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Abstract. In this paper we discuss the notions of pseudo-contractibi-
lity and weak contractibility on hyperspaces of (Hausdorff) continua. Also
we prove that if a continuum X contains an Ri-set then it is not pseudo-
contractible. As a consequence we have that the existence of an Ri-set in
a continuum X implies non(pseudo)-contractibility of some hyperspaces.

1. Introduction

R. H. Bing introduced the notion of pseudo-contractibility. However, W.
Kuperberg gave the first example which proves that the notions of pseudo-
contractibility and contractibility are different. This example was never pub-
lished by himself but it is known among continuum theorists. He asked
whether or not the sin 1

x
–curve is pseudo-contractible. H. Katsuura proves

in [11] that the sin 1
x
–curve is not pseudo-contractible with factor space itself.

In the same paper he proves that if the factor space Y is a non-degenerate
indecomposable continuum such that each one of its composants is arc-wise
connected, and if X is a continuum having a proper non-degenerate arc com-
ponent, then X is not pseudo-contractible with factor space Y .

W. De֒bski shows in [7] that the sin 1
x
–curve is not pseudo-contractible.

On the other hand, M. Sobolewsky proves that the only chainable continuum
that is pseudo-contractible is the arc, see [19]. In particular the pseudo-arc
is another example of a non pseudo-contractible continuum. In [3] there is
a general study about pseudo-homotopies and pseudo-contractibility. The
interested reader is referred to [2, 3, 7, 9, 11] and [19].

2010 Mathematics Subject Classification. 54C05, 54C10, 54B20, 54B15.
Key words and phrases. Continuum, hyperspace, contractibilty.

359
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In [18] D. G. Paulowich studies the concepts of contractibility and weak
contractibility on Hausdorff continua and their hyperspaces. He used the
same ideas used in metric continua to define contractibility and weak con-
tractibility in Hausdorff continua (the factors spaces in those concepts are
Hausdorff continua) as well as we have defined here contractibility and pseudo-
contractibility with metric continua. These concepts are different, however
both concepts are equivalent when we use metric continua.

The present paper is divided in five sections. After the introduction and
preliminaries, in section 3 we present results about weak contractibility and
pseudo-contractibilty on hyperspaces, mainly we show that the concepts of
weak contractibility (pseudo-contractibility) and contractibility are equivalent
in some hyperspaces. In section 4 we prove that if a continuum X contains an
Ri-set then it is not pseudo-contractible. As a consequence we have that the
existence of an Ri-set in a continuum X implies non(pseudo)-contractibility of
some hyperspaces. In section 5 we present some questions regarding pseudo-
contractibility on hyperspaces.

2. Preliminaries

A continuum means a nonempty compact connected metric space. A
nonempty compact connected Hausdorff space is called Hausdorff continuum.
A map is a continuous function. If there exists a homeomorphism f : X → Y ,
we say that X is homeomorphic to Y and we write X ≈ Y . A continuum X
is said to be unicoherent provided that for each pair of subcontinua H and
K of X such that X = H ∪ K, H ∩ K is connected, and it is hereditarily
unicoherent if each subcontinuum of X is unicoherent. An arc is understood
as a homeomorphic image of a closed unit interval I = [0, 1]. A space Z is
said to be arcwise-connected provided each pair of points of a space Z can be
joined by an arc lying in Z. A curve is a one-dimensional continuum.

A continuum X is arc-like (circle-like) provided that for each ε > 0, there
exists an ε-map f : X → [0, 1] (f : X → S1, where S1 is the unit circle). A
proper circle-like continuum is a circle-like continuum which is not an arc-like
continuum. If A ⊂ X , here Bd(A) denotes the boundary of A in X , and A
denotes the closure of A in X .

Let X be a Hausdorff continuum. The hyperspace of all nonempty closed
subsets of X is denoted by 2X , the hyperspace of all subcontinua of X is
denoted by C(X). If n ∈ N, the hyperspace of all nonempty closed subsets
of X with at most n components is denoted by Cn(X), the hyperspace of all
nonempty subsets of X with at most n points is denoted by Fn(X), in partic-
ular F1(X) is called the hyperspace of singletons of X and it is homeomorphic
to X , F∞(X) denotes the hyperspace of all finite subsets of X and C∞(X) de-
notes the hyperspace of all closed subsets of X with a finite number of compo-
nents. Note that C1(X) = C(X), F1(X) ⊂ C(X) ⊂ Cn(X) ⊂ C∞(X) ⊂ 2X ,
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F1(X) ⊂ Fn(X) ⊂ F∞(X) ⊂ C∞(X) ⊂ 2X and Fn(X) ⊂ Cn(X). If X
is a Hausdorff continuum these hyperspaces are endowed with the Vietoris
Topology. If X is a metric continuum these hyperspaces are also endowed
with the Hausdorff metric defined by: Hd(A,B) = inf{ε > 0|A ⊂ Nε(B)
and B ⊂ Nε(A)}, where Nε(Y ) = {x ∈ X | there exists y ∈ Y such that
d(y, x) < ε}, ε > 0 and Y ∈ 2X . It is well known that Hd(A,B) < ε if and
only if A ⊂ Nε(B) and B ⊂ Nε(A).

