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1. Introduction

The concept of pseudo-contractibility was introduced by R. H. Bing. However, W. Kuperberg gave the 
first example which proves that the notions of pseudo-contractibility and contractibility are different. This 
example was never published by himself but it is known among continuum theorists. He also asked whether 
or not the space sin ( 1

x ) curve is pseudo-contractible (see [12]). H. Katsuura proves in [8] that the space 
sin ( 1

x ) curve is not pseudo-contractible with factor space itself. In the same paper he proves that if the 
factor space Y is a nondegenerate indecomposable continuum such that each one of their composants is 
arc-wise connected, and if X is a continuum having a proper nondegenerate arc component, then X is 
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not pseudo-contractible with factor space Y . After that, W. Dębski proves in [5] that the space sin( 1
x )

curve is not pseudo-contractible. On the other hand, M. Sobolewski in [17] shows that the only (up home-
omorphism) pseudo-contractible chainable continuum is the arc. This shows that the pseudo-arc is not 
pseudo-contractible, answering Problem 118 of [12]. The interested reader is referred to [1], [7], [8], [12]
and [17] for getting more information about these results.

This paper is divided in nine sections. After preliminaries, we give, in sections three and four, several and 
general facts about pseudo-homotopies and pseudo-contractibility. In section five, pseudo-contractibility 
with respect to a topological space is studied. The concept pseudo-homotopy equivalent is related with 
pseudo-contractibility in section six. In sections seven and eight we give conditions which imply nonpseudo-
contractibility. Finally in section nine we present some open questions about it.

2. Preliminaries

A continuum means a nonempty compact connected metric space. A topological space is said to be 
continuumwise connected provided that any two of its points are contained in a proper subcontinuum of 
the space. A mapping means a continuous function. Let X and Y topological spaces, we write X ≈ Y

if X is homeomorphic to Y . An arc is understood as a homeomorphic image of the closed unit interval 
I = [0, 1]. If any two points of a space can be joined by an arc lying in the space, then the space is said to 
be arcwise-connected.

Let X and Y be topological spaces. The symbol C(X, Y ) denotes the topological space of all mappings 
from X to Y endowed with the compact-open topology. It is well known that if X is compact and Y is a 
compact metric space, then the compact-open topology coincides with the topology given by the supremum
metric on C(X, Y ).

Let (X1, τ1) and (X2, τ2) be topological spaces such that X1∩X2 = ∅. The free union of X1 and X2 is the 
topological space (X, τ), where X = X1 ∪X2 and U ∈ τ if and only if U ∩Xi ∈ τi for each i = 1, 2. The free 
union of X1 and X2 is denoted by X1+X2. If A is a non-empty closed subset of X1, f : A → X2 is a mapping 
and D is the partition of X1+X2 given by D = {{p} ∪f−1(p) : p ∈ f(A)} ∪{{x} : x ∈ X1+X2\(A ∪f(A))}, 
the decomposition space thus obtained is denoted by X1 ∪f X2 and it is called the attached space. If X and 
Y are disjoint continua, then the attached space X ∪f Y is a continuum ([15, Theorem 3.20]).

3. Pseudo-homotopy

In this section we will develop general facts concerning pseudo-homotopies.

Definition 1. Let X and Y be topological spaces and let f, g : X → Y be mappings. We say that f is 
homotopic to g (or f and g are homotopic, written by f � g), if there exists a mapping H : X × I → Y

(where I is the unit interval), called homotopy, fulfilling H(x, 0) = f(x) and H(x, 1) = g(x) for each x ∈ X.

Definition 2. Let X and Y be topological spaces and let f, g : X → Y be mappings. We say that f is 
pseudo-homotopic to g (or f and g are pseudo-homotopic) if there exist a continuum C, points a, b ∈ C and 
a mapping H : X × C → Y fulfilling H(x, a) = f(x) and H(x, b) = g(x) for each x ∈ X. The continuum C
is called factor space. The mapping H is called a pseudo-homotopy between f and g. We write f �C g to 
say that f is pseudo-homotopic to g, where C denotes a factor space.

It is easy to verify that if f �C g and there exist a continuum K, and an onto mapping from K to C, then 
f �K g. Moreover, if there are a continuum K ′ and an onto mapping from K ′ to some subcontinuum C ′ ⊂ C

such that a, b ∈ C ′, then f �K′ g. Recall that two continua X and Y are said to be continuously equivalent
provided that there are two onto mappings f : X → Y and g : Y → X. So if C and D are continuously 
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equivalent continua. Then f �C g if and only if f �D g. In particular if C1 ≈ C2, then f �C1 g if and only 
if f �C2 g. On the other hand if f �C g and K is a subcontinuum of C such that a, b ∈ K, then f �K g. 
In particular, if Iab is an irreducible continuum between a and b contained in C, then f �Iab

g. Moreover if 
Iab is an arc from a to b, then f � g. In particular f �C g implies f � g if C is arcwise-connected. Finally, 
it is easy to see that if f, g : X → Y are mappings such that f is pseudo-homotopic to g and Z is a subset 
of X, then f |Z is pseudo-homotopic to g|Z .

We will give an equivalence relation in C(X, Y ) as follows. Let f , g in C(X, Y ). We say that f is related 
to g if and only if there is a continuum K, such that f �K g. We write f �∗ g in order to say that f is 
related to g.

Theorem 3. The relation �∗ is an equivalence relation in C(X, Y ).

