

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE INGENIERÍA CENTRO INTERAMERICANO DE RECURSOS DEL AGUA

"Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)"

TESIS

QUE PARA OBTENER EL GRADO DE MAESTRO EN CIENCIAS DEL AGUA

PRESENTA SERGIO VIDAL RÍOS MORENO

DIRECTORA DE TESIS DRA. MERCEDES LUCERO CHÁVEZ

DIRECTOR ADJUNTO DR. MARIO ESPARZA SOTO

TOLUCA, ESTADO DE MÉXICO.

DICIEMBRE DE 2017

DEDICATORIA

A mis padres, quienes me dieran un gran ejemplo de vida y su apoyo incondicional en mi niñez.

A mis hermanas, con las que he compartido bellos momentos. A las que amo tanto y llevo en mi corazón, aunque no siempre se los diga.

A mi familia chiapaneca que, con sus palabras de aliento, me han motivado a ser una persona alegre y humilde. Además de recordarme siempre de dónde vengo.

A mi familia chilanga, a la que ya conocía y la que me adoptó en mi llegada al centro del país. Gracias a ustedes mi estancia lejos de mi estado fue menos dolorosa.

A los Tlacuaches F.C. este título también es suyo. Ustedes saben quiénes son.

AGRADECIMIENTOS

A la Dra. Mercedes Lucero Chávez, por su apoyo y enseñanzas durante la ejecución de este proyecto.

Al Dr. Mario Esparza Soto, por haberme guiado con sus enseñanzas y regaños en la elaboración de este trabajo. De igual manera, por haberme facilitado el uso de herramientas e instrumentos necesarios en la etapa experimental.

A mis compañeros del equipo de trabajo: Adriana Jacobo, "Paco" Lara, Javier "Hanz" Rogel, Miroslava Mier, por su amistad y ayuda en la etapa experimental y en la redacción del documento.

A mi "dad" Sergio Alcaraz, gracias por haberme guiado en el inicio de mi etapa experimental. Así también por tus consejos dados durante estos casi 3 años de bonita amistad.

A mis amigos Alex, Antonio y Oscar, por el apoyo otorgado en los laboratorios de modelos hidráulicos y calidad del agua del CIRA.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por el apoyo económico otorgado para la realización de esta investigación.

A los miembros del sínodo, por su orientación y consejos.

Resumen

Las biotecnologías basadas en la digestión anaerobia han tomado parte como una alternativa en el tratamiento de aguas residuales en las recientes décadas, en especial de aquellas aguas de carácter industrial (principalmente la alimenticia), debido a sus altas cargas de materia orgánica, hacen de esta una opción asequible. Por si fuera poco, la obtención de un producto en común como lo es el biogás, cuya composición está dada principalmente por metano, que ayuda a potenciar el uso de esta biotecnología.

Aunado a esto, es sabido que los procesos anaerobios presentas limitaciones ligadas a factores como lo es la temperatura o el pH. En el caso de la temperatura, la mayor parte de la literatura concuerda que las bacterias anaerobias y archeas trabajan mejor bajo temperaturas mesofílicas y les favorecen temperaturas de entre 35 – 55 °C. También se encuentra mencionado en la literatura que bajo condiciones psicrofílicas, la degradación de la materia orgánica por parte de las bacterias tiende a ser más lenta. Sin embargo, en las últimas décadas se han presentado trabajos en donde proponen biotecnologías anaerobias para el tratamiento de aguas residuales a bajas temperaturas, obteniéndose muy buenos resultados. Rompiendo así, paradigmas que envuelven a la digestión anaerobia y su uso en la ingeniería.

Para esta investigación se operó un reactor anaerobio de flujo ascendente (RAFA) a escala piloto (244.5 L) durante 255 días, a temperatura psicrofílica (8 - 21 °C), tratando agua residual de la industrial chocolatera. El RAFA se operó a un tiempo de retención hidráulico (TRH) corto de aproximadamente 6.4 horas, con cargas orgánicas volumétricas aplicadas (COVapl) altas ($8.42 \pm 2.63 \text{ kg DQOs/m}^3 \text{ d}$).

El reactor se evaluó en términos de eficiencia de remoción de demanda química de oxigeno soluble (DQOs) y producción de biogás en litros de agua desplazados por día. Los resultados obtenidos demostraron que, a pesar de optar por un TRH corto, bajas temperaturas y altas COVapl, el RAFA obtuvo un promedio en eficiencia de remoción en DQOs, que fue de 65 %; Tomando en cuenta el TRH corto manejado. Así también, la producción de biogás al fue de 78 % con respecto a lo calculado teóricamente.

El método colorimétrico de reflujo cerrado para determinar la DQO_T no permitió cuantificar el metano disuelto en el efluente de un RAFA que trató un agua residual de la industria chocolatera, debido a que se obtuvieron eficiencias del metano disuelto fugado en el efluente de 57 %, lo que correspondió, a una saturación de 0.57 veces al disuelto teórico. Por lo tanto, esta técnica no superó las expectativas formuladas ya que lo medido no alcanzó o no fue cercano a lo teórico (34.24 ± 2.13 L CH₄/d).

Se evaluó de igual manera, el uso de una torre de desorción para la recuperación del biogás disuelto presente en el efluente del RAFA, en especial, metano. El porcentaje de recuperación de metano que se obtuvo en la torre comparando el metano recuperado con el metano fugado teórico se encontró una eficiencia de recuperación del 82.16 %. Además, se concluyó que la COVrem influenció directamente la producción del volumen medido de metano recuperado por día en la torre, ya que el incremento del metano recuperado fue proporcional al incremento en la COVrem. Con respecto a la temperatura, esta no afectó el trabajo de la torre en cuanto la recuperación de metano, debido a que, bajo el rango de temperaturas en la cual se trabajó (17 - 20 °C), no fue posible observar diferencias significativas en la experimentación. La salinidad en el sistema si bien afecto el trabajo en la torre, esta no llego a ser significativa.

NOMENCLATURA

°C	Grados Celsius
CaCO ₃	Carbonato de calcio
CH ₄	Metano
CIRA	Centro Interamericano de Recursos del Agua
CO ₂	Dióxido de carbono
COV	Carga orgánica volumétrica
COVapl	Carga orgánica volumétrica aplicada
COVrem	Carga orgánica volumétrica removida
d	día
DQO	Demanda química de oxígeno
DQOT	Demanda química de oxígeno total
DQOs	Demanda química de oxígeno soluble
DQOrem	Demanda química de oxígeno removida
H_2S	Sulfuro de hidrógeno
msnm	metros sobre el nivel del mar
N ₂	Nitrógeno gas
NaHCO₃	Carbonato de sodio
O ₂	Oxígeno
S	DQO _S en el efluente
So	DQO _s en el influente
TRH	Tiempo de retención hidráulico

ÍNDICE

1.	Intro	roducción	1
2.	Ante	tecedentes	2
2.1	1	Digestión anaerobia	2
2.2	2	Comparación del tratamiento anaerobio con respecto al aerobio	3
2.3	3	Tipos de reactores anaerobios en el tratamiento de aguas residuales	4
2.4	4	Parámetros ambientales y operacionales	9
2.5	5	Solubilidad del metano en el agua	9
	2.5.	5.1 Factores que afectan la solubilidad del metano en el agua	10
	2.5.	5.1.1 Efecto de salinidad	10
	2.5.	5.1.2 Efecto de la altitud	11
	2.5.	5.1.3 Efecto de la temperatura	11
2.0	6	Cuantificación del metano disuelto	12
2.7	7	Recuperación del metano disuelto	13
3.	Just	stificación Contextual y Científica	16
4.	Hipć	pótesis	18
5.	Obje	jetivo general y específicos	18
5.2	2.	Objetivo general	18
5.	1.	Objetivos específicos	18
6.	Mete	etodología	19
6.′	1. Ca	Caracterización del agua residual cruda	19
6.2	2. Al	Almacenamiento del agua cruda	20
6.3	3. Pi	Preparación del agua cruda	20
6.4	4. O	Operación RAFA	20
6.5	5. Se	Separación, recolección y medición del biogás	21
6.6	6. M	Monitoreo del RAFA	22
6.7	7. M	Nétodos analíticos	23
6.8	8. C	Cuantificación del metano disuelto fugado	23
	6.8.	3.1 Cuantificación de metano disuelto fugado por DQO⊤	24
	6.8.2	3.2. Cuantificación de metano disuelto fugado en el efluente con la torre de	
	deso	sorción	26

	6.8.	2.1. Diseño de la torre de desorción para cuantificar el metano disuelto fue	jado en
	el e	fluente	26
	6.8.	.2.2. Cuantificación de metano disuelto fugado con la torre de desorción	26
6	.9. A	nálisis de datos	27
7.	Res	sultados	28
7	.1.	TRH, Temperatura, pH	28
7	.2.	Eficiencia de remoción de la DQO _S , COVapl y COVrem	30
7	.3.	Producción de biogás	34
7	.4.	Sinopsis del desempeño del RAFA	37
7	.5.	Cuantificación de metano disuelto en el efluente por DQOT	
8.	Cor	nclusiones	45
9.	Rec	comendaciones	47
10.	R	Referencias	48
ANE	EXO	S	52

ÍNDICE DE FIGURAS

Figura 1. Esquema de reacciones de digestión anaerobia (Fuente: adaptado de Pavlostathis
y Giraldo-Gomez,1991)2
Figura 2. Esquema del filtro anaerobio (James y Young, 2012)5
Figura 3. Reactores de lecho expandido o fluidizado (Dolores – Hidalgo et al, 2003)6
Figura 4. Reactor anaerobio de flujo ascendente (Bermúdez et al., 2015)7
Figura 5. Reactor granular de cama expandida (Morales – Guzmán y Mendoza – alemán.
2009)
Figura 6. Variación de la concentración de metano (mmol/L) en función de la temperatura y
a una presión de 0.734 atm (Excel, 2016)11
Figura 7. Esquema general del reactor primario anaerobio de lecho expandido (Fuente:
Hartley y Lant, 2006)13
Figura 8. Esquema general del reactor primario anaerobio de lecho expandido (Fuente:
Gloria et al., 2016)15
Figura 9. Esquema general del reactor primario anaerobio de lecho expandido, a) esquema
general del sistema b) cámara (Fuente: Noyola et al., 2016)16
Figura 10. Esquema general del sistema RAFA (Fuente: modificado de Alcaraz – Ibarra et
al. 2015)22
Figura 11. Esquema general de la torre de desorción para la recuperación del metano
disuelto fugado en el efluente del RAFA (Fuente: Elaboración propia)26
Figura 12. Comportamiento del TRH y de la temperatura del influente y efluente del RAFA
en la corrida experimental durante el periodo de investigación de 255 días29
Figura 13. Comportamiento del pH en el influente y el efluente del RAFA durante la corrida
experimental durante el periodo de investigación de 255 días
Figura 14. Comportamiento de la DQOs de influente y efluente del RAFA, así también como
la eficiencia de remoción en la corrida experimental
Figura 15. Comportamiento de la COVapl y la COVrem, así también su eficiencia de
remoción en la corrida experimental33
Figura 16. Correlación de la COVrem con respecto a la COVapl de los datos obtenidos
durante la investigación de 255 d33
Figura 17. Variación de la producción de biogás y la COVrem en el RAFA durante los 255
días de periodo de investigación35

