µ−1(t0) such that A1 ∩A2 = F1 ∪ F2. Let ε > 0 be such that
N(ε,F1) ∩N(ε,F2) = ∅.

For each i ∈ {1, 2}, let Bi = Ai r (N(ε,F1) ∪N(ε,F2)). Notice that B1 and B2 are nonempty
disjoint closed subsets of µ−1(t0). Let 0 < ε1 <

ε
8 be such that N(ε1,B1) ∩ N(ε1,B2) = ∅. Let

δ > 0 be as in Lemma 3.2 for the number ε1
2 . Let tJ ∈ (t0, t0 + δ). For each i ∈ {1, 2}, let

Ci =
⋃
{CtJD : D ∈ Ai}.

We prove that µ−1(tJ) = C1 ∪ C2. Let P ∈ µ−1(tJ). Using order arcs, it can be shown that
there exists Q ∈ µ−1(t0) such that P ∈ CtJQ . So, P ∈ C1 ∪ C2. On the other hand, by Lemma 3.3,

C1, C2 ∈ C(µ−1(tJ)).

For each i ∈ {1, 2}, let

Gi = {F ∈ µ−1(tJ) : there exists A ∈ cl(N(
ε

8
,Fi)) such that F ∈ CtJA }.
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We will show that C1 ∩ C2 ⊂ G1 ∪ G2. Let D ∈ C1 ∩ C2. For each i ∈ {1, 2}, let Ai ∈ Ai
be such that D ∈ CtJAi

. By the choice of δ, H(A1, A2) ≤ H(A1, D) + H(A2, D) < ε1. By the
choice of ε1, {A1, A2} ∩ (N( ε8 ,F1) ∪ N( ε8 ,F2)) 6= ∅. We assume, without loss of generality, that
A1 ∈ N( ε8 ,F1) ∪N( ε8 ,F2). So, D ∈ G1 ∪ G2.

In will prove that G1 ∩ G2 = ∅. Let G ∈ G1 ∩ G2. Then there exist E1 ∈ cl(N( ε8 ,F1)) and E2 ∈
cl(N( ε8 ,F2)) such that G ∈ CtJE1

∩CtJE2
. By the choice of δ, H(E1, E2) ≤ H(E1, G)+H(E2, G) < ε1.

For i ∈ {1, 2}, let Fi ∈ Fi be such that H(Ei, Fi) <
ε
4 . Thus, H(F1, F2) < ε which contradicts the

choice of ε. We have shown that G1 ∩ G2 = ∅.
Note that, given Fi ∈ Fi, there exists Di ∈ µ−1(tJ) such that Di ∈ CtJFi

. Thus, Di ∈ C1∩C2∩Gi.
We have shown that G1 and G2 are disjoint subsets of µ−1(tJ) such that C1 ∩ C2 ⊂ G1 ∪ G2 and
C1 ∩ C2 ∩ G1 6= ∅ 6= C1 ∩ C2 ∩ G2.

Now, we prove that G1 is closed. Let {Bk}k∈N be a sequence of G1 such that limBk = B for
some B ∈ µ−1(tJ). Notice that for each k ∈ N, there exists Ak ∈ cl(N( ε8 ,F1)) such that Bk ∈ CtJAk

.

By compactness we may assume that limAk = A for some A ∈ cl(N( ε8 ,F1)). Since Bk ∈ CtJAk
for

each k ∈ N, A ⊂ B. By Lemma 3.1, B ∈ CtJA . Hence B ∈ G1. Thus, G1 is closed. Similarly we can
prove that G2 is closed.

Then C1 ∩ C2 is disconnected. Therefore, µ−1(tJ) is not unicoherent, a contradiction. �

It is known that for every n > 1, Fn(X) is aposyndetic for every continuum X, and we know
that every aposyndetic continuum is decomposable (see [4: Theorem 4, p. 289]). Thus, if X is a
continuum and µ is a strong size map defined on Cn(X), then µ−1(0) = Fn(X). Hence µ−1(0) is
decomposable. Therefore, indecomposability is not a sequential decreasing strong size property.

Theorem 4.5. Indecomposability is an almost sequential decreasing strong size property.

P r o o f. Let µ be a strong size map for Cn(X) and let t0 ∈ (0, 1). Suppose that {tj}j∈N ⊂ (t0, 1]
is a sequence which converges to t0 and each fiber µ−1(tj) is indecomposable.

Suppose that there are two proper subcontinuaA1 andA2 of µ−1(t0) such that µ−1(t0)=A1∪A2.
Let A1 ∈ A1 rA2 and A2 ∈ A2 rA1. Let ε > 0 be such that VHε (A1) ∩ A2 = ∅ = VHε (A2) ∩ A1.
Let δ > 0 be as in Lemma 3.2 for the number ε

2 . Take tJ ∈ (t0, t0 + δ). For each i ∈ {1, 2}, put

Gi =
⋃
{CtJA : A ∈ Ai}. We show that µ−1(tJ) = G1 ∪ G2. Let E ∈ µ−1(tJ). Using order arcs, it

can be shown that there exists F ∈ µ−1(t0) such that E ∈ CtJF . So, E ∈ G1 ∪ G2. On the other
hand, by Lemma 3.5, G1,G2 ∈ C(µ−1(tJ)).

Fix G ∈ CtJA1
. If G ∈ G2, then G ∈ CtJR for some R ∈ A2. Since µ(G)−µ(A1), µ(G)−µ(R) < δ,

by the choice of δ, H(R,G) < ε
2 and H(G,A1) < ε

2 . So, H(A1, R) < ε which contradicts the

choice of ε. Hence G2 6= µ−1(tJ). Similarly, G1 6= µ−1(tJ). Thus, µ−1(tJ) is descomposable, a
contradiction.
Therefore, µ−1(t0) is indecomposable. �
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[9] MACÍAS, S.—PICENO, C.: More on strong size properties, Glas. Mat. Ser. III 50 (70) (2015), 467–488.

[10] NADLER, S. B. Jr.: Hyperspaces of Sets, In: Monographs and Textbooks in Pure and Applied Mathematics,

49, Marcel Dekker, New York, Inc., 1978.
[11] NADLER, S. B. Jr.—WEST, T.: Size levels for arcs, Fund. Math. 109 (1980), 243–255.

[12] OROZCO-ZITLI, F.: Sequential decreasing Whitney properties, In: Continuum Theory, Lecture Notes in Pure

and Applied Mathematics, 230. N.Y.: Dekker, (2002), 297–306.
[13] OROZCO-ZITLI, F.: Sequential decreasing Whitney properties II, Topology Proc. 28(1) (2004), 267–276.

[14] WHYBURN, G. T.: Analytic Topology, In: Amer. Math. Soc. Collq. Publ., vol. 28, Providence, R. I., 1942.

Received 14. 10. 2016

Accepted 1. 9. 2017

Universidad Autónoma del Estado de México
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