Proof. The reflexive and symmetric properties are immediate.
Let us just to prove transitivity. Let f, g, h : X → Y be mappings, such that f �∗ g and g �∗ h. Then 

there exist continua C1, C2, points a1, b1 ∈ C1, points a2, b2 ∈ C2 and mappings H1 : X × C1 → Y and 
H2 : X × C2 → Y fulfilling H1(x, a1) = f(x), H1(x, b1) = g(x) and H2(x, a2) = g(x), H2(x, b2) = h(x) for 
each x ∈ X respectively. Without loss of generality, we assume that C1∩C2 = ∅. We consider j : {b1} → C2
given by j(b1) = a2 and D = C1 ∪j C2. We define a function H : X ×D → Y by

H(x, d) =
{

H1(x, d) if d ∈ C1
H2(x, d) if d ∈ C2.

It is clear that H is a pseudo-homotopy between f and h. �
The equivalence classes in C(X, Y ) under the relation �∗ are called pseudo-homotopy classes.

Theorem 4. Let X and Y be compact metric spaces and let f, g : X → Y be mappings. The mappings f
and g are pseudo-homotopic if and only if there exist a continuum in C(X, Y ) containing f and g.

Proof. Suppose f �C g. For every c ∈ C, we define the mapping hc : X → Y given by hc(x) = H(x, c), 
where H is the pseudo-homotopy between f and g. Then the function G : C → C(X, Y ) defined by G(c) = hc

is continuous. Since C(X, Y ) is a Hausdorff space and G(C) ⊂ C(X, Y ), the image G(C) is a Hausdorff 
space. Hence G(C) is metrizable ([11, §41, VI, Theorem 3]). So, G(C) is a continuum containing f and g.

Conversely, let f , g ∈ C(X, Y ) and let H ⊂ C(X, Y ) be a continuum containing f and g. The function 
F : X ×H → Y given by F (x, h) = h(x) is continuous and it satisfies F (x, f) = f(x) and F (x, g) = g(x)
for all x ∈ X. �

In this sense every pseudo-homotopy class is continuumwise connected.

Corollary 5. Let X, Y be compact metric spaces. Every pair of mappings f, g : X → Y are pseudo-homotopic 
if and only if the space C(X, Y ) is continuumwise connected.

Regarding the composition of functions, we have the following results.

Theorem 6. Let h : Y → Z, k : W → X and f, g : X → Y be mappings. If f �C g, then h ◦ f �C h ◦ g and 
f ◦ k �C g ◦ k.

Proof. Since f �C g, there exist points a, b ∈ C and a mapping H : X ×C → Y such that H(x, a) = f(x)
and H(x, b) = g(x) for each x ∈ X.
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To prove the first part we consider the function G : X × C → Z defined by G(x, c) = (h ◦H)(x, c). The 
function G is a pseudo-homotopy between h ◦ f and h ◦ g.

On the other hand, the function F : W × C → Y given by H(z, c) = F (k(z), c) is a pseudo-homotopy 
between f ◦ k and g ◦ k. �
Theorem 7. Let f, f ′ : X → Y and g, g′ : Y → Z be mappings such that f �C1 f ′ and g �C2 g′. Then the 
composition g ◦ f is pseudo-homotopic to the composition g′ ◦ f ′.

Proof. By hypothesis, there are points a1, b1 ∈ C1, a2, b2 ∈ C2 and mappings H1 : X × C1 → Y and 
H2 : Y × C2 → Z such that H1(x, a1) = f(x), H1(x, b1) = f ′(x) for each x ∈ X and H2(y, a2) = g(y), 
H2(y, b2) = g′(y) for each y ∈ Y . Consider the continuum C = C1 × C2 and the points â0 = (a1, a2), b̂0 =
(b1, b2) ∈ C1 × C2, then the function F : X × (C1 × C2) → Z defined by F (x, (c1, c2)) = H2(H1(x, c1), c2)
is a pseudo-homotopy between g ◦ f and g′ ◦ f ′. �

Let {Xj}j∈J be a family of topological spaces and let 
∏

j∈J Xj the product space endowed with the 
product topology. Recall that the for each natural number i, the map πi :

∏
j∈J Xj → Xi is defined by 

πi((xj)j∈J ) = xi.
The following result follows from Theorem 6.

Theorem 8. Let {Yα}α∈I be a family of topological spaces. Let f, g : X →
∏

α∈I Yα be mappings. If f is 
pseudo-homotopic to g, then so are πα ◦ f and πα ◦ g.

Corollary 9. Let {Yn}n∈N be a family of topological spaces. Let f, g : X →
∏

n∈N
Yn be mappings. The 

mappings f and g are pseudo-homotopic if and only if the mappings πn ◦f and πn ◦g are pseudo-homotopic.

Proof. Let f, g : X →
∏

n∈N
Yn be mappings. Suppose that πn ◦ f and πn ◦ g are pseudo-homotopic for 

each n ∈ N. We have for every n ∈ N, there exist a continuum Cn, points an, bn ∈ Cn and a mapping 
Hn : X×Cn → Yn such that Hn(x, an) = (πn ◦f)(x) and Hn(x, bn) = (πn ◦g)(x). Notice that C =

∏
n∈N

Cn

is a continuum. Let a = (an)n∈N, b = (bn)n∈N ∈ C. The function H : X × C →
∏

n∈N
Yn defined by 

H(x, (cn)n∈N) = (Hn(x, cn))n∈N is a pseudo-homotopy between f and g.
The converse is immediate from Theorem 8. �

4. Pseudo-contractibility

In this part we will give general facts about pseudo-contractibility. Let us start with the usual definition 
of contractibility.