ÍNDICE DE TABLAS

Tabla 1. Ventajas y desventajas de los procesos anaerobios comparados a los procesos
aerobios4
Tabla 2. Balance energético entre el proceso anaeróbico y aeróbico en el tratamiento de un
agua residual. Características: Caudal:100 m³/d; concentración: 10 kg/m³;
temperatura: 20 °C4
Tabla 3. Solubilidad del oxígeno (mg/L) en función de la temperatura y la salinidad 10
Tabla 4. Caracterización del agua cruda de la industria chocolatera
Tabla 5. Parámetros que se monitorearon en el influente y efluente del RAFA durante la
investigación23
Tabla 6. Equipos, técnicas o métodos para la determinación de parámetros23
Tabla 7. Variables operacionales y desempeño del RAFA a escala piloto durante la
investigación de 255 días38
Tabla 8. Análisis de regresión lineal múltiple con 3 variables41
Tabla 9. Análisis de regresión lineal simple

1. Introducción

Investigaciones en torno al tratamiento de aguas residuales han contribuido al conocimiento en el mejoramiento de biotecnologías anaerobias. Estas se fundamentan en el metabolismo anaerobio de las bacterias y las archeas y tienen como objetivo el obtener biorreactores con rendimientos y funcionalidad superiores a las de sus antecesores. Actualmente, el interés de las biotecnologías anaerobias ha permitido el desarrollo, diseño y configuración de reactores de nueva generación capaces de instaurar técnicas que logren eliminar cargas orgánicas volumétricas (COV) tan altas como 39 kg DQO/m³ d (Torkian et al., 2003). Lo anterior hace útiles a los reactores anaerobios en el tratamiento de aguas residuales con alta concentración de materia orgánica biodegradable. Por otro lado, la generación de un producto final como el biogás, es uno de los factores que ayudan a potenciar el uso de este tipo de tecnología para su implementación en plantas tratadoras de agua residual.

Como es sabido, la temperatura repercute en el rendimiento bacteriano y metanogénico, por ende, esto se refleja en la producción de biogás (Rebac et al., 1995). Temperaturas por debajo de los 20 °C (rango psicrofílico) propician un lento crecimiento de las bacterias y por el otro, temperaturas por arriba de los 45 °C (rango termofílico) llevan una posible modificación en los microorganismos (Lettinga, 2001). Debido a esto, muchos autores concuerdan que la temperatura idónea es aquella cercana a los 35 °C es decir, dentro de un rango mesofílico. No obstante, se ha demostrado la capacidad de producir biogás en condiciones psicrofílicas en recientes investigaciones, obteniendo eficiencias de remoción superiores al 80% de materia orgánica como demanda química de oxígeno soluble (DQO_S) (Lara - Domínguez, 2013; Alcaraz – Ibarra 2015).

La temperatura afecta de igual forma el equilibrio de fases, ejemplo de esto es la solubilidad de un gas en un líquido como lo establece la ley de Henry. Esta enuncia que, a temperatura constante, la cantidad de gas disuelto en un líquido es directamente proporcional a la presión parcial que ejerce ese gas sobre ese líquido. La saturación de gas metano en efluentes ha sido estudiada en años recientes (Souza et al., 2011) con el objetivo de recuperar y cuantificar su índice de saturación a presión y temperatura distintas. Por lo tanto, un objetivo a realizar para esta investigación fue, estudiar el efecto de la temperatura y la carga orgánica aplicada sobre la solubilidad del metano en el efluente de un reactor anaerobio de flujo ascendente operado en condiciones psicrofílicas.

2. Antecedentes

2.1 Digestión anaerobia

La biotecnología se refiere al desarrollo y aplicación de técnicas bioquímicas y microbiológicas a procesos industriales para la obtención de bienes y servicios. Numerosos aportes en la investigación básica y aplicada han contribuido de igual manera al establecimiento de procesos a escala industrial. Uno de estos procesos es, sin duda, la digestión anaerobia, que es un proceso en el que la materia orgánica, en ausencia de oxígeno y mediante la acción de un grupo bacterias específicas y metanógenos, se descompone en productos gaseosos o biogás (CH₄, CO₂, N₂, H₂, H₂S), además de un digestato, que es una mezcla de productos minerales (N, P, K, Ca).

El biogás contiene un alto porcentaje de metano de entre 50 – 70 %, por lo que es susceptible de un aprovechamiento energético de su combustión en motores, turbinas o, en su caso más común, calderas. El proceso controlado de la digestión anaerobia es uno de los más idóneos para reducir las emisiones de efecto invernadero, el aprovechamiento energético derivado de los residuos orgánicos como lo es el biogás y el uso del lodo anaerobio estabilizado como mejorador de suelos.

Figura 1. Esquema de reacciones de digestión anaerobia (Fuente: adaptado de Pavlostathis y Giraldo-Gomez,1991).

La digestión anaerobia está caracterizada por la existencia de varias fases consecutivas diferenciadas en el proceso de degradación del sustrato, interviniendo 5 grandes poblaciones de microorganismos (Figura 1). hidrolíticas, presentes en la hidrólisis; acidogénicas, presentes en la acidogénesis; acetogénicas, en la acetogénesis; y las metanogénicas; en la metanogénesis (Figura 1). Sin embargo, dentro de la ingeniería se acostumbra a considerar tres etapas para residuos sólidos o lodos (hidrólisis, acidogénesis, metanogénesis) y dos para residuos líquidos (acidogénesis y metanogénesis); el enfoque más novedoso lo constituye el de las cuatro etapas o niveles tróficos hidrólisis, acidogénesis, acidogénesis, acetogénesis y metanogénesis (Jewell, 1987):

- Hidrólisis. En esta etapa los compuestos orgánicos son solubilizados por enzimas excretadas por bacterias hidrolíticas que actúan en el exterior celular por lo que se consideran exoenzimas. La hidrólisis es, por tanto, la conversión de los polímeros en sus respectivos monómeros.
- Acidogénesis. En esta etapa los compuestos orgánicos solubles que comprenden los productos de la hidrólisis son convertidos en ácidos orgánicos tales como acético, propiónico y butírico, fundamentalmente.
- Acetogénesis. Se le conoce también como acidogénesis intermediaria en la cual los productos correspondientes son convertidos en ácido acético, hidrógeno y dióxido de carbono.
- Metanogénesis. En esta etapa metabólica el metano (CH₄) es producido a partir del ácido acético o de mezclas de hidrógeno (H₂) y dióxido de carbono (CO₂), pudiendo formarse también a partir de otros sustratos tales como ácido fórmico y metanol. El rol de las bacterias metanogénicas se define por el tipo de sustrato disponible.

2.2 Comparación del tratamiento anaerobio con respecto al aerobio

Las ventajas y desventajas del proceso anaerobio en relación con el aerobio son presentadas en la Tabla 1, tales como los requerimientos energéticos, bajo rendimiento en la biomasa, poca concentración de nutrientes requeridos y capacidad para soportar altas cargas orgánicas volumétricas aplicadas (COVapl). Por otro lado, en la Tabla 2 se muestra un breve balance energético entre ambos procesos con el objetivo de entender la ventaja de producir biogás y su posterior uso en el tratamiento de aguas residuales. Sin embargo, dichas suposiciones se hacen para cierta COVapl, caudal de diseño y bajo un rango de temperatura específico, por lo que dicho balance se encuentra sujeto a cambios.

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Tabla 1. Ventajas y desventajas de los procesos anaerobios comparados a los procesos aerobios.

Ventajas	Desventajas			
Poco suministro de energía requerido.	Se necesita de tiempos largos de estabilización par			
	desarrollar la biomasa necesaria.			
Poca producción de lodos biológicos.	Se podría requerir de la adición de alcalinidad.			
Poca concentración de nutrientes requerido.	Se podría requerir de un tratamiento posterior para cumplir			
	con las normas vigentes.			
Producción de metano, una potencial fuente de	La remoción de nitrógeno y fósforo no es posible.			
energía.				
Menor volumen de reactor requerido.	Mucho más sensibles a los cambios bruscos de			
	temperaturas.			
Eliminación de gases de efecto de invernadero.	Mucho más sensible a la presencia de compuestos tóxicos.			
Rápida respuesta a la adición del sustrato	Potencial producción de olores y gases corrosivos.			
después de un largo periodo sin alimentar.				
	1			

Fuente: Metcalf y Eddy, 2004.

Tabla 2. Balance energético entre el proceso anaeróbico y aeróbico en el tratamiento de un agua residual. Características: Caudal:100 m³/d; concentración: 10 kg/m³; temperatura: 20 °C.

	kJ/d		
Energía	Anaeróbico	Aeróbico	
Aeración ^{a,b}	-	-1.9 x 10 ⁶	
Producción de metano ^{c. d}	12.5 x 10 ⁶	-	
Incremento de la temperara en el agua residual a 30 °C	-2.1 x 10 ⁶	-	
Energía neta, kJ/d	10.4 x 10 ⁶	-1.9 x 10 ⁶	

^a Oxígeno requerido = 0.8 kg/kg DQOrem.

^b Eficiencia de aeración = 1.52 kg O₂/ kWh y 3600 kJ – 1 kWh.

^c Producción de metano = 0.35 m³/ Kg DQOrem.

^d Contenido energético del metano = 35.846 kJ/m³ (0 °C y 1 atm).

- No aplica

Fuente: Metcalf y Eddy, 2004.

2.3 Tipos de reactores anaerobios en el tratamiento de aguas residuales

Los primeros reactores anaerobios que se utilizaron fueron el digestor de mezcla completa y el proceso de contacto anaerobio. En el primero el tiempo de retención de los sólidos era igual al tiempo de retención hidráulico y en el segundo se incorporó un decantador después del tanque para clarificar el efluente y recircular los lodos con lo que se consiguió aumentar el tiempo de retención de los sólidos en este diseño. En los procesos modernos, denominados de alta carga, la característica común en todos ellos es la retención de la biomasa dentro del reactor, de manera que el tiempo de retención de los sólidos es mucho mayor que el tiempo de retención hidráulico por lo que se consigue aumentar la eficacia del proceso (Lettinga, et al., 1983).