The following are the usual definitions related with contractibility (see for
example [20, p. 225], [13, pp. 370, 374], [10, pp. 155, 156]).

Definition 2.1. Let X and Y be topological spaces and let f, g : X → Y
be maps. We say that f is homotopic to g (or f and g are homotopic), written
f ≃ g, if there exists a map H : X × I → Y , called homotopy, fulfilling
H(x, 0) = f(x) and H(x, 1) = g(x) for each x ∈ X.

Definition 2.2. A topological space X is said to be:

a) contractible if its identity map is homotopic to a constant map in X;
b) contractible with respect to a topological space Y if each map f : X → Y

is homotopic to a constant map.

A subspace Z of X is said to be contractible in X if the inclusion map from
Z into X is homotopic to a constant map in X.

It is not difficult to prove that X is contractible if and only if X is con-
tractible with respect to Y , for every space Y .

Following the classical definitions of contractibility, concepts related with
pseudo-contractibility are defined as follows.

Definition 2.3. Let X and Y be topological spaces and let f, g : X → Y
be maps. We say that f is pseudo-homotopic to g (or f and g are pseudo-
homotopic) if there exist a continuum C, points a, b ∈ C and a map H :
X×C → Y fulfilling H(x, a) = f(x) and H(x, b) = g(x) for each x ∈ X. The
continuum C is called a factor space. The map H is called a pseudo-homotopy
between f and g. We write f ≃C g to say that f is pseudo-homotopic to g,
where C denotes a factor space.

Definition 2.4. A topological space X is said to be:

a) Pseudo-contractible if its identity map is pseudo-homotopic to a con-
stant map in X,

b) pseudo-contractible with respect to a topological space Y if each map
f : X → Y is pseudo-homotopic to a constant map.

A subspace Z of X is said to be pseudo-contractible in X if the inclusion map
from Z into X is pseudo-homotopic to a constant map in X.

In [18] D. G. Paulowich studied the contractibility and weak contractibil-
ity using the next definition.
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Definition 2.5. Let X and Y be topological spaces and let f, g : X → Y
be maps. We say that f is homotopic (weakly homotopic) to g, or f and g
are homotopic (weakly homotopic), if there exist a Hausdorff arc (Hausdorff
continuum) K, points a, b ∈ K and a map H : X×K → Y fulfilling H(x, a) =
f(x) and H(x, b) = g(x) for each x ∈ X. The Hausdorff continuumK is called
a factor space. The map H is called a homotopy (weak homotopy) between f
and g.

In a similar way as in Definition 2.4, the following is defined:

Definition 2.6. A topological space X is said to be:

a) (weakly) contractible if its identity map is (weakly) homotopic to a
constant map in X;

b) (weakly) contractible with respect to a topological space Y if each map
f : X → Y is (weakly) homotopic to a constant map.

A subspace Z of X is said to be (weakly) contractible in X if the inclusion
map from Z into X is (weakly) homotopic to a constant map in X.

It is clear that in each case contractibility implies pseudo-contractibility
and pseudo-contractibility implies weakly contractibility.

Remark 2.7. Let W ⊂ Z ⊂ X . If Z is weakly contractible in X , then
W is weakly contractible in X . If Z is weakly contractible in X and X ⊂ X ′

then Z is weakly contractible in X ′. If X is weakly contractible, then every
subspace Z of X is weakly contractible in X .

3. Hyperspaces, weak contractibility and

pseudo-contractibility

In [18, Theorems 3 and 4 and Corollary] D. G. Paulowich proves that if
Y is a compact subspace of X and X is a compact space such that F1(X) is
a retract of C(X), then Y weakly contractible in X implies Y is contractible
in X . He also proves that if X is a Hausdorff continuum, the following three
statements are equivalent:

1. F1(X) is contractible in 2X .
2. 2X is contractible using an order preserving homotopy.
3. C(X) is contractible using an order preserving homotopy.