Definition 10. A topological space X is said to be contractible if its identity mapping is homotopic to 
a constant mapping in X, i.e., there exists a mapping H : X × [0, 1] → X satisfying H(x, 0) = x and 
H(x, 1) = x0, for each x ∈ X.

Definition 11. A topological space X is said to be pseudo-contractible if its identity mapping is pseudo-
homotopic to a constant mapping into X, i.e., there exist a continuum C, points a, b ∈ C, x0 ∈ X and a 
mapping H : X × C → X fulfilling H(x, a) = x and H(x, b) = x0 for each x ∈ X.

Notice that X is (pseudo-)contractible if and only if each mapping f : X → X is (pseudo-)homotopic to 
a constant mapping.

The following example was given by W. Kuperberg and it was the first example showing that the concepts 
of contractibility and pseudo-contractibility are different. We describe and draw here this example for the 
interested readers (see Fig. 1).
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Fig. 1. Pseudo-contractible continuum.

Example 12 (W. Kuperberg). Let C be the complex plane and let X0 = { t+2
t+1e

it : t ∈ [0, ∞)} be the spiral 
approaching the unit circle S1. Let X = X0 ∪ {x : |x| ≤ 1} ⊂ C. We observe that the continuum X is not 
contractible because it is not arc-wise connected.

Consider C = X0 ∪ {x : |x| = 1} ∪X1 ⊂ C, where X1 = {x ∈ C : Im(x) = 0, 0 ≤ Re(x) ≤ 1}.
We define a mapping H : X × C → X as follows:

1. H( t+2
t+1e

it, t
′+2
t′+1e

it′) = t+t′+2
t+t′+1e

i(t+t′) if t, t′ ∈ [0, ∞).
2. H(x, t+2

t+1e
it) = xeit if |x| ≤ 1, t ∈ [0, ∞).

3. H(x, x′) = xx′ if |x| ≤ 1, |x′| = 1 or x′ ∈ X1.
4. H( t+2

t+1e
it, x) = xeit if t ∈ [0, ∞), |x| = 1 or x ∈ X1.

We have that H(x, 2) = x and H(x, 0) = 0 for each x ∈ X. So, X is pseudo-contractible.

As a consequence of the comments after of Definition 2 and Urysohn’s Lemma, we have the following 
four results.

Theorem 13. If a continuum X is pseudo-contractible with (locally connected continuum) arcwise-connected 
continuum as factor space, then X is contractible.

Corollary 14. If X is a pseudo-contractible continuum with factor space C and f : C ′ → C is an onto 
mapping, then X is pseudo-contractible with factor space C ′.

Corollary 15. Let C1 and C2 be continua such that C1 is continuously equivalent to C2. Hence X is pseudo-
contractible with factor space C1 if and only if X is pseudo-contractible with factor space C2.

Corollary 16. If a topological space X is contractible, then X is pseudo-contractible with any continuum as 
factor space.

From Hahn–Mazurkiewicz’s Theorem, every locally connected continuum is the continuous image to the 
interval [0, 1]. By Urysohn’s Lemma, there exist mappings from every normal space to the interval [0, 1]. So, 
each locally connected continuum C is continuously equivalent to the interval.

In this way, we have the following.

Theorem 17. Let X be a topological space, the following are equivalent:

1. X is pseudo-contractible with any continuum as factor space.
2. X is pseudo-contractible with any locally connected continuum C as factor space.
3. X is pseudo-contractible with some locally connected continuum C as factor space.
4. X is pseudo-contractible with some arcwise-connected continuum as factor space.
5. X is pseudo-contractible with any arcwise-connected continuum as factor space.
6. X is pseudo-contractible with some factor space C such that a and b can be joined with an arc in C, 

where C, a and b are as in Definition 11.
7. X is contractible.
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Definition 18. Let X be a topological space and let A be a closed subset of X. A retraction from X onto A
is a mapping r : X → A such that r(a) = a for each a ∈ A. The set A is called a retract of X.

We will see that pseudo-contractibility (as well as contractibility) is preserved under retractions.

Theorem 19. Let X be a pseudo-contractible space. If A is a retract of X, then A is pseudo-contractible.

Proof. Let C a continuum, let a, b ∈ C, x0 ∈ X and let H : X ×C → X a mapping satisfying H(x, a) = x

and H(x, b) = x0 for each x ∈ X. Since A is a retract of X, there exists a mapping r : X → A such 
that r(y) = y for each y ∈ A. Let a0 = r(x0) ∈ A. Consider the mapping i : A × C → X × C given by 
i(y, c) = (y, c).

In order to show that A is pseudo-contractible consider the mapping G : A × C → A defined by 
G(y, c) = (r ◦ H ◦ i)(y, c). The function G is a pseudo-homotopy between the identity mapping and a 
constant mapping. �
Remark 20. Notice that pseudo-contractibility is a topological property.

Theorem 21. Let X and Y be topological spaces. The spaces X and Y are pseudo-contractible if and only if 
the product space X × Y is pseudo-contractible.