La clasificación de los reactores anaerobios de alta carga se puede hacer en función de la manera en que se retiene la biomasa:

• Los reactores que retienen la biomasa en los intersticios de un material de soporte y en la superficie del soporte, como el filtro anaerobio (AF por sus siglas en inglés).

- Los reactores anaerobios de flujo ascendente (RAFA o UASB por sus siglas en inglés), en los que la biomasa queda retenida por sedimentación en la parte baja del reactor en forma de gránulos o flóculos.
- Los reactores que se basan en la inmovilización de la biomasa sobre superficies fijas como en los filtros anaerobios de película fija (AFF por sus siglas en inglés), o sobre partículas móviles como en el filtro anaerobio de lecho expandido (AAFEB por sus siglas en inglés) (Jewell et al., 1987).

En el filtro anaerobio (Figura 2), la biomasa se adhiere a un relleno que ocupa todo el reactor. Como relleno se utilizan diferentes materiales: cantos rodados, piedra caliza, granito, trozos de ladrillo, conchas de mejillón, y gran variedad de anillos plásticos. En realidad, el filtro es un reactor mixto de fangos suspendidos y fangos inmovilizados. En la superficie del relleno se forma una biopelícula, mientras que en los huecos la biomasa puede quedar suspendida.

Figura 2. Esquema del filtro anaerobio (James y Young, 2012).

Este tiene la ventaja de que permite tratar todo tipo de efluentes, la puesta en marcha es más rápida, puede tratar elevadas COVapl de hasta 10 kg DQO/m₃ d y es muy resistente a las perturbaciones de carga. Presenta los inconvenientes de la formación de caminos preferenciales en el lecho, la colmatación por sólidos, la dificultad de mezcla de los lodos, la pérdida de volumen de reactor y el coste adicional del relleno. Debido a esto han surgido reactores de última generación capaces de solventar estos problemas (Lettinga et al.,

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

1983). Los reactores de película fija se desarrollaron partiendo del filtro anaerobio, buscando eliminar los problemas de colmatación del relleno. Para ello se sustituye el relleno al azar por un relleno ordenado, y sobre su pared se adhiere y desarrolla la biopelícula. La alimentación se realiza por la parte superior del reactor.

Los reactores de lecho expandido/fluidizado (Figura 3) tienen el mismo fundamento que los anteriores. Las bacterias son inmovilizadas sobre pequeñas partículas de soporte sólidas, y lo único que varía es el grado de expansión del lecho. Cuando se parte de un lecho poroso, y se aumenta la velocidad superficial del fluido, se alcanza una situación inicial característica por el alargamiento del lecho, aún existe contacto físico entre partículas, la porosidad aumenta y se obtiene un lecho expandido. Si la velocidad superficial del fluido continúa aumentando, el grado de expansión del lecho es tal que las partículas dejan de estar en contacto entre sí, desplazándose arriba y abajo en un movimiento típico de lecho fluidizado. Con este sistema se consigue que la totalidad de la película bacteriana esté en contacto con el agua a tratar, aumentando la eficacia del sistema.

Figura 3. Reactores de lecho expandido o fluidizado (Dolores - Hidalgo et al, 2003)

Los reactores de lecho fluidizado desarrollados por Jeris en 1982 han sido aplicados para la remoción de nitrógeno en agua potable y aguas residuales mediante desnitrificación o nitrificación y remoción aeróbica o anaeróbica de materia lo cual ha demostrado su facilidad de acoplamiento en distintas situaciones.

El RAFA, fue desarrollado en Holanda por Lettinga y sus colaboradores en los años 70. El diseño de un RAFA consiste en una zona de reacción en la parte inferior, en la que se acumula la biomasa, la de mejor sedimentabilidad en el fondo y encima los lodos más ligeros, formando todo el lecho de lodos (Figura 4). Un separador gas-sólido-líquido en la parte superior, impide la salida de los sólidos del reactor, separándolos del gas producido y del efluente líquido. Las grandes concentraciones de biomasa con elevada actividad que se consiguen permiten el funcionamiento a altas velocidades de ascensión y altas COVapl con buenas eficacias de eliminación. Esta biomasa puede estar en forma de gránulos compactos o en forma de lodos floculentos con buena sedimentabilidad. El RAFA ha sido experimentado con éxito en el tratamiento de aguas residuales muy diversas, de procesados alimenticios, industriales, urbanas y lixiviados (Hulshoff Pol y Lettinga, 1988).

Figura 4. Reactor anaerobio de flujo ascendente (Bermúdez et al., 2015)

Una modificación del RAFA es el reactor granular de cama expandida (Figura 5) (EGSB por sus siglas en inglés), en el que sólo se puede usar lodo granular debido a las elevadas velocidades superficiales a las que opera, superiores a 4 m/h. Estas velocidades se consiguen por recirculación del efluente o aumentando la relación altura/diámetro en el reactor. Este diseño se está utilizando para aguas de baja carga incluso a temperaturas inferiores a 10°C. También parece un sistema adecuado para tratar sustratos tóxicos (Lettinga, 1996).

Figura 5. Reactor granular de cama expandida (Morales – Guzmán y Mendoza – alemán. 2009).

Regularmente los tratamientos anaerobios son implementados en lugares con climas tropicales debido al efecto que la temperatura ejerce sobre el rendimiento bacteriano. Se ha demostrado que los reactores a 25 °C y a 35 °C (rango mesofílico) presentan mejores tasas de remoción de materia orgánica y producción de biogás, además de proveer tratamientos más estables. El tratamiento anaerobio puede aplicarse a temperaturas psicrofílicas y son sostenibles de entre 10 y 20 °C en reactores de crecimiento suspendido y adherido. Sin embargo, en este intervalo de temperatura, la tasa de degradación de la materia es una limitante. Investigaciones como Rebac et al. (1995) y Lettinga et al. (2001) obtuvieron eficiencias de remoción superiores o cercanas al 90 % con temperaturas por debajo de los 12 °C en un reactor ESGB. Los primeros, aplicaron una COV de aproximadamente 12 kg DQO/m³d, un tiempo de retención hidráulico (TRH) de 1.6 h y una concentración entre 500 y 800 mg/L como DQO en el efluente tratado. Los segundos aplicaron COV entre 10 -12 kg DQO/m³ d y con condiciones similares de TRH y concentraciones similares a los primeros, demostrando así, la adaptabilidad del tratamiento anaerobio bajo condiciones poco favorables como lo son las bajas temperatura, pero que sucede con el gas generado. La ley de Henry menciona que, a una temperatura constante, la cantidad de gas disuelto en un líquido es directamente proporcional a la presión parcial que ejerce ese gas sobre el líquido. Sin embargo, la aplicación de tratamientos anaerobios en regiones con temperaturas templadas, es decir por debajo de los 20 °C, atraen otro tipo de inconveniente como es la solubilidad del metano en el efluente, siendo que para temperaturas menores a 20°C (rango psicrofílico) es posible encontrar mayor concentración de gas disuelto, caso contrario para rangos mesofílicos.

2.4 Parámetros ambientales y operacionales

Los parámetros ambientales que se tienen que controlar son aquellos relacionados a mantener un buen desarrollo de la biomasa:

- pH, este debe mantenerse lo más cercano a la neutralidad.
- Alcalinidad, esto con el objetivo de otorgar un buffer al sistema y con ello evitar cambios bruscos en el pH.
- Potencial redox, con valores menores a los -350 mV.
- Nutrientes, esto con el objetivo de asegurar el desarrollo de los microorganismos.
- Tóxicos e inhibidores, mínima su presencia o nula.

Los parámetros operacionales son aquellos a los que se refieren a las condiciones de trabajo de los reactores:

- Temperatura, esta debe estar cercana a los 30 °C o en rangos mesofílicos lograr mejores eficiencias de remoción y de producción de biogás. Sin embargo, de igual modo está documentado que a rangos psicrofílicos los reactores se desempeñan de buena manera.
- Agitación, dependiendo el diseño y configuración del reactor, este debe tener una buena agitación que permita la homogenización entre la biomasa y sustrato
- TRH, este debe ser tan pequeño como sea posible. En estas condiciones, el contacto entre el efluente y la biomasa debe ser muy bueno
- COV expresada en kg/m³d se define como la relación entre la concentración contaminante del efluente (S₀), expresada en mg/L, y TRH.

2.5 Solubilidad del metano en el agua

En los ecosistemas acuáticos se puede encontrar de cinco a seis gases disueltos que participan en procesos biológicos importantes. Dichos gases difieren unos de otros en su comportamiento fisicoquímico y en su fuente de origen. Estos gases son: oxígeno (O_2), nitrógeno (N_2), bióxido de carbono (CO_2), sulfuro de hidrógeno (H_2S), metano (CH_4), y amoniaco (NH_3). La fuente primaria de algunos de estos gases se encuentra en la atmósfera. En el caso del metano, este se origina como bien se sabe de la descomposición anaerobia de materia orgánica, (acetato y compuestos metilados tales como metanol) o de la reducción de CO_2 a expensas de hidrógeno molecular (H_2).

2.5.1 Factores que afectan la solubilidad del metano en el agua

La Ley de Henry establece que a temperatura constante la cantidad de gas que absorbe un volumen de líquido es proporcional a la presión en atmósferas que el gas ejerce en el medio. La mayoría de los gases obedecen bastante bien la ley de Henry, permitiendo predecir la concentración de un gas atmosférico en el agua con la ecuación (1).

$$C = k \times p \tag{1}$$

En donde: C = Concentración de gas que se absorbe (solubilidad del gas) expresada en: mg/kg; µmol/L; mmol/L; mg/L o ml/L.

p = Presión parcial que ejerce el gas.

k = Factor de solubilidad correspondiente a cada gas.

2.5.1.1 Efecto de salinidad

La presencia de algunos minerales en una solución reduce la solubilidad de los gases. Las sales disueltas en agua reducen los espacios intermoleculares disponibles para la disolución del oxígeno. La Tabla 3 ilustra el efecto combinado de la temperatura y la salinidad sobre el oxígeno disuelto. El efecto de la exclusión de oxígeno en función de la concentración de sales disueltas es mínimo excepto en ambientes hipersalinos, tales como los salitrales.

Temperatura °C	Salinidad (%)					
	0.030	9.055	18.080	27.105	36.130*	45.155
0	14.62	13.72	12.88	12.09	11.35	10.65
5	12.77	12.02	11.32	10.65	10.03	9.44
10	11.28	10.65	10.05	9.49	8.95	8.45
15	10.08	9.54	9.02	8.54	8.07	7.64
20	9. 092	8. 621	8. 174	7.749	7.346	6.964
25	8.263	7.850	7. 457	7.083	6. 728	6. 390
30	7. 559	7. 194	6. 845	6. 513	6. 100	5.806
35	6. 950	6. 624	6. 314	6. 017	5. 734	5. 464
40	6. 412	6. 121	5. 842	5. 576	5. 321	5. 078
45	5. 927	5. 665	5. 414	5. 174	4. 944	4. 724
50	5. 477	5. 242	5. 016	4. 799	4. 591	4. 392

Tabla 3. Solubilidad del oxígeno (mg/L) en función de la temperatura y la salinidad.