As a corollary he proves that if X is a weakly contractible Hausdorff
continuum, then 2X and C(X) are contractible using an order preserving
homotopy, ([18, Corollary, p. 44]).

Therefore we have that, if X is a contractible metric continuum, then the
hyperspaces C(X) and 2X are contractible (see also [17, Corollary 16.8]).

Additionally we get as a consequence of [18, Theorem 3] the following
result.
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Proposition 3.1. If X is a compact Hausdorff space such that F1(X) is
a retract of C(X) and X is weakly contractible, then X is contractible.

The last proposition gives a partial answer to [3, Question 64].
The main problem in this section is to prove that the notions of weak

contractibility (pseudo-contractibility) and contractibility coincide in the hy-
perspaces 2X , C(X), C∞(X) and Cn(X) for any n ∈ N.

Theorem 3.2. Let X be a Hausdorff continuum. If 2X is weakly con-
tractible then it is contractible.

Proof. Since 2X is weakly contractible, then by [18, Corollary, p. 44],

22
X

is contractible and since F1(2
X) is a retract of 22

X

([12, Lemma 1.1]) we
have by [3, Theorem 19] that F1(2

X) is contractible. Since F1(2
X) ≈ 2X , 2X

is contractible.

Let Z be a compact Hausdorff space. Using the fact that F1(2
Z) is a

retract of C(2Z), we also prove the following result taking Y as 2Z and X as
F1(Z) in [18, Theorem 3].

Theorem 3.3. If F1(Z) is weakly contractible in 2Z , then F1(Z) is con-
tractible in 2Z .

Corollary 3.4. Let X be a continuum. If F1(X) is weakly contractible
in 2X, then 2X contractible.

The following corollary is a consequence of [18, Theorem 4], [8, Exercise
9.7], Theorem 3.2, Theorem 3.3 and Corollary 3.4.

Corollary 3.5. Let X be a Hausdorff continuum, the following sen-
tences are equivalent:

1. F1(X) is contractible in C(X).
2. F1(X) is contractible in 2X .
3. 2X is contractible (using an order preserving homotopy).
4. C(X) is contractible (using an order preserving homotopy).
5. F1(X) is contractible in Cn(X) for some n ∈ N.
6. Cn(X) is contractible for each n ∈ N.
7. Cn(X) is contractible for some n ∈ N.
8. F1(X) is contractible in C∞(X).
9. C∞(X) is contractible.
10. F1(X) is weakly contractible in 2X .
11. F1(X) is weakly contractible in C(X).
12. C(X) is weakly contractible.
13. 2X is weakly contractible.
14. F1(X) is weakly contractible in Cn(X) for some n ∈ N

15. Cn(X) is weakly contractible for each n ∈ N.
16. Cn(X) is weakly contractible for some n ∈ N.



364 F. CAPULÍN, L. JUÁREZ-VILLA AND F. OROZCO-ZITLI

17. F1(X) is weakly contractible in C∞(X).
18. C∞(X) is weakly contractible.

Corollary 3.6. Let X be a Hausdorff continuum. If X is weakly con-
tractible then we have that statements 1-18 of Corollary 3.5 hold.

Corollary 3.7. Let X be a continuum. If X is pseudo- contractible then
we have that statements 1-18 of Corollary 3.5 hold.

The converse of Corollary 3.7 is not true. We will consider two exam-
ples, the first one is an unicoherent continuum and the other one is not a
unicoherent continuum. We consider the space X = X0 ∪ S1 ⊂ C, where
X0 = { t+2

t+1
eit : t ∈ [0,∞)} is the spiral approaching to the unit circle S1 (the

symbol C denotes the set of the complex numbers). We know that C(X) is
contractible, because C(X) is homeomorphic to the cone(X). However X is
not pseudo-contractible, because, by [3, Theorem 59] any pseudo-contractible
curve is hereditarily unicoherent. On the other hand S1 is a continuum such
that C(S1) is contractible. Nevertheless, by [3, Corollary 56], S1 is not pseudo-
contractible.

Now we will discuss the weak contractibility and pseudo-contractibility
in the hyperspaces Fn(X) and F∞(X).

Theorem 3.8. Let X be a continuum. The space F1(X) is pseudo-
contractible in F∞(X) if and only if F∞(X) is pseudo-contractible.