Proof. If X and Y are pseudo-contractible, there exist continua C1, C2, points a1, b1 ∈ C1, a2, b2 ∈ C2, 
x0 ∈ X, y0 ∈ Y and mappings H1 : X ×C1 → X, H2 : Y ×C2 → Y fulfilling H1(x, a1) = x, H1(x, b1) = x0
and H2(y, a2) = y, H2(y, b2) = y0 for each x ∈ X and each y ∈ Y . Consider the continuum C1 × C2
and the points (a1, a2), (b1, b2) ∈ C1 × C2. The function H : (X × Y ) × (C1 × C2) → X × Y defined 
by H((x, y), (c1, c2)) = (H1(x, c1), H2(y, c2)) is a pseudo-homotopy between the identity mapping and the 
constant mapping whose image is (x0, y0).

Now suppose that X × Y is pseudo-contractible, let (x0, y0) ∈ X × Y of image of the constant mapping 
satisfying the definition of pseudo-contractibility. Since X×{y0} ≈ X and {x0} ×Y ≈ Y , and X×{y0} and 
{x0} ×Y are retracts of X×Y , Theorem 19 and Remark 20 imply that X and Y are pseudo-contractible. �
Corollary 22. Let {Xn}n∈N be a sequence of topological spaces. The space Xn is pseudo-contractible for all 
n ∈ N if and only if the product space 

∏
n∈N

Xn is pseudo-contractible.

Proof. Suppose Xn is pseudo-contractible for all n ∈ N, hence there exist {Cn}n∈N a sequence of con-
tinua, points an, bn ∈ Cn, x0

n ∈ Xn and mappings Hn : Xn × Cn → Xn, satisfying Hn(x, an) = x, 
Hn(x, bn) = x0

n for each x ∈ Xn and each n ∈ N. Consider the continuum C =
∏

n∈N
Cn and the points 

(an)n∈N, (bn)n∈N ∈ C. We define the function H : (
∏

n∈N
Xn) × C →

∏
n∈N

Xn by H((xn)n∈N, (cn)n∈N) =
(Hn(xn, cn))n∈N. The mapping H is a pseudo-homotopy between the identity mapping and the constant 
mapping whose image is (x0

n)n∈N.
Now assume that 

∏
n∈N

Xn is pseudo-contractible, let (x0
n)n∈N ∈

∏
n∈N

Xn of image of the constant 
mapping satisfying the definition of pseudo-contractibility. Note that Xn ×

∏
j �=n{x0

j} ≈ Xn and Xn ×∏
j �=n{x0

j} is a retract of 
∏

n∈N
Xn, for each n ∈ N. It follows from Theorem 19 and Remark 20 that Xn is 

pseudo-contractible for each n ∈ N. �
As a consequence of Theorem 19 and Remark 20 we have the following results.

Corollary 23. Let {Xα}α∈I be a family of topological spaces. If 
∏

α∈I Xα is pseudo-contractible, then Xα is 
pseudo-contractible for each α ∈ I.
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Corollary 24. Let X be a topological space. The following five statements are equivalent:

1. X is pseudo-contractible.
2. Xn is pseudo-contractible for each n ∈ N .
3. Xn is pseudo-contractible for some n ∈ N .
4. The cylinder X × [0, 1] is pseudo-contractible.
5.

∏
n∈N

Xn is pseudo-contractible, where Xn = X for each n ∈ N.

5. Pseudo-contractibility with respect to Y

Definition 25. Let X and Y be topological spaces. We say that X is (pseudo-)contractible with respect to Y

if each mapping f : X → Y is (pseudo-)homotopic to a constant mapping.

Definition 26. A subspace Z of X is said to be (pseudo-)contractible in X if the inclusion mapping into X, 
is (pseudo-)homotopic to a constant mapping in X.

Note that if Z ⊂ X and Z is (pseudo-)contractible with respect to X, then Z is (pseudo-)contractible 
in X.

Theorem 27. If X is pseudo-contractible with respect to Y and Y is continuumwise connected, then every 
pair of mappings from X into Y are pseudo-homotopic. In particular this holds if X is pseudo-contractible 
with respect to Y and Y is a continuum.

Proof. Let f, g : X → Y be mappings. Since X is pseudo-contractible with respect to Y , there exist 
mappings H1 : X × C1 → Y and H2 : X × C2 → Y , points a1, b1 ∈ C1 and a2, b2 ∈ C2 such that 
H1(x, a1) = f(x), H1(x, b1) = y1 and H2(x, a2) = y2, H2(x, b2) = g(x). Since Y is continuumwise connected, 
there exists a continuum K joining y1 and y2. Now we consider the attached continuum C = C1 ∪j K ∪lC2, 
where j : {b1} → K, l : {y2} → C2 are mappings defined by j(b2) = y1 and l(y2) = a2. Define the mapping 
F : X × C → Y as follows,

F (x, c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H1(x, c) if c ∈ C1 − {b1},
y1 if c = {b1, y1},
c if c ∈ K − {y1, y2},
y2 if c = {a2, y2},

H2(x, c) if c ∈ C2 − {a2}.

It can be checked that F is a pseudo-homotopy between f and g. �
Note that if X is a topological space, Y is continuumwise connected and X is pseudo-contractible with 

respect to Y , then every pair of constant mappings from X into Y are pseudo-homotopic with factor space 
Y ′ ⊂ Y , where Y ′ is a subcontinuum containing the image of both constant mappings. In this case the 
projection mapping of the product X × Y ′ to Y ′ is the pseudo-homotopy. On the other hand, if Z is a 
continuumwise connected pseudo-contractible space, then its identity mapping is pseudo-homotopic to any 
constant mapping. In particular these results hold when Y and Z are continua.