* La salinidad promedio del agua de mar es de 35 %. (Fuente: APHA, 1992).

2.5.1.2 Efecto de la altitud

Con un aumento en altitud, a una atmósfera con menor presión, disminuye el valor p en la fórmula anterior (Ecuación. 1). Por consiguiente, la solubilidad, expresada en términos de la cantidad de gas disuelto en equilibrio con el aire, disminuye. Cuando medimos las concentraciones de gases disueltos en ambientes acuáticos ubicados a diferentes altitudes es necesario corregir el valor de presión parcial (p) y la solubilidad del gas (k). en este caso, la altitud en la ciudad de Toluca es de aproximadamente 2650 msnm, lo que nos da una presión atmosférica de 0.74 atm. La cual es importante a considerar al momento de calcular el metano disuelto teórico de nuestro sistema.

2.5.1.3 Efecto de la temperatura

Manteniendo la presión parcial de un gas (p) constante, la solubilidad disminuye según la temperatura aumenta. Esta relación inversa permite generalizar que el agua fría contiene una mayor cantidad de gas en solución que el agua tibia o caliente. En la Figura 6 se muestra la variación de la concentración de metano disuelto en función de la temperatura y a la presión de Toluca. Como se observa, la concentración del gas disminuye exponencialmente con respecto al incremento de la temperatura. En investigaciones anteriores, la temperatura del efluente tratado no rebasó los 20 °C, con base en esto, se puede conocer el rango de concentración de metano disuelto que se puede hallar, o a partir de este dato, calcular una posible sobresaturación en el sistema.

Figura 6. Variación de la concentración de metano (mmol/L) en función de la temperatura y a una presión de 0.734 atm (Excel, 2016)

2.6 Cuantificación del metano disuelto

Uemura y Harada (2000) depuraron agua residual municipal con temperaturas en un rango de los 13 a los 23 °C además de una COV_{apl} de 1.6 kg DQO/m³ d y un TRH de 4.7 h. En su investigación demostraron que el 50 % del metano total se encontró disuelto en el efluente; resultado que se obtuvo a partir de un balance de masas y que alerta el riesgo de contaminación por metano a la atmósfera, dada su condición de gas de efecto invernadero.

De igual manera Rihye et al. (2012) calcularon una pérdida del 63 % de metano total en el efluente tratado a 25 °C, con una COV_{apl} 1.59 kg DQO/m³ d y un TRH de 2.3 h dentro de un reactor de membrana fluidizada (SAF-MBR, por sus siglas en inglés), caso similar a Souza et al. (2011) que trabajaron con reactores tipo RAFA: escala piloto, una COVapl de 2.12 kg DQO/m³ d y TRH de 5 h; escala laboratorio, 0.88 kg DQO/m³ d y TRH de 12 h; a escala real, 1.78 kg DQO/m³ d y TRH de 7 h con agua residual doméstica, concluyeron que el grado de saturación varió de 1.4 a 1.7 veces a lo calculado de metano disuelto teórico en los diferentes reactores, indicando condiciones de sobresaturación. Demostrando así, pérdidas considerables de metano en el efluente de 36 al 41% del total. Esto demuestra que las posibilidades de encontrar condiciones de saturación de metano en el efluente bajo condiciones mesofílicas son mayores a lo esperado.

Por su parte, Smith et al. (2013) obtuvieron una eficiencia de remoción de 92 % de la demanda química de oxígeno removida (DQOrem) de un reactor primario anaerobio de lecho expandido (AnMBR por sus siglas en inglés), a una temperatura de 15 °C, COVapl de 0.66 kg DQO/m³ d y un TRH de 16 h. Aunque, el metano disuelto en el efluente correspondía aproximadamente entre un 40 – 50 % del metano total generado en el sistema, concluyeron que un porcentaje cercano al 50 % no era aprovechado debido a las pérdidas en el efluente atribuyendo esto a las condiciones psicrofílicas operacionales.

Hyeongu et al. (2015) trataron agua sintética a base de glucosa en un reactor primario anaerobio de cama expandida (ANMBR por sus siglas en inglés), estudiaron la acumulación del metano disuelto. En dicha investigación se utilizó una COV_{apl} de 0.39 kg DQOs/m³d y, que posteriormente se aumentó a 1.1 kg DQOs/m³ d con TRH de 1 d. El metano disuelto medido fue superior al calculado termodinámicamente de acuerdo con la ley de Henry en un orden de 2.2 a 2.5, y se encontró una concentración del 76 % de la producción total a

temperaturas de aproximadamente 24 - 26 °C; es decir, una sobresaturación de 1.76 veces. El estudio demuestra que el incremento de la COV se vio reflejado en el incremento del metano disuelto fugado.

2.7 Recuperación del metano disuelto

Investigadores se han dedicado recientemente al estudio y recuperación del metano disuelto en los efluentes tratados, ejemplo de esto es el trabajo que Hartley y Lant (2006) donde se trató agua residual de carácter municipal en un reactor primario anaerobio de cama migratoria (AMBR por sus siglas en inglés) (Figura 7), el rango de temperaturas la cual se llevó a cabo este trabajo estuvo entre 16 y los 28 °C, COV_{apl} 1.65 kg DQO/m³ d y TRH de 8 h.

Los resultados indicaron la presencia de sobresaturación de metano en el efluente; 2.2 veces mayor a la concentración relativa en el biogás. Proponiendo la microaireación como método de eliminación de metano en el efluente, encontraron pérdidas de metano por la solubilidad de este menor al 11 % lo que se concluyó como no significativa. Lo que significa que la mayor cantidad de metano (89%) fue recuperado.

Figura 7. Esquema general del reactor primario anaerobio de lecho expandido (Fuente: Hartley y Lant, 2006).

Por su parte Wasala et al. (2011) evaluaron la eficiencia de colección del metano disuelto por desgasificación en un efluente de un RAFA que trata agua residual sintética. Bajo las condiciones de 35 °C, COV_{apl} 3.55 kg DQO/m³ d y TRH de 10 h, la concentración promedio de metano disuelto fue reducida de 63 mg DQO_{metano}/L a 15 mg DQO_{metano}/L; esto, resultó con un incremento en la eficiencia de recuperación de metano total de 89 al 97 %. A 15 °C la concentración de metano disuelto fue mayor que 104 mg DQO_{metano}/L, debido a la alta solubilidad del metano en el agua. La concentración de metano disuelto se vio disminuida

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

a aproximadamente 14 mg DQO_{metano}/L gracias a la desgasificación. Correspondiendo a un incremento en la eficiencia de 71 a 97% del sistema desgasificante. La investigación también concluye que el uso de la membrana desgasificante ayudó al incremento en la eficiencia de remoción en la DQO particulada.

Nuevamente Wasala et al. (2012) realizaron un trabajo similar al anterior; estudiaron la eficiencia de remoción del metano disuelto en el efluente y el efecto de la temperatura (18 - 31 °C) tratando agua residual doméstica. La COV_{apl} fue de 1.92 kg DQO/m³ d y 0.38 kg DQO/m³ d y un TRH de 10 y 2 horas, respectivamente. El estudio concluye que la recuperación del metano disuelto varió de 60% en verano a 100% en invierno debido al efecto de la temperatura en la solubilidad de dicho gas.

Matsuura et al. (2015) tratando agua residual municipal dentro de un RAFA, implementaron un reactor desgacificante (DHS por sus siglas en inglés) con dos compartimientos para la recuperación y oxidación del metano remanente dentro del efluente. En el primer compartimento destinado a la recuperación de metano disuelto, se calculó una concentración neta de metano mayor al 30% teniendo una eficiencia de colección de 57 - 88%, aunque cabe de señalar que la fluctuación en la concentración de metano disuelto en el efluente (46-48% de la producción total) fue en gran medida a la temperatura en donde la eficiencia de este dispositivo fue evaluada de acuerdo con condiciones climáticas reales (10 - 28 °C).

Caso similar a Matsuura et al. (2015) fue el de Hatamoto et al. (2011) que tratando agua residual municipal en un RAFA, recurrieron a un reactor DHS para la recuperación y oxidación del metano disuelto. Los resultados proyectaron valores similares en la colección de metano disuelto en el primer compartimiento. Sin embargo, el estudio se enfocó en su mayor parte en la competición por el oxígeno junto con otros elementos como el amonio y el sulfuro, además de la materia orgánica. Concluyendo que la oxidación de la materia orgánica, seguida por la oxidación del sulfuro ocurren primeramente y que la oxidación del metano ocurre bajo condiciones críticas de oxígeno (< 12.95 m³aire/m³d) y a un TRH de 2 h como parámetros de investigación.

Gloria et al. (2016) proponen el diseño de una cámara de disipación en la cual el efluente tratado de un RAFA es transportado a una columna de 55 cm de altura, en la que dicho

efluente cae de la parte superior de la columna hasta la parte inferior, en donde está la salida. Por otro lado, el gas es colectado en la parte superior con la ayuda de un extractor de aire (Figura 8 y 9).

Figura 8. Esquema general del reactor primario anaerobio de lecho expandido (Fuente: Gloria et al., 2016).

Por su parte, Huete et al. (2016) realizaron algo similar a Gloria et al. (2014), en donde proponen una cama de desorción en forma de columna vertical en la cual, por la parte superior el efluente tratado de un RAFA entra, posteriormente el efluente atraviesa un medio filtrante hasta la parte inferior de dicha columna.

De igual manera, el metano disuelto fue recuperado en la parte superior de la columna por medio de inyección de aire por la parte inferior de la columna. Se probaron dos diferentes relaciones de flujo de aire/efluente tratado (1:1 y 1:2). El gas obtenido fue llevado hacia un biofiltro empacado con composta, donde se trató biológicamente lo cual redujo las emisiones a la atmósfera de metano y dióxido de carbono.

Figura 9. Esquema general del reactor primario anaerobio de lecho expandido, a) esquema general del sistema b) cámara (Fuente: Noyola et al., 2016).