Proof. Assume that there exist a continuum C, points a, b ∈ C and a
mapH : F1(X)×C → F∞(X), such thatH({k}, a) = {k} andH({k}, b) = A0

for some A0 ∈ F∞(X) and each {k} ∈ F1(X).
Consider the function G : F∞(X) × C → F∞(X) defined by G(K, c) =

⋃

{H({k}, c) : k ∈ K}. Notice that G(K, c) ∈ F∞(X) because K is a finite
subset of X . Since H is a map, thus by [17, 1.48], G is well defined and we
have that:

G(K, a) =
⋃

{H({k}, a) : k ∈ K} =
⋃

{{k} : k ∈ K} = K,

G(K, b) =
⋃

{H({k}, b) : k ∈ K} = A0 for each K ∈ F∞(X).

Let A, B ∈ F∞(X) and let s, t ∈ C such that Hd(A,B) < δ and d(s, t) <
δ. We will show that Hd(G(A, t), G(B, s)) < ε, by proving that G(A, t) ⊂
Nε(G(B, s)) and G(B, s) ⊂ Nε(G(A, t)). Let p′ ∈ G(A, t), then there exists
a point p ∈ A such that p′ ∈ H({p}, t). Since A ⊂ Nδ(B) there exists
q ∈ B such that d(p, q) < δ. So, Hd({p}, {q}) < δ. On the other hand
since d(t, s) < δ we have that Hd(H({p}, t), H({q}, s)) < ε. Therefore, p′ ∈
H({p}, t) ⊂ Nε(H({q}, s)) ⊂ Nε(G(B, s)). Then p′ ∈ Nε(G(B, s)). Hence
G(A, t) ⊂ Nε(G(B, s)). Analogously G(B, s) ⊂ Nε(G(A, t)).

The other implication is trivial.
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Corollary 3.9. Let X be a continuum. If X is a pseudo-contractible
continuum then F∞(X) is pseudo-contractible.

The converse of this result is not true. By [8, Exercise 9.8], F∞(S1) is
contractible but S1 is not pseudo-contractible.

Corollary 3.10. LetX be a continuum. If F∞(X) is pseudo-contractible
then we have that statements 1-18 of Corollary 3.5 hold.

Proof. Since F∞(X) is pseudo-contractible, F1(X) is pseudo-contracti-
ble in F∞(X) and therefore, F1(X) is pseudo-contractible in 2X .

Using the fact, Fn(X) ⊂ F∞(X), we get the following.

Corollary 3.11. Let X be a continuum. If F1(X) is pseudo-contractible
in Fn(X) for some n ∈ N, then we have that statements 1-18 of Corollary 3.5
hold.

Theorem 3.12. Let X be a Hausdorff continuum. If X is weakly con-
tractible, then Fn(X) is weakly contractible for any n ∈ N.

Proof. Since X is weakly contractible, there exist a Hausdorff contin-
uum C, points a, b ∈ C and a map H : X × C → X such that H(x, a) = x
and H(x, b) = x0 for each x ∈ X .

Let n ∈ N, the function G : Fn(X) × C → Fn(X) defined by
G({x1, . . . , xn}, c) = {H(x1, c), . . . , H(xn, c)} is a weak homotopy between
the identity in Fn(X) and the constant map {x0}, i.e.,

G({x1, . . . , xn}, a) = {H(x1, a), . . . , H(xn, a)} = {x1, . . . , xn}

and G({x1, . . . , xn}, b) = {H(x1, b), . . . , H(xn, b)} = {x0}.

Corollary 3.13. Let X be a continuum. If Fn(X) is weak contractible
for some n ∈ N then we have that statements 1-18 of Corollary 3.5 hold.

Corollary 3.14. Let X be a continuum. If Fn(X) is pseudo-contractible
for some n ∈ N then we have that statements 1-18 of Corollary 3.5 hold and
F∞(X) is pseudo-contractible too.

Proof. Since Fn(X) is pseudo-contractible, thus F1(X) is pseudo-
contractible in Fn(X) and F1(X) is pseudo-contractible in F∞(X).

The converse of Corollary 3.14 is not true. We give two examples; one
of them is not a unicoherent continuum with Fn(X) non-pseudo-contractible
for every n > 1 and the other one is a unicoherent continuum with F2(X)
non-pseudo-contractible. To see the first example, we consider X = S1; it is
known by [8, Exercise 9.8] that F∞(S1) is contractible, and 1-18 hold because
C(S1) is contractible. On the other hand, we know that if n > 1, F2n+1(S

1)
is homotopically equivalent to S2n+1 (see [6, Theorem 4.1]) and F2n(S

1) is
homotopically equivalent to S2n−1 (see [6, Theorem 4.2]). Since Sn is ANR
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for all n ∈ N and Sn is not contractible, then by [3, Corollary 46], Sn is not
pseudo-contractible. Therefore, by [3, Corollary 39], Fn(S

1) is not pseudo-
contractible for all n ∈ N.