Corollary 28. Let X be a compact metric space and let Y be a (continuum) continuumwise connected space. 
X is pseudo-contractible with respect to Y if and only if the space C(X, Y ) is continuumwise connected.

Proof. Let f, g : X → Y be mappings. Since X is pseudo-contractible with respect to Y , Theorem 27
implies f �C g. From Theorem 4, there exists a continuum in C(X, Y ) joining f with g.
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Conversely, we take two mappings f, g : X → Y where g is a constant mapping. By hypothesis there 
exists a continuum K in C(X, Y ) joining f with g. We apply Theorem 4 to get that X is pseudo-contractible 
with respect to Y . �
Theorem 29. Let X be a continuum (continuumwise connected space) the following statements are equivalent.

1. X is pseudo-contractible.
2. For each compact metric space Y , X is pseudo-contractible with respect to Y .
3. For each compact metric space Z, Z is pseudo-contractible with respect to X.
4. C(X, X) is continuumwise connected.

Proof. (1) ⇒ (2). Let Y be a compact metric space and let f : X → Y be a mapping. Since X is pseudo-
contractible, the identity mapping is pseudo-homotopic to a constant mapping. By Theorem 6, we have that 
f = f ◦ idX is pseudo-homotopic to a constant mapping. Hence X is pseudo-contractible with respect to Y .

(1) ⇒ (3). Let Z be a compact metric space and let g : Z → X be a mapping. Since X is pseudo-
contractible, the identity mapping is pseudo-homotopic to a constant mapping. By Theorem 6, g = idX ◦ g
is pseudo-homotopic to a constant mapping, so Z is pseudo-contractible with respect to X.

The implications (2) ⇒ (1) and (3) ⇒ (1) are immediate.
Since X is a continuum, by Corollary 28 we have (1) if and only if (4). �

Remark 30. Notice that if X is pseudo-contractible, then the space C(X, X) is continuumwise connected 
and therefore connected. We do not if the condition C(X, X) connected implies X is pseudo-contractible.

Theorem 31. Let X and Y be topological spaces. If X is pseudo-contractible with respect to Y and A is a 
retract of X, then A is pseudo-contractible with respect to Y .

Proof. Let f : A → Y be a mapping and let r : X → A be a retraction from X to A. Since X is 
pseudo-contractible with respect to Y , then f ◦ r : X → Y is pseudo-homotopic to a constant mapping. On 
the other hand, we know that the restriction of two mappings are homotopic if the mappings are homotopic, 
so f = (f ◦ r)|A is pseudo-homotopic to a constant mapping. �

In the following sections we will obtain several obstructions to pseudo-contractibility. So, it is possible to 
get new pseudo-contractible continua and new non pseudo-contractible continua.

6. Pseudo-homotopically equivalent and pseudo-contractibility

Definition 32. Let X and Y be topological spaces. We say that Y is semi-homotopy equivalent to X, written 
Y ≈SE X, if there exist two mappings g : Y → X and f : X → Y such that f ◦ g � idY .

Definition 33. Let X and Y be topological spaces. We say that Y is semi-pseudo-homotopy equivalent to X, 
written Y ≈SE

P X, if there exist a continuum C and two mappings g : Y → X and f : X → Y such that 
f ◦ g �C idY .

When the factor space C is homeomorphic to the interval I = [0, 1], Y ≈SE
P X is equal to Y ≈SE X.

Theorem 34. Let Y and X be topological spaces. If X is pseudo-contractible and Y is semi-pseudo-homotopy 
equivalent to X, then so is Y .
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Proof. By hypothesis, we have that idX �C x0, where x0 is a constant mapping, also there exist two 
mappings g : Y → X and f : X → Y and a continuum K, such that f ◦ g �K idY . By Theorem 6, 
f = f ◦ idX �C f ◦ x0. Notice that y0 = f ◦ x0 : X → Y is a constant mapping.

Therefore, by Theorem 6, we have that f ◦ g �C y0 ◦ g, where y0 ◦ g : Y → Y is a constant mapping. 
Since idY �K f ◦ g and f ◦ g �C y0 ◦ g, by Theorem 3, there exists a continuum D satisfying idY �D y0 ◦ g. 
Hence Y is pseudo-contractible. �
Theorem 35. Let X, Z and Y be topological spaces. If X is pseudo-contractible with respect to Y and 
Z ≈SE

P X, then Z is pseudo-contractible with respect to Y .

Proof. Let h : Z → Y be a mapping. Since Z ≈SE
P X there are mappings f : Z → X and g : X → Z such 

that g ◦ f �K idZ . Then, by Theorem 6, h ◦ g ◦ f �K h ◦ idZ = h.
On the other hand, since X is pseudo-contractible with respect to Y , h ◦ g �C y0, where y0 is a constant 

mapping. Hence, by Theorem 6, h ◦ g ◦ f �C y0 ◦ f = y0. Therefore, by Theorem 3, h �D y0. �
Theorem 36. Let X, Z and Y be topological spaces. If X is pseudo-contractible with respect to Y and 
Z ≈SE

P Y , then X is pseudo-contractible with respect to Z.