3. Justificación Contextual y Científica

Durante años investigadores han evaluado el aumento en la concentración de un gran número de gases trazas de efecto invernadero debido a la actividad antropogénica (Nieto y Santamarta., 2003). Este tipo de investigaciones señalan que la concentración de dichos gases trazas podrían ser igual o inclusive mayor a la concentración de dióxido de carbono en un futuro dado. Estos gases trazas, principalmente metano, óxido nitroso y clorofluorocarbonos, están presentes en la atmósfera en concentraciones de dos a seis magnitudes menores que la del dióxido de carbono, pero su comportamiento es importante debido a que, por molécula, estos absorben la radiación infrarroja en mayor grado que el dióxido de carbono, de ahí se deriva que el gas metano tiene un efecto 23 veces mayor al dióxido de carbono con respecto al efecto invernadero (Agencia Internacional de la Energía, 2016).

Avalos-Gómez (2001) argumenta que a la década de los 80's se le conoce como la década del invernadero, debido a las altas temperaturas globales promedio registradas y a la serie de condiciones climáticas inusuales presentadas en varias partes del mundo, así como sequías, inundaciones, ciclones, huracanes y tifones; repercutiendo esto en la década de los 90's, que fue considerada la más calurosa de los últimos mil años y donde la temperatura global aumentó en promedio 0.6 grados centígrados (Magaña - Rueda, 2004).

Por lo anterior, en el tratamiento de agua residual industrial con un sistema anaerobio, es importante evaluar las condiciones de posibles pérdidas de metano disuelto fugado en el efluente debido a los problemas ambientales, como el ya mencionado efecto invernadero. El metano al ser un producto energéticamente viable se puede utilizar para calentar el influente, lo que podría ayudar en el incremento de la temperatura en temporadas donde el descenso de esta resulta crítico para el funcionamiento del RAFA, y a su vez, la oxidación de metano a dióxido de carbono impactaría en menor magnitud en la atmósfera y al medio ambiente.

Estudios realizados con el fin de obtener el grado de saturación en efluentes tratados como el realizado por Souza et al. (2011) a temperaturas por arriba de los 20 °C y COVapl de tipo

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

municipal (aproximadamente 1.78 kg DQO_S/m³d), revelaron índices de sobresaturación a lo estimado teóricamente. Por otra parte, investigadores como Wasala et al. (2011) se han encargado de optimizar la colección del metano disuelto por desgasificación, además de observar el efecto de la fluctuación de la temperatura sobre la solubilidad del metano, pero al igual que Souza et al. (2011), la COVapl aplicada era baja. Por lo tanto, este trabajo se enfocó en el estudio del efecto de COVapl medias y altas sobre la solubilidad del metano tratando agua residual industrial de una industria chocolatera en un reactor de flujo ascendente (RAFA) a rangos psicrofílicos, con el objetivo de demostrar posibles condiciones de sobresaturación en el efluente tratado.

4. Hipótesis

El método colorimétrico de reflujo cerrado para determinar la Demanda Química de Oxígeno total (DQO_T) permitirá cuantificar el metano disuelto del efluente de un reactor anaerobio de flujo ascendente (RAFA) que trata agua residual industrial chocolatera a temperatura psicrofilica.

5. Objetivo general y específicos

5.2. Objetivo general

Evaluar el volumen de metano disuelto fugado en el efluente de un reactor anaerobio de flujo ascendente (RAFA) que trata agua residual industrial chocolatera a distintas cargas orgánicas volumétricas aplicadas mediante el método colorimétrico de DQO_T.

5.1. Objetivos específicos

- Analizar el funcionamiento de un RAFA a distintas cargas orgánicas volumétricas aplicadas con los parámetros de pH, temperatura, demanda química de oxígeno soluble (DQOs) y producción de biogás.
- Calcular el metano disuelto fugado en un efluente de un RAFA utilizando el método colorimétrico de reflujo cerrado para analizar DQO_T.
- Evaluar la medición del metano disuelto en un efluente de un RAFA utilizando una técnica alternativa (torre de desorción).
- Determinar el índice de sobresaturación de metano disuelto en el efluente de un RAFA a distintas cargas orgánicas volumétricas aplicadas, teniendo como base el metano disuelto teórico.

6. Metodología

El RAFA a escala piloto utilizado en esta investigación ha estado operando desde el 2008. El RAFA operó primero tratando agua residual de una industria farmacéutica (Macedo, 2008), posteriormente, en el tratamiento de agua residual procedente de una industria de cereales (Esparza-Soto et al., 2011) y últimamente trata agua residual de una industria chocolatera (Esparza-Soto et al., 2013; Lara, 2013; Ávila, 2015). Por lo tanto, este trabajo continuó con la línea de investigación del tratamiento de agua residual de la industrial chocolatera a temperatura psicrofílica. La metodología se dividió en varios apartados destacando la operación y monitoreo del RAFA, así como la cuantificación y recuperación del metano disuelto fugado.

6.1. Caracterización del agua residual cruda

La Tabla 4 muestra los resultados obtenidos en la caracterización del agua residual industrial chocolatera, realizada por Alcaraz – Ibarra (2015). La caracterización del agua residual por cada lote recibido en las instalaciones del Centro Interamericano de Recursos del Agua (CIRA), no se realizó en el presente trabajo como se tenía contemplado, debido a que se tuvo que optimizar en reactivos por el presupuesto disponible.

Parámetro	Valor
рН	4.3 ± 0.6 [6]
Temperatura (°C)	21.8 ± 1.5 [6]
DQO⊤ (mg/L)	7372.5 ± 3160.8 [6]
DQOs (mg/L)	5352.5 ± 2905.1 [6]
SST (mg/L)	331.9 ± 359.2 [4]
SSV (mg/L)	296.4 ± 348.6 [4]
AGV (mg ac. Acético/L)	381.4 ± 275.4 [4]
Alcalinidad (mg CaCO ₃ /L)	821.8 ± 582.5 [4]
N-NH ₃ * (mg/L)	4.2
Ptotal* (mg/L)	177.2

 Tabla 4.
 Caracterización del agua cruda de la industria chocolatera

El número de muestras esta entre corchetes.

* Determinación única del parámetro. Fuente: Alcaraz – Ibarra, 2015.

Con base en experiencias previas, se cuenta con el conocimiento que, durante los meses de agosto, septiembre y octubre, la calidad del agua residual puede ser variable. Durante este periodo el agua residual fue recibida con concentraciones elevadas en DQOs (5352.50 ± 2905.50 mg/L), pH ácido (< 6) y una alta concentración de sólidos suspendidos totales

(SST) ($331.9 \pm 159.20 \text{ mg/L}$) (Ávila, 2015; Alcaraz – Ibarra. 2015). Igualmente, se percibió el aroma de un compuesto químico en el agua residual, probablemente utilizado para la limpieza de la maquinaria en la industria chocolatera.

6.2. Almacenamiento del agua cruda

El agua residual de la industria chocolatera fue depositada por un camión cisterna en un tanque ecualizador en la planta de tratamiento del CIRA. El agua residual contenida en el tanque ecualizador fue bombeada a 2 contenedores de 5 m³ y almacenada a la temperatura ambiente del valle de Toluca (± 18 °C) hasta que se sometió a tratamiento en el RAFA; esta operación se realizó al menos una vez cada tres semanas.

6.3. Preparación del agua cruda

Para mantener la COV_{apl} en el RAFA, el agua residual cruda almacenada se mezcló con cierto volumen de agua potable para poder obtener una concentración de entre 1000 - 3000 mg DQO_S/L en el influente. Estas concentraciones, combinadas con un tiempo de retención hidráulico de 6 h generaron la COV_{apl} deseada de entre 4 - 12 kg DQO_S/m³ d. Durante la preparación del agua cruda, se añadió alcalinidad como bicarbonato de sodio (NaHCO₃, 1.5 a 2.5 g/L). Posteriormente se agregó hidróxido de sodio (NaOH 33 %) hasta alcanzar un rango de pH entre 6.5 – 7.3. Tanto la adición de alcalinidad al sistema, como el incremento de pH, estuvo en función de la calidad de agua residual cruda a tratar (rango de pH, alcalinidad, concentración DQO_S). Una vez preparada el agua cruda, esta se mandó a un tanque elevado para poder iniciar su distribución dentro del sistema.

6.4. Operación RAFA

Para esta investigación se trabajó con un reactor a escala piloto tipo RAFA (Figura 10) durante 255 días de operación continua. El RAFA fue consta de paredes de acrílico de 0.0127 m de espesor, con una base de 0.30 x 0.35 m y una altura de 2.30 m. lo cual constituye un volumen de 244 L. El RAFA se alimentó mediante una bomba peristáltica (Cole Parmer, EUA) colocada al lado de la base del reactor, la cual mantuvo un caudal (Q) constante de 40.7 L/h y por lo tanto un TRH cercano a 6 h. El TRH corto no es recomendable para reactores UASB en rango psicrofílico (Lettinga y Hulshoff Pol, 1991; Metcalf y Eddy, 2004). Sin embargo, con las investigaciones previas a esta investigación en el RAFA se ha demostrado que con un TRH corto es posible lograr un tratamiento de agua residual eficiente (Ávila, 2015; Alcaraz – Ibarra. 2015). El efluente del RAFA se vertió en un

sedimentador de lamelas para reducir la concentración de sólidos y posteriormente continuo su depuración en reactores aerobios que fueron parte de otras investigaciones del grupo de trabajo.

6.5. Separación, recolección y medición del biogás

El biogás fue separado y colectado en la parte superior del RAFA (Figura 10) por medio de una campana de fases (sólido – gas – líquido). Esta campana redujo la salida de los sólidos del reactor separándolos del gas producido y del efluente líquido. El biogás fue transportado hacia un reservorio de almacenaje (4 L). Este reservorio estuvo parcialmente sumergido en un recipiente lleno de agua (40 L).

La producción de biogás fue medida por el método de desplazamiento de líquido. Este método consistió en cerrar la válvula de salida del reservorio de almacenaje y posteriormente tomar el tiempo en el que se desplaza cierto volumen de agua fuera de dicho reservorio.

El sedimentador interno de lamelas de acrílico ayudó a que la fuga de sólidos en el efluente no fuese significativa. Este sedimentador fue colocado en la parte de en medio, por arriba de la campana separadora de fases (gas – líquido – solido) y debajo de los vertedores que dan salida al efluente tratado. Anteriormente, el RAFA había sido cubierto de fibra de vidrio y placas de poliestireno con el objetivo de evitar cambios bruscos en la temperatura y el acondicionamiento térmico. Posteriormente, el lodo fugado en el efluente tratado se recuperó en un sedimentador de lamelas de alta velocidad ubicado justo al lado del RAFA. La producción de biogás medida se comparó en el análisis de resultados con la producción teórica de biogás, la cual se calculó con la ecuación (2) (Metcalf y Eddy, 2004).

$$PTB\left(\frac{m^{3}}{d}\right) = \frac{\left(0.40^{*} \frac{273.15 + T_{op}}{273.15 + 35^{\circ}C} * \frac{1atm}{0.74atm}\right) * (S_{0}-S)^{*}Q}{\% CH_{4}}$$
(2)

En donde: 0.40 = Volumen de metano producido por cada kilogramo de DQO removido a $35^{\circ}C (m^{3}/kg)$; T_{op} = Temperatura de operación (°C); 0.74 atm = Presión atmosférica del valle Toluca; % CH₄ = Porcentaje de metano en el biogás (85 %); Q = Caudal del sistema (m³/d); So = DQO_S en el influente (kg/m³); S = DQO_S en el efluente (kg/m³).