For the second example we consider X = S1 ∪ Y ∪ S2 ⊂ C, where

Y =

{

(
t

1 + |t|
+ 2)eit : t ∈ R

}

, S1 = {eit : t ∈ R} and S2 = {3eit : t ∈ R}.

X is the union of two circles and a spiral which surrounds them asymptotically.
C(X) is contractible, because X is a Kelley’s continuum (see [8, Theorem 9.4,
p. 129]). By [4], F2(X) is not unicoherent and by [3, Corollary 56], it is not
pseudo-contractible.

4. Ri-Sets and pseudo-contractibility

It is well known by [1, Corollary 3.3] if a continuum X has an Ri-set
i = 1, 2, 3, then X is not contractible. The main result of this section is to
prove that if a continuum X has an Ri-set, then X is not pseudo-contractible.
Let us recall some definitions.

Definition 4.1. Let {An}n∈N be a sequence of subsets of a space X.

lim inf An = {x ∈ X : for each open U ⊂ X such that x ∈ U,

U ∩ An 6= ∅ for all but finitely many n}.

lim supAn = {x ∈ X : for each open U ⊂ Xsuch that x ∈ U,

U ∩ An 6= ∅ for infinitely many n}.

Let A ∈ 2X , we write limAn = A to mean lim inf An = A = lim supAn.

Definition 4.2. A nonempty closed proper subset K of a continuum X
is called

- R1-set if there exist an open set U containing K and two sequences
{Ci

n}n∈N, i = 1, 2 of components of U such that K = lim supC1
n ∩

lim supC2
n,

- R2-set if there exist an open set U containing K and two sequences
{Ci

n}n∈N, i = 1, 2 of components of U such that K = limC1
n ∩ limC2

n,
- R3-set if there exist an open set U and a sequence {Cn}n∈N of compo-
nents of U such that K = lim inf Cn.

The following theorem is due to W. J. Charatonik and discussed with us
in México, where we reviewed some details to the final version.

Theorem 4.3. Let X be a continuum. If X contains an Ri-set, i = 1, 2, 3
then X is not pseudo-contractible.

Proof. Since eachR2-set is anR3-set (see [1, Theorem 2.3]) and eachR1-
set contains an R3-set (see [1, Theorem 2.5]), it is enough to prove the theorem
when X contains an R3-set. Let A be an R3-set of X . By definition, there
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exist an open set U and a sequence {Cn}n∈N of components of U such that
A = lim inf Cn. Since A ⊂ U there exists an ε > 0 such that d(A,X \U) > ε.

Suppose that H : X×Y → X is a pseudo-homotopy such that there exist
a continuum Y and points a, b ∈ Y such that H(x, a) = x and H(x, b) = x0

for all x ∈ X and x0 ∈ X . Since H is uniformly continuous, there exists δ > 0
such that if diam(K) < δ then diam(H(K × {t})) < ε, for each t ∈ Y .

Now consider the set P = {c, c1, . . . , cn, . . . } ⊂ U , where c ∈ A, ci ∈ Ci

for each i > 0 and lim ci = c. Without loss of generality we can assume that
diam(P ) < δ. Let V = {t ∈ Y : H(P × {t}) ⊂ U}. The set V satisfies the
following conditions:

1. V 6= ∅;
2. V 6= Y ;
3. V is an open set of Y .

The set V 6= ∅ because a ∈ V . V 6= Y because if V = Y then b ∈ V
and H(P × {b}) = {x0} ⊂ U . Let C be the component of U containing x0.
Then we consider a component Cj of U such that Cj 6= C. Since cj ∈ Cj ,
H({cj} × Y ) ⊂ U and H({cj} × Y ) is a connected set containing x0 and cj ,
a contradiction. Hence, V 6= Y . Finally, by continuity of H , V is an open set
of Y .

Let V0 be the component of V containing a. Since H({ci} × V0) is a
connected set containing ci, then H({ci} × V0) ⊂ Ci for all i = 1, 2, . . . In
other words, H((ci, t) ∈ Ci for all i = 1, 2, . . . and all t ∈ V0.