Proof. Let h : X → Z be a mapping. Since Z ≈SE
P Y there exist mappings f : Z → Y and g : Y → Z such 

that g ◦ f �K idZ . Then by Theorem 6, g ◦ f ◦ h �K idZ ◦ h = h.
On the other hand, since X is pseudo-contractible with respect to Y , f ◦ h �C y0. Hence by Theorem 6, 

g ◦ f ◦ h �C g ◦ y0 = g(y0). Therefore, Theorem 3 implies that h �D g(y0). �
Definition 37. Let X and Y be topological spaces. It is said that X and Y are homotopically equivalent (or 
have the same homotopy type), written X ≈E Y , if there exist two mappings f : X → Y and g : Y → X

such that f ◦ g � idY and g ◦ f � idX .

Definition 38. Let X and Y be topological spaces. It is said that X and Y are pseudo-homotopically equivalent 
(or have the same pseudo-homotopy type), written X ≈E

P Y , if there exist two mappings f : X → Y and 
g : Y → X and two continua K and C such that f ◦ g �K idY and g ◦ f �C idX .

When the factor spaces C and K are homeomorphics to the interval I = [0, 1], Y ≈E
P X is equals Y ≈E X.

As a corollary of Theorem 34 we get the following.

Corollary 39. Let X and Y be topological spaces. If X ≈E
P Y and one of them is pseudo-contractible, then 

the other one is pseudo-contractible.

The following theorem is easy to prove.

Theorem 40. Let X be a topological space. X is pseudo-contractible if and only if X has the same pseudo-
homotopy type as a point p.

Note that Definition 33 gives us a relation within the family of all topological spaces. We say that X ∼ Y

if and only if Y ≈E
P X.

Proposition 41. The relation ∼ is an equivalence relation.

Proof. The reflexive and symmetric properties are immediate.
If Y ≈E

P X, then there exist mappings g : Y → X and f : X → Y and continua C and D, such that 
f ◦ g �C idY and g ◦f �D idX . In the same way if Z ≈E

P Y , there exist mappings h : Z → Y and j : Y → Z
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and continua E and F such that j ◦ h �E idZ and h ◦ j �F idY . Let H : Z → X the mapping given by 
H(z) = (g ◦ h)(z) and G : X → Z is a mapping defined by G(x) = (j ◦ f)(x). By hypothesis we have that 
h ◦ j �F idY . Applying Theorem 6, we obtain (h ◦ j) ◦f �F f and g ◦ (h ◦ j) ◦f �F g ◦f . Since g ◦f �D idX , 
Theorem 3 guarantees a continuum M such that H ◦G = g ◦ h ◦ j ◦ f �M idX . In the same way, it can be 
proved G ◦H �N idZ . �

Concerning to the product of topological spaces we have the following result.

Proposition 42. Let {Xn}n∈N, {Yn}n∈N be families of compact metric spaces. If Xn ≈E
P Yn for each n ∈ N

then 
∏

n∈N
Xn ≈E

P

∏
n∈N

Yn.

Proof. For each n ∈ N, there exist continua Cn, Dn and maps fn : Xn → Yn and gn : Yn → Xn such that 
fn ◦gn �Cn

idYn
and gn ◦fn �Dn

idXn
. That means, for each n ∈ N we have mappings Hn : Xn×Cn → Xn

and Gn : Yn ×Dn → Yn such that Hn(x, an) = (fn ◦ gn)(x) and Hn(x, bn) = x and Gn(y, a′n) = (gn ◦ fn)(y)
and Gn(y, b′n) = y respectively. Let f :

∏
n∈N

Xn →
∏

n∈N
Yn and g :

∏
n∈N

Yn →
∏

n∈N
Xn given by 

f((xn)n∈N) = (fn(xn))n∈N and g((yn)n∈N) = (gn(yn))n∈N respectively. Let C =
∏

n∈N
Cn, â = (an)n∈N, ̂b =

(bn)n∈N we will prove that f ◦ g �C idY . We define the mapping Ĥ :
∏

n∈N
Xn × C →

∏
n∈N

Xn by 
Ĥ((xn)n∈N, (cn)n∈N) = (Hn(xn, cn))n∈N.

We have that Ĥ((xn)n∈N, (an)n∈N) = (Hn(xn, an))n∈N = ((fn ◦ gn)(xn))n∈N = (f ◦ g)(x̂) and 
Ĥ((xn)n∈N, (bn)n∈N) = (Hn(xn, bn))n∈N = (xn)n∈N = x̂.

Analogously it can be proved that g ◦ f �D idX . �
7. Trivial shape and pseudo-contractibility

Recall that a compact metric space K, is called absolute neighbourhood retract, written ANR, provided 
that whenever K is embedded in a metric space Y , the embedded copy K ′ of K is a retract of some 
neighbourhood of K ′ in Y . Let X be a continuum. We say that X has trivial shape provided that each 
mapping from X into an ANR space is homotopic to a constant mapping.

It is well known the following result (see [4]).

Theorem 43. Let X be a continuum. The following sentences are equivalents:

1. X has trivial shape.
2. X can be written as X =

⋂
n∈N

Xn, where Xn is a contractible continuum and Xn+1 ⊆ Xn for every 
n ∈ N.

3. X can be written as an inverse limit of contractible continua.
4. For all ε > 0 there exists a contractible continuum Yε and an ε-map fε from X onto Yε.

The following proposition appears in [17].

Proposition 44. Let X be a compact metric space and let Y be an ANR space. If f, g : X → Y are 
pseudo-homotopic, then they are homotopic.

As an immediate consequence we obtain the following result.