Figura 10. Esquema general del sistema RAFA (Fuente: modificado de Alcaraz – Ibarra et al. 2015).

6.6. Monitoreo del RAFA

El monitoreo se realizó en el influente y en el efluente del RAFA de acuerdo con la frecuencia que se presenta en la Tabla 5. Estos parámetros se consideraron representativos para el conocimiento del sistema y que, a su vez, ayudaron a tomar decisiones inmediatas en caso de eventualidades.

El Q se determinó en el efluente del reactor, cuantificando el volumen de agua vertido en el sedimentador externo de lamelas durante un lapso de 30 segundos, realizando en total 4 réplicas para estimar los L/d de agua residual tratada. Esta operación se realizó durante 5 días por semana. Las temperaturas que se midieron se realizaron en los siguientes puntos en el RAFA.

La temperatura del influente se tomó en un puerto de muestreo colocado justo antes de que el agua residual entrara al RAFA y después del tanque elevado. La temperatura en el efluente se midió justo en la parte superior del RAFA por encima del sedimentador de lamelas interno.

Parámetro	Frecuencia	Muestra o punto de muestreo	Lugar de medición y análisis de muestras
DQO _T y DQO _S	5 veces por semana	Influente y efluente	
Metano disuelto fugado por DQO _T	5 veces por semana	Efluente	Laboratorio
Q	5 veces por semana/ 4 réplicas	Efluente	
рН	5 días por semana	Influente y efluente	
Temperatura	5 días por semana	Influente y efluente	In situ
Biogás	5 días por semana/ 6 réplicas	Reservorio de almacenaje	

Tabla 5 Parámetros	que se monitorearon	en el influente	v efluente del RAF	∆ durante la	investigación
	que se momunearon				investigación

6.7. Métodos analíticos

Los equipos, técnicas o métodos para la determinación de parámetros pertinentes que ayudaron a conocer el sistema y detectar eventualidades que pudieron llegar afectarlo se muestran en la Tabla 6.

Tabla 6. Equipos, técnicas o métodos para la determinación de parámetros.

Parámetro	Técnica o método	Equipo
DQO _T y DQOs	Método 435 del kit HACH (20-1500 mg DQO/L). (USEPA, Standard Method 5220 D)	Espectrofotómetro HACH UV-Vis Mod. DR 5000 Digestor HACH Mod. DRB 200
рН	NMX-AA-008-SCFI-2016 (DOF, 2016)	Potenciómetro YSI Mod. YSI 63-10 FT
Temperatura	NMX-AA-007-SCFI-2013 (DOF, 2013)	Potenciómetro YSI Mod. YSI 63-10 FT
% CH₄ en Biogás	-	Equipo medidor de gases portátil marca SEWERIN, modelo Multitec 560

- No aplica.

6.8. Cuantificación del metano disuelto fugado

La cuantificación por el método de DQO_T del metano disuelto fugado en el efluente tratado, se realizó con la técnica modificada de Hartley y Lant (2006). La cuantificación del metano disuelto fugado en efluente con la DQO_T se verificó con una torre de desorción con el objetivo de comparar ambos métodos.

6.8.1 Cuantificación de metano disuelto fugado por DQOT

Para evaluar la cantidad de metano disuelto fugado en el efluente del RAFA, en dos vasos de precipitados de 100 mL se tomaron aproximadamente 300 mL de muestra en cada uno. De inmediato y sin agitar, se colocaron 2 mL de muestra a viales de DQO de alto rango. Por otro lado, la muestra del segundo recipiente fue vertido dentro de un matraz Kitazato en donde se agitó moderadamente con ayuda de una parrilla de agitación. Se añadió 20 gramos de Sulfato de sodio, esto con el objetivo de ayudar a liberar el metano disuelto. El periodo de separación gas-líquido se llevó a cabo durante 1 hora. Se realizaron 3 intervalos de agitación en donde cada intervalo tuvo una duración de 15 minutos, dejando un periodo de reposo con un intervalo de 5 minutos. Dentro del periodo de reposo se ejerció vacío al matraz Kitazato. Posteriormente, se tomó una muestra para medir la DQO_T. Mediante mediciones de DQO_T, se logró cuantificar el contenido de metano disuelto en el efluente (Método modificado de Hartley y Lant, (2006)). Con la ecuación (3) se determinó la DQO que corresponde al metano disuelto.

DQO
$$_{CH_4}$$
 = DQO_T muestra no agitada - DQO_T muestra agitada (3)

Para convertir la concentración de DQO_{CH4} a concentración neta de metano se utilizaron las reacciones medias de Rittmann y McCarty (2001) ecuación (4).

$$[CH_4] = [DQO_{CH_4}] X \frac{4 \text{ g } CH_4}{\text{g } DQO_{CH_4}}$$
(4)

posteriormente para convertir la concentración neta de metano (mol/L) a flujo (L/d) se utilizaron una serie de conversiones, las cuales incluyen la ecuación de los gases ideales y el caudal de operación, ecuación (4.1).

$$\frac{L_{CH_4}}{día} = [CH_4] \left(\frac{nRT}{P}\right)(Q)$$
(4.1)

En donde: $LCH_4/dia = flujo de metano disuelto fugado al dia (L/d); [CH_4] = concentración de metano disuelto fugado (mol/L); nRT/P = ecuación de los gases ideales (LCH_4/molCH_4); Q = caudal de operación del RAFA (L/d).$

Con base en la ley de Henry ecuación (5) que presenta Metcalf y Eddy (2004) se calculó la concentración de metano disuelto teórico, tomando en cuenta el porcentaje de metano en el biogás medido y la temperatura de Toluca,

$$x_{CH_4} = \frac{P_g CH_4}{H_{CH4}}$$
(5)

En donde: x_{CH4} = fracción molar de metano disuelto en el agua; P_gCH_4 = porcentaje de metano en el biogás multiplicado por la presión atmosférica del valle de Toluca (atm); H_{CH4} = constante de Henry (atm) para metano, en función de temperatura = 10^{-AT+B} ; A = 675.74; B = 6.88.

Debido a que en un litro de agua se encuentran presentes 55.6 moles de agua y, asumiendo que el número de moles de gas metano disuelto es despreciable por la cantidad de moles de agua presentes, se tiene la ecuación (5.1).

$$x_{CH_4} = \frac{[CH_4]}{[CH_4] + [55.6]} \approx x_{CH_4} = \frac{[CH_4]}{[55.6]} \therefore [CH_4] = [55.6] x_{CH_4}$$
(5.1)

En donde: $[CH_4]$ = concentración de gas metano disuelto en el líquido(mol/L); g CH₄ = gramos de metano (g); g DQO CH₄ = gramos de metano en forma de DQO (g).

Finalmente, la conversión de concentración metano disuelto fugado (mol/L) a flujo (L/d) se realizó de igual manera que en la ecuación (4.1).

$$\frac{L_{CH_4}}{dia} = [CH_4] \left(\frac{nRT}{P}\right)(Q)$$
(4.1)

En donde: LCH₄/día = flujo de metano disuelto fugado al día (L/d); [CH₄] = concentración de metano disuelto fugado (mol/L); nRT/P = ecuación de los gases ideales (LCH₄/molCH₄); Q = caudal de operación del RAFA (L/d).

Por lo tanto, el grado de saturación en el efluente puede ser calculado dividiendo el flujo de metano disuelto fugado entre el flujo de metano disuelto teórico (ecuación 6).

grado de saturación=
$$\frac{\text{LCH}_{4}\text{disuelto fugado/día}}{\text{LCH}_{4}\text{disuelto teórico/día}}$$
(6)

6.8.2. Cuantificación de metano disuelto fugado en el efluente con la torre de desorción

La torre de desorción se diseñó y construyó de manera similar a la de Gloria et al. (2014) y Huete et al. (2016) en la que por dentro se llevó a cabo la desorción y el desprendimiento de las fases en el medio acuoso (gas-líquido) por efecto de la caída del agua.

6.8.2.1. Diseño de la torre de desorción para cuantificar el metano disuelto fugado en el efluente

La torre de desorción de gases (Figura 11) se diseñó y construyó de aproximadamente 1 m de largo y un diámetro de 0.10 m. Esta torre estuvo conectada al efluente tratado del RAFA. A su entrada, el efluente tratado tuvo una caída libre, lo que propició la separación de fases (gas-líquido) debido a la agitación provocada. Así mismo, por la parte inferior de la torre se instaló una válvula para drenar lodos o sólidos que lograron escapar del RAFA.

Figura 11. Esquema general de la torre de desorción para la recuperación del metano disuelto fugado en el efluente del RAFA (Fuente: Elaboración propia).

6.8.2.2. Cuantificación de metano disuelto fugado con la torre de desorción

El metano disuelto fugado fue transportado hacia la parte superior de la columna y se colectó por medio de un sello hidráulico similar al instalado en la línea de salida del biogás (Figura 1). La cantidad de metano disuelto fugado recuperado fue medido volumétricamente

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

en el dispositivo de sello hidráulico, similar a cómo se cuantificó la producción de biogás en el RAFA. Mientras que el metano disuelto fugado se recuperó en la parte superior de la columna de desorción, el efluente tratado fluyó por la parte inferior de la columna. Para evitar fugas a la atmósfera del metano disuelto, tanto la entrada como la salida de la columna de desorción se hizo a través de jarros de agua (Figura 11).

6.9. Análisis de datos

Los datos obtenidos de los parámetros estudiados durante el monitoreo fueron concentrados en una base de datos de Microsoft Office Excel 2010. Este programa informático se utilizó para determinar algunas variables estadísticas, enunciadas a continuación: errores estándar, coeficiente de variabilidad, gráficas de dispersión y prueba ANOVA para visualizar su comportamiento en el tiempo.

7. Resultados

Los resultados que se obtuvieron durante la corrida experimental se muestran en este apartado, aquí se discute el desempeño del RAFA con relación a la eficiencia de remoción en DQOs y la producción de biogás. Los resultados de la recuperación del metano disuelto fugado en el efluente del RAFA también se analizan, incluyendo los parámetros estudiados en esta investigación.