Since limH(ci, t) = H(c, t), then H(c, t) ∈ lim inf Ci = A for all t ∈ V0.
On the other hand, if t0 ∈ Bd(V0) there exists a sequence {tn}n∈N ⊂ V0

such that lim tn = t0. So, limH(c, tn) = H(c, t0) ∈ A, because A is a closed
set.

Finally, since V0 is a component of the open set V , by [16, 5.7 Boundary
Bumping Theorem III, p. 75], V0 ∩ (Y \ V ) 6= ∅. Let t′ ∈ V0 ∩ (Y \ V ), then
t′ ∈ Bd(V0) \ V , i.e., H(P × {t′}) 6⊂ U ; in this way, there exists d ∈ P such
that H(d, t′) /∈ U , but H(c, t′) ∈ A. Therefore, d(H(c, t′), H(d, t′)) > ε, a
contradiction, because c, d ∈ P and diam(H(P × {t′})) < ε.

From Corollaries 3.5, 3.10, 3.14 and Theorem 4.3 we have the following
result.

Theorem 4.4. Let X be a continuum. If X has an R3-set, then

1. 2X is not (pseudo-)contractible,
2. C(X) is not (pseudo-)contractible,
3. Cn(X) is not (pseudo-)contractible for each n ∈ N,
4. C∞(X) is not (pseudo-)contractible,
5. Fn(X) is not pseudo-contractible for each n ∈ N,
6. F∞(X) is not pseudo-contractible.
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Finally we present some continua X such that its F2(X) is not pseudo-
contractible. First of all we recall the following definition.

Definition 4.5. Let X and Y be topological spaces. A map f : X → Y
is said to be essential provided that f is not homotopic to any constant map
of X into Y . A map f : X → Y is said to be inessential provided that f is
not essential.

It is well known by [15, Theorem 3.4] that if X is a proper circle-like
continuum, then F2(X) does not have trivial shape. Therefore, if X is a
proper circle-like continuum, then by [3, Theorem 48], F2(X) is not pseudo-
contractible. On the other hand, by [15, Theorem 3.3] if there exists an
essential map from a continuum X onto S1, then there exists an essential map
from F2(X) onto S1, in other words, F2(X) does not have trivial shape and
therefore, by [3, Theorem 52], F2(X) is not pseudo-contractible. In particular
F2(X) is not pseudo-contractible ifX is a decomposable homogeneous curve or
hereditarily decomposable homogeneous continuum, because by [14, Lemma
5.1] and [14, Lemma 5.2] there exists an essential map from X onto S1.

5. Questions

In this section we ask some questions regarding this topic.
It is pertinent to recall the following question (see [10, Question 78.20, p.

402]).

Question 5.1. Let X be a continuum. If Fn(X) is contractible for some
n ∈ N, is then X contractible?

In general we have the following.

Question 5.2. Let X be a continuum. If Fn(X) is weakly contractible
(pseudo-contractible) for some n ∈ N, is then X weakly contractible (pseudo-
contractible)?

In Section 3, we have showed that for any Hausdorff continuum (metric
continuum) X , the concepts of weakly contractibility (pseudo-contactibility)
and contractibility are the same in the hyperspaces 2X , C(X), Cn(X) and
C∞(X).

Let H(X) ∈ {F∞(X), Fn(X), C∞(X), Cn(X), 2X}, n ∈ N. The follow-
ing question appears in [5, Question 3.11, p. 755].

Question 5.3. Let X be a continuum. What are necessary and /or suf-
ficient conditions in terms of X in order that H(X) is or is not contractible?

Partial answer is given in Corollary 3.6.

Question 5.4. (In the sense of [18]) Let X be a Hausdorff continuum.
What are necessary and /or sufficient conditions in terms of X in order that
H(X) is or is not contractible?
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Partial answers are given in [18, Theorems 5 and 6].
Now for the following two questions we consider

H(X) ∈ {F∞(X), Fn(X)}, n ∈ N.

Question 5.5. Let X be a continuum. What are necessary and /or suf-
ficient conditions in terms of X in order that H(X) is or is not weakly con-
tractible (pseudo-contractible)?

Partial answers are given in Corollary 3.9 and Theorem 3.12.

Question 5.6. What kinds of Hausdorff continua (metric continua) sat-
isfy that H(X) weakly contractible (pseudo-contractible) implies H(X) con-
tractible?

As a particular question we have the following.

Question 5.7. Does pseudo-contractibility of Fn(X) imply contractibility
of Fn(X)?
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