Proposition 45. Let X be a compact metric space and let Y be an ANR space. The space X is pseudo-
contractible with respect to Y if and only if X is contractible with respect to Y .
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Proof. Suppose that X is pseudo-contractible with respect to Y . Let f : X → Y be a mapping, then by 
Definition 25, f is pseudo-homotopic to a constant mapping. Since Y is an ANR space, Proposition 44, 
shows that f is homotopic to a constant mapping. Therefore, X is contractible with respect to Y . The 
converse is trivial. �

Note that if X is pseudo-contractible with respect to Y and Y is an ANR space (hence X is contractible 
with respect to Y ). Then, Y is arcwise-connected if and only if C(X, Y ) is arcwise-connected.

Corollary 46. Let X be an ANR space. Then, X is pseudo-contractible if and only if X is contractible.

Corollary 47. Let X be a compact metric space. Then, X has trivial shape if and only if X is pseudo-
contractible with respect to each ANR space.

Proof. Suppose that X is pseudo-contractible with respect to each ANR space. By Proposition 45, X is 
contractible with respect to each ANR space. Therefore X has trivial shape. The converse is immediate. �
Theorem 48. If X is a pseudo-contractible continuum, then the following statements are true:

1. X has trivial shape.
2. X can be written as X =

⋂
n∈N

Xn, where Xn is a contractible continuum and Xn+1 ⊆ Xn, for every 
n ∈ N.

3. X can be written as an inverse limit of contractible continua.
4. For all ε > 0, there exists a contractible continuum Yε and an ε-map fε from X onto Yε.

Proof. By Theorem 43, it is enough to prove that X has trivial shape. Since X is a pseudo-contractible 
continuum, then by Theorem 29, the space X is pseudo-contractible respect to each compact metric space. 
In particular X is a pseudo-contractible with respect to each ANR space. Therefore, by Corollary 47, X has 
trivial shape. �

The converse of Theorem 48 is not true.

Example 49. The sin( 1
x ) curve satisfies the conditions of Theorem 48, but it is not pseudo-contractible 

(see [5]).

On the other hand, notice that if Y ≈E
P sin( 1

x ) then Y is not pseudo-contractible.
It is well known that S1 does not have trivial shape. So, S1 is not pseudo-contractible. Notice that 

whether X ≈E S1, then by Corollary 39, X is not pseudo-contractible. The following continua are some 
examples of non pseudo-contractible continua because all of them have the same homotopy type that S1.

1. The annulus A = {(x, y) : 1 ≤ x2 + y2 ≤ 2)}.
2. The Solid Torus S1 ×D2.
3. The Möbius strip.

In general, if X is of non-trivial shape and Y ≈E
P X, then Y is not pseudo-contractible.

Notice that S1 �≈E W , where W denotes the Warsaw circle, but they have the same shape.

Definition 50. Let X and Y be topological spaces. A mapping f : X → Y is said to be (pseudo-)essential
provided that f is not (pseudo-)homotopic to any constant mapping of X into Y . A mapping f : X → Y is 
said to be (pseudo-)inessential provided that f is not (pseudo-)essential.
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In this way, if f : X → Y is a (pseudo-)essential mapping, then X is not (pseudo-)contractible with 
respect to Y . Note that whether Y is an ANR space the notions of pseudo-essential mapping and essential 
mapping coincide.

The following theorem allows to construct more non pseudo-contractible continua.

Theorem 51. If X is a proper circle-like continuum, then X is not pseudo-contractible.

Proof. Since X is a proper circle-like continuum, by [10, Theorem 3.2] there exists an essential mapping 
from X onto S1. Therefore, X is not pseudo-contractible. �

In particular the pseudo-circle is not pseudo-contractible because it is a proper circle-like continuum.

8. Property b) and pseudo-contractibility

Recall that a space X has Property b) provided that for each mapping f : X → S1, there exists a mapping 
g : X → R such that f = exp ◦g, where exp : R → S1 is defined by exp(t) = (cos(2πt), sin(2πt)) and R
denotes the real line. The mapping g is called a lift of f .

The following result is well known.

Theorem 52. [18, Theorem 6.2] Let X be a compact metric space. The space X is contractible with respect 
to S1 if and only if X has Property b).

As a consequence of Proposition 45 and Theorem 52, we have the following.

Corollary 53. Let X be a compact metric space. The following conditions are equivalents:

1. X is pseudo-contractible with respect to S1.
2. X is contractible with respect to S1.
3. X has Property b).
4. C(X, S1) is arcwise-connected.

Theorem 54. Let X be a compact metric space. If X is pseudo-contractible then X has Property b).

Proof. By Theorem 29, X is pseudo-contractible with respect to S1. Hence, by Corollary 53, X has Prop-
erty b). �

Note that if X does not have Property b), then every space Y such that Y ≈E X is not pseudo-
contractible.

Recall that a continuum is said to be unicoherent provided that the intersection of any two of its subcon-
tinua whose union is the whole continuum is connected. A continuum is said to be hereditarily unicoherent
provided that each of its subcontinua is unicoherent. The following result is very important concerning 
unicoherence.

Theorem 55. [18, Theorem 7.3] Every connected space X having the property b) is unicoherent.

Corollary 56. Let X be a continuum. If X is pseudo-contractible then it is unicoherent.

As a consequence we have that if X is not unicoherent, then every space Y such that Y ≈E
P X is not 

pseudo-contractible.
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Definition 57. A continuum X is acyclic if Ȟ1(X, Z) = 0; i.e., the first Čech cohomology group with integer 
coefficients is trivial.