7.1. TRH, Temperatura, pH

En la Figura 12 se observa el comportamiento del TRH con respecto al tiempo de experimentación que fue en promedio de 6.6 ± 0.86 h. El TRH corto se utilizó con base en experiencias del grupo de trabajo, que en experimentos pasados determinaron que aproximadamente 6 h eran suficientes para obtener eficiencias de remoción superiores al 75 % agua residual de la industria chocolatera (Esparza-Soto et al., 2011; Esparza- Soto et al., 2013; Lara, 2013; Ávila, 2015). Se menciona que 6 h es un TRH corto ya que Metcalf y Eddy (2004) recomiendan un tiempo de 10 – 14 h en promedio para tratar agua residual con COVapl altas (\geq 4 kg DQOs/m³ d) y a bajas temperaturas (condiciones psicrofílicas).

El TRH se incrementó a 8 ± 0.14 h entre los días 135 y 170, debido a que la DQOs del agua de la industria chocolatera se incrementó significativamente (\geq 4000 ± 623 mg/L DQOs), además el pH estuvo más ácido de lo que normalmente (\leq 3) y fue complejo ajustarlo a la neutralidad. El TRH se volvió a incrementar en un rango entre 9 y 10 h del día 242 al 255, lo anterior debido a la desestabilización del sistema provocado por la introducción de agua residual de fosa séptica, lo que causó un decremento en la eficiencia de remoción de DQO.

La introducción de esta agua residual se debió a problemas en la planta de tratamiento del CIRA, la cual se vio en la necesidad de parar operaciones hasta reestablecer el sistema y, por ende, no se permitió descargas de agua residual de la industria chocolatera. El influente del RAFA tuvo una temperatura promedio de 17 \pm 3 °C, teniendo máximos de 22 °C y mínimos de 9 °C. Para el efluente del RAFA el promedio fue de 16 \pm 3 °C, teniendo máximos de 21 °C y mínimos de 8 °C. Lo que indica que en promedio las variaciones de temperatura entre el influente y el efluente en el sistema fue de 1 °C, y que, a pesar de los picos observados, la temperatura tuvo un cambio gradual en casi toda la corrida experimental. Por otro lado, los máximos de temperatura encontrados tanto en el influente como en el efluente en los días 170 hasta el 233 fueron debido al uso de una resistencia eléctrica (170

 – 191 días) durante la temporada invernal del año y, posteriormente al incremento gradual de la temperatura ambiental (191 – 233 días).

Figura 12. Comportamiento del TRH y de la temperatura del influente y efluente del RAFA en la corrida experimental durante el periodo de investigación de 255 días.

La Figura 13 presenta la variación del pH durante la experimentación. El pH promedio para el influente fue de 6.9 \pm 0.27, con máximos de 7.7 (108 día) y mínimos de 6.4 (121, 165, 179 y 182 días). Para el efluente el pH en promedio fue de 7 \pm 0.29, con máximos de 8.3 (80 y 108 días) y mínimos de 6.4 (193 día).

Estos valores implican un buen manejo en el pH del RAFA, ya que como es sabido, el consorcio bacteriano anaerobio y archea trabaja en óptimas condiciones en rangos de 6.3 – 7.8 de pH. El pH y la concentración de materia orgánica del agua residual chocolatera determinaron la dosis óptima de NaHCO₃ y NaOH utilizadas. Se utilizó lo mínimo necesario en reactivos adicionados con el fin de evitar un desajuste en iones mono, di y trivalentes por la presencia de Na⁺, debido a que el efluente tratado del RAFA es utilizado en otras investigaciones con reactores aerobios.

La tendencia también indica que el pH ajustado en el influente del RAFA se incrementa en 0.2 con respecto a su efluente del reactor. Esto sucede debido a la formación de compuestos tales como el acetato, que funge como amortiguador natural dentro del RAFA. Sin embargo, para los días 191 – 207 ocurre lo contrario, a la entrada del reactor con respecto a la salida disminuye 0.3 unidades de pH. Esto puede deberse a algún compuesto

presente en el agua a tratar; un ligero olor a vinagre se hace presente en esta etapa, lo que supone el uso de algún compuesto que desestabilice el sistema amortiguador del sistema.

Figura 13. Comportamiento del pH en el influente y el efluente del RAFA durante la corrida experimental durante el periodo de investigación de 255 días.

7.2. Eficiencia de remoción de la DQO_S, COVapl y COVrem

En la Figura 14 se muestra la DQOs del influente y del efluente del RAFA, y la eficiencia de remoción que se obtuvo en esta etapa experimental. La eficiencia de remoción promedio para esta corrida experimental fue de 65.00 ± 20.65 %, está eficiencia es baja debido a que entre los días 234 a 255 dicha eficiencia cayó hasta en un 10.49 %, esto es debido a que el agua recibida fue un poco más refractaria que los anteriores lotes. Si se omiten estos datos, la eficiencia promedio fue de 70.80 \pm 13.49 %; valor más cercano a investigaciones anteriores en el mismo RAFA (Esparza-Soto et al., 2011; Esparza- Soto et al., 2013; Ávila, 2015).

Los resultados obtenidos de la concentración de materia orgánica para toda la corrida experimental fueron de aproximadamente de 2284.95 \pm 647.99 mg DOQs /L, resultados similares a lo que hicieron ingresar al RAFA Alcaraz – Ibarra (2015) y Ávila (2015), que fue de aproximadamente 2026.50 \pm 554.50 mg DQOs/L. Los resultados de las concentraciones de DQOs anteriores se consideran con alto contenido de materia orgánica, lo que permitió reforzar el concepto de que el sistema está adaptado para soportar concentraciones de

DQOs elevadas a baja temperatura sin desestabilizarse. De igual manera, durante la corrida experimental se obtuvieron picos máximos de concentración en el influente de entre 4400 – 4800 mg DQOs/L (170 – 178 días), anteriormente la concentración máxima ingresada al RAFA fue de aproximadamente 3250 mg DQOs/L por Alcaraz – Ibarra (2015), lo que implica un aporte importante para esta investigación al no desestabilizar el reactor y obtener eficiencias entre el 50 - 60%. Sin embargo, la concentración de DQOs no logró ser constante en gran parte de la corrida por la variabilidad en la concentración y la calidad del agua residual recibida, que, debido a su naturaleza cambiante, hace que esta sea impredecible. Por lo que resulta arriesgado determinar estos valores como las concentraciones máximas que el RAFA puede soportar.

Figura 14. Comportamiento de la DQOs de influente y efluente del RAFA, así también como la eficiencia de remoción en la corrida experimental.

El día 241 es un claro ejemplo de la variabilidad en la calidad del agua. Para este día se observa una concentración en el influente de 2012 mg DQOs/L y de 1800 mg DQOs/L en el efluente, lo cual repercute en una baja eficiencia de remoción (10.49 %). Una explicación de este fenómeno es la que propuso Alcaraz – Ibarra (2015), el cual señala el uso de ácido peracético en la limpieza de superficies de acero inoxidable en la industria de alimentos y dada la presencia de este compuesto refractario en los lotes de agua recibidos, lograría inhibir el rendimiento bacteriano. Lo anterior se fortalece debido a que se percibió un ligero olor a acre en el lote de agua residual, el cual es característico del ácido peracético. Aunque, en este caso se intuye de igual manera que la alimentación de agua residual de la fosa

séptica pudo repercutir en el funcionamiento del RAFA posiblemente por la presencia de algún otro compuesto que pudiera inhibir la actividad bacteriana. La falta de equipos para analizar los compuestos presentes en el influente del RAFA hace que esta presunción no sea del todo aceptada, por lo que sería arriesgado señalar al ácido peracético como el compuesto que desestabilizó el RAFA en cuanto al pH. Por lo que se recomienda manejar los distintos lotes agua con precaución.,

Las COVapl (Figura 15) fueron en promedio de 8.42 ± 2.63 kg DQOs/m³d, valor similar a lo que Alcaraz – Ibarra (2015) aplicó que fue 7.9 ± 2.2 kg DQOs/m³d. Sin embargo, la COVapl se incrementó a 9.0 kg DQOs/m³d al omitir los valores que se encuentran entre los días 241 a 255, debido a que el agua residual fue difícilmente biodegradable. Tomando este último valor, la COVapl es cercana a lo que Arzate (2011) recomienda (10 kg DQOs/m³d) como la máxima COVapl para evaluar el desempeño del RAFA. La COVapl máxima al RAFA fue de 18.9 kg DQOs/m³d, la misma no se pudo mantener durante la corrida experimental debido a que se trabajó con agua real. El cambio drástico de calidad y concentración de DQOs en el siguiente lote de agua recibido no permitió continuar la experimentación a esa carga. La COVrem máxima fue de 11.0 kg DQOs/m³d, lo que representó una eficiencia de remoción de DQOs de 58.50 %. Sin embargo, debido a la poca cantidad de datos experimentales recabados en ese tiempo, no se pueden tomar estos valores como las cargas máximas (COVapl y COVrem). La capacidad de soportar estas cargas a TRH cortos (6 h), y a bajas temperaturas, indica que la biomasa se encuentra bien adaptada.

Figura 15. Comportamiento de la COVapl y la COVrem, así también su eficiencia de remoción en la corrida experimental.

En la Figura 16 se muestra la correlación entre la COVapl y la COVrem. La pendiente en esta regresión indica la eficiencia de remoción (74.13 %) con una R² (0.7854). Investigaciones realizadas sobre el mismo RAFA a escala piloto, se obtuvieron eficiencias de remoción promedio de entre 75 y 80 % (Esparza-Soto et al., 2011; Esparza-Soto et al., 2013; Lara, 2013; Ávila, 2015). Sin embargo, en las investigaciones anteriormente mencionadas no se lograron COVapl superiores a 10 kg DQOs/m³d). En otro trabajo realizado sobre el mismo RAFA, se obtuvo un porcentaje similar (70.06 %) al obtenido en esta investigación (8.42 ± 2.63 kg DQOs/m³d) (Alcaraz – Ibarra et al., 2015). El porcentaje obtenido es bajo comparándolo con Akila y Chandra (2006) que trabajaron en rango de temperaturas psicrofílicas. En dicho trabajo se alcanzó una eficiencia de remoción entre el 86 y 94 % aunque, se debe de aclarar que estos autores utilizaron agua sintética basada en glucosa con COVapl (5 – 7.3 kg DQOs/m³d) menores a las de esta investigación, lo cual explica su porcentaje de remoción elevado. Por último, otra investigación sobre un RAFA a temperaturas psicrofílicas (13 – 25 °C), utilizando agua residual real doméstica obtuvieron eficiencias de remoción de DQOT de 70 – 80 %. Sin embargo, las COVapl fueron bajas para el trabajo mencionado, aproximadamente 1.6 kg DQO_T/m³d (Uemura y Harada, 2000). Demostrando así, que es posible trabajar con agua residual industrial a bajas temperaturas $(\geq 20 \ ^{\circ}C)$ y obtener eficiencias de remoción aceptables (cercanas al 70 %).