By [6, Theorem 8.1], a continuum having Property b) is acyclic.
As a consequence we have the following result.

Corollary 58. Let X be a continuum. If X is pseudo-contractible, then X is acyclic.

So, if X is not acyclic, then every space Y such that Y ≈E
P X, is not pseudo-contractible.

A continuum is said to be a dendroid, if it is arcwise-connected and hereditarily unicoherent. A continuum 
is said to be decomposable provided that it can be written as the union of two proper subcontinua and it is 
called hereditarily decomposable if each of its nondegenerate subcontinua of is decomposable. A λ-dendroid
means a hereditarily unicoherent and hereditarily decomposable continuum. It is well known that dendroids 
are λ-dendroids ([15, p. 226]). A curve means a one-dimensional continuum.

Finally, we will give some results when the topological space is a curve.

Theorem 59. If X is a pseudo-contractible curve then it is hereditarily unicoherent.

Proof. By Theorem 48, X has trivial shape. Thus, by [9, Theorem 2.1 (B)], X is tree like. Therefore, by [2, 
Theorem 1], X is hereditarily unicoherent. �

By using Theorem 59, we can give some examples of continua non pseudo-contractible. For instance:

1. The Menger sponge.
2. The Sierpinski carpet.
3. A Compactification of an arc with remainder a circle.

In general if X is a non hereditarily unicoherent curve, then every space Y such that Y ≈E
P X is not 

pseudo-contractible.
Notice that solenoids are not pseudo-contractible because they are hereditarily unicoherent, circle-like, 

and non acyclic curves.
It is known that every hereditarily decomposable continuum is a curve, hence we have the following 

result.

Corollary 60. Let X be a hereditarily decomposable continuum. If X is pseudo-contractible, then X is a 
λ-dendroid.

The converse is not true, see Example 49.
A metric space X is homogeneous provided that for each pair of points x, y ∈ X, there exists a homeo-

morphism h : X → X such that h(x) = y.

Theorem 61. If X is a hereditarily decomposable pseudo-contractible continuum, then X is not homogeneous.

Proof. If we assume that X is homogeneous, by [14, Lemma 5.2], there exists an essential mapping from X
onto S1, a contradiction. �

In other words, every hereditarily decomposable homogeneous continuum is not pseudo-contractible or 
if there exists a homogeneous pseudo-contractible continuum it must be non hereditarily decomposable or 
equivalently the continuum must contains some indecomposable continuum.
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Fig. 2. Non pseudo-contractible dendroid.

Fig. 3. Locally connected pseudo-contractible continuum.

Theorem 62. If X is a decomposable homogeneous curve then X is not pseudo-contractible.

Proof. If X is a decomposable homogeneous curve, by [14, Lemma 5.1], there exists an essential mapping 
from X onto S1. Therefore, X is not pseudo-contractible. �

As a consequence of the last result, we have that if X is a decomposable pseudo-contractible curve, then 
X is not homogeneous, or if there exists a homogeneous pseudo-contractible curve X, then X is indecom-
posable. On the other hand, a continuum X is said to be hereditarily equivalent if every subcontinuum 
nondegenerate of X is homeomorphic to X. By [13, 2.6.39, Corollary] each hereditarily equivalent contin-
uum is a curve. So, if there exists a pseudo-contractible homogeneous hereditarily equivalent continuum, it 
must be indecomposable.

Note that the circle of pseudo-arcs is not pseudo-contractible because it is a decomposable homogeneous 
curve.

Corollary 63. Let X be a curve. The following statements hold:

1. If X is pseudo-contractible with arcwise-connected continuum as factor space, then X is a uniformly 
arcwise-connected dendroid. Moreover, the dendroid X is contractible.

2. If X is pseudo-contractible and arcwise-connected then X is a dendroid.
3. The space X is locally connected and pseudo-contractible if and only if X is a dendrite.

The converses of Corollary 63.1 and Corollary 63.2 are not true. We consider the continuum given in [17, 
Corollary 5]. The continuum X is a uniformly arcwise-connected dendroid but it is not pseudo-contractible. 
See Fig. 2.

Finally, there exists a locally connected continuum X of dimension two, which is pseudo-contractible but 
is not contractible (W. Kuperberg, personal communication), see Fig. 3.

9. Questions

In this part we have some questions about pseudo-contractibility. First of all, notice that is natural to 
ask the following question.
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Question 64. What kinds of continua satisfy that if X is pseudo-contractible implies X contractible?

Partial answers are given in Theorem 17, Corollary 46 and Corollary 63.
In particular and according to the second example given by W. Kuperberg, the next two questions were 

formulated.

Question 65. [3, Question 4.10] Is every pseudo-contractible dendroid, contractible?

Question 66. [12, Problem 118] Does there exist a curve which is pseudo-contractible but not contractible?

M. Sobolewski in [17] proves that the only non degenerate chainable pseudo-contractible continuum 
is the arc. In particular, the pseudo-arc and the Knaster-type indecomposable continua are not pseudo-
contractible. In this sense is asked the following question.

Question 67. [16, Question 19] Does there exist a nondegenerate (hereditarily) indecomposable continuum 
which is pseudo-contractible?

Finally, concerning Remark 30, we have the following question.

Question 68. Does there exist a continuum X, which C(X, X) is connected but X is not pseudo-contractible?
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