Figura 16. Correlación de la COVrem con respecto a la COVapl de los datos obtenidos durante la investigación de 255 d.

7.3. Producción de biogás

En la Figura 17 se presenta el monitoreo de la producción de biogás en la etapa experimental y el comportamiento de la COVrem. Como se observa, la producción de biogás fue directamente proporcional a la COVrem, pues al remover más DQOs se tuvo mayor producción de biogás.

La producción de biogás se mantuvo relativamente constante durante los primeros 121 días de operación, así también la COVrem en el RAFA, esto pudo deberse a que el lote de agua residual recibido fue altamente biodegradable. Es decir, el consorcio bacteriano encontró una alta afinidad por el sustrato presente en el agua y por lo tanto se asimiló de mejor manera. A partir del día 142 se presenta un ligero incremento en la producción de biogás teniendo su pico máximo el día 165, que fue de 1176.00 L/d. Así mismo, también se observa un incremento en la COVrem.

Debido a la naturaleza cambiante del agua tanto en concentración de DQOs, de pH y presencia de algún compuesto refractario, la producción de biogás fue decreciendo, y de igual forma, la COVrem. Lo anterior, aplicaría a lo que se observó el día 193, donde se presenta el pico mínimo en la producción de biogás que fue de 79 L/d. Posteriormente, se presenta un incremento en la producción de biogás así también en la COVrem (196 – 233 días). Para dicho periodo el TRH fue modificado a 8 h y el uso de una resistencia térmica optimizó el desempeño del RAFA lo cual se vio reflejado.

Posteriormente, para los días 241 – 255 se observa el siguiente pico mínimo tanto en la producción de biogás y en la COVrem. Esto se debió igualmente al lote de agua residual que se trató; así también, para esta etapa se decidió aumentar el TRH entre 9 – 10 h con el objetivo de recuperar el sistema RAFA.

Figura 17. Variación de la producción de biogás y la COVrem en el RAFA durante los 255 días de periodo de investigación.

En la Figura 18, se muestra la correlación entre la producción de biogás medida y la COVrem, la cual muestra una buena correlación ($R^2 = 0.9364$). La pendiente de la regresión indica que 114.88 L de biogás fueron producidos por cada kg DQO_S/m³ removida. Este valor se puede convertir a rendimiento de biogás si se divide entre el volumen del reactor (0.244 m³) lo que da como resultado 471 L biogás/kg DQO_S removida.

El rendimiento de biogás obtenido se convirtió a rendimiento de metano considerando un porcentaje de 85 % de metano en el biogás (porcentaje medido por el detector de gases); aceptando el dato de 85 % (Ávila – Arias, 2015; Alcaraz – Ibarra, 2015) se obtuvo un rendimiento de 399.52 L CH₄/kg DQO_s removida a las condiciones del valle de Toluca (18 °C y 0.743 atm). Esto es equivalente a 283.97 L CH₄/kg DQO_s removida bajo condiciones estándares de temperatura y presión (STP 0 °C y 1 atm), esté valor es similar al de Alcaraz – Ibarra (2015).

En el plano internacional, el valor obtenido es cercano a los 200 y 300 L CH₄/kg DQO_s que obtuvieron Akila y Chandra (2007). Sin embargo, los 283.97 L CH₄/kg DQO_s removida en esta investigación equivalen al 81 % de la producción teórica de metano, que fue de 350 L CH₄/kg DQO_s removida (Metcalf y Eddy, 2004). Esto se puede deber principalmente por la fuga de metano disuelto en el efluente dado las condiciones climatológicas de la ciudad de Toluca.

Figura 18. Correlación entre la producción de biogás (L/d) con respecto a la COVrem (kg DQOs/m³ d).

En la Figura 19 se muestra la correlación de la producción de biogás teórico con respecto a la producción de biogás medido. La pendiente obtenida fue de 0.7827; es decir, que del 100 % calculado teóricamente, solo el 78 % del biogás fue medido volumétricamente. De igual forma, se refuerza el concepto de que a mayor COVrem, mayor será la producción de biogás. La curva también nos indica una R² aceptable (0.9282).

Figura 19. Correlación entre la producción de biogás (L/d) con respecto al biogás teórico (L/d).

El valor obtenido es superior al 73 % que se obtuvo en investigaciones anteriores en donde se trató el mismo tipo de agua industrial y a TRH corto (6 h) (Lara – Domínguez et al., 2013). Por su parte, el dato de igual manera es cercano al 82 % bajo las mismas condiciones experimentales al de este trabajo (Alcaraz – Ibarra et al., 2015). Esto se puede deber a las COV aplicadas dentro de esta experimentación.

Por otro lado, si se incluye el metano fugado teórico en el efluente calculado a partir de la Ley de Henry (32.3 L/d) se puede ver en la Figura 20 que la recuperación de biogás alcanzó un 81%. Aunque, como se presentó en los antecedentes, es posible una sobresaturación de metano disuelto fugado en nuestro sistema, ya que, lo calculado teóricamente solo contempla la temperatura y la presión parcial del gas como variables, y no toma en cuenta variables como la salinidad o la COVrem que podría hacer incrementar nuestra pendiente.

Figura 20. Correlación entre la producción de biogás (L/d) más la saturación calculada por la Ley de Henry (L/d) con respecto al biogás teórico (L/d).

7.4. Sinopsis del desempeño del RAFA

Las variables monitoreadas durante esta corrida experimental se presentan en la Tabla 7. La cual muestra los promedios y las desviaciones estándar de la muestra de cada variable, así como el número de muestras que se midieron o analizaron durante la investigación. La

importancia de los resultados en la tabla es reflejar que el RAFA trabajó a cargas altas, temperaturas por debajo de los 20 °C y TRH corto, y que obtuvo una eficiencia de remoción de materia orgánica aceptable para temperatura psicrofílica y COVapl altas (> 50 %), así como también una producción de biogás considerable teniendo en cuenta las condiciones de operación. Lo que significa que la biomasa en el sistema se encuentra adaptada a las condiciones del valle de Toluca y al tipo de agua suministrada.

	255
días.	

Parámetro de operación	Valores promedio
Temperatura del influente (°C)	17 ± 3 [151]
Temperatura del efluente (°C)	16 ± 3 [151]
pH influente	6.90 ± 0.27 [151]
pH efluente	7.00 ± 0.29 [151]
Q (L/h)	37.39 ± 3.88 [151]
TRH (h)	6.6 ± 0.86 [151]
Velocidad Vertical (m/h)	0.38 ± 0.24 [151]
DQOs influente (mg/L)	2284.95 ± 647.99 [151]
COVapl (kg DQOs/m ³ d)	8.0 ± 2.63 [151]
% de remoción de COVapl soluble	65.04 ± 14.5 [151]
Biogás producido (L/d)	644.53 ± 179.60 [151]

7.5. Cuantificación de metano disuelto en el efluente por DQOT

La Figura 21 presenta el metano disuelto fugado en el efluente calculado a partir del método de la DQO_T y el metano disuelto teórico calculado a partir de la ley Henry. El metano disuelto fugado promedio calculado fue de 19.64 \pm 5.0 L/d, siendo este valor inferior al promedio calculado en el fugado teórico (34.24 \pm 2.13 L/d). Tomando en cuenta ambos promedios, se encontró una saturación de 0.57 veces a lo fugado teórico; es decir, solo el 57 % del metano disuelto fugado en el efluente se logró cuantificar por medio de esta técnica. El metano disuelto fugado en el efluente presentó máximos de 29.63 L/d y mínimos de 11.57 L/d para los días 78 y 43, respectivamente.

Los valores obtenidos de metano disuelto fugado estuvieron en función de la temperatura (13.46 \pm 3.19 °C) y/o la COVrem (6.60 \pm 0.90 kg DQOs/m³ d) del RAFA, estos parámetros se consideran porque modifican la producción de metano. Lo anterior es similar con lo que mencionan Hyeongu et al. (2015) en su estudio realizado con agua sintética a base de

glucosa, con COVapl entre 0.39 - 1.1 kg DQO/m³d, un TRH 15 h y a una temperatura entre 24 -26°C.

Figura 21. Cuantificación del metano disuelto fugado en el efluente por el método de DQOT.

7.6. Cuantificación de metano disuelto por torre de desorción

El biogás disuelto fugado tuvo un 89 % de metano, este porcentaje se midió con el detector de gases portátil en ocasiones y posteriormente se utilizó para calcular el volumen de metano disuelto fugado. En la Figura 22 se presentan las variaciones del metano disuelto fugado en la torre y el metano disuelto teórico. Con respecto al metano disuelto fugado, se presentaron máximos de 36.20 L/d y mínimos de 11.35 L/d en los días 179 y 211, respectivamente.

El promedio calculado de metano disuelto fugado durante la etapa experimental fue de 25.47 ± 7.95 L/d, mientras que el metano disuelto teórico fue de 33.92 ± 0.72 L/d. Entre los días 177 y 200 de experimentación es en donde el volumen de metano disuelto fugado fue más cercano al metano disuelto teórico (índice de saturación de 0.95). Esto pudo deberse a que, durante esos días, la COVrem en el RAFA fue alta (8 – 10 Kg DOQ_S/m³ d). Una mayor COVrem conlleva a una mayor producción de biogás. Por lo tanto, el incremento del biogás disuelto fugado en el efluente puede estar ligado al incremento en la producción de biogás en el RAFA.

Para los días 206 y 233 se observa una disminución en la cuantificación de metano disuelto fugado en la torre. En promedio se recuperaron en esta etapa alrededor de 18.67 ± 4.58 L/d de metano disuelto fugado (índice de saturación de 0.55). Esto es debido a la naturaleza cambiante del agua residual e igualmente a la eficiencia de remoción de materia orgánica y la producción de biogás entre otros parámetros. Resultados como el de Souza et al. (2012) en donde se diseñó una torre de desorción similar a la de este trabajo obtuvieron entre 40 y 60 % de eficiencia de recuperación.

Por otro lado, Noyola et al. (2016) obtuvieron una eficiencia de recuperación mayor al 90 %. Las torres diseñadas para ambas investigaciones se le inyectaron aire a contra flujo con el objetivo de liberar mayor metano disuelto en la torre. Sin embargo, estos trabajos obtuvieron mediciones reales dentro de su efluente tratado gracias al uso de un cromatógrafo de gases y para esta investigación se recurrió del fugado teórico para ponderar nuestros resultados.

Figura 22. Cuantificación del metano disuelto fugado en el efluente en la Torre de desorción.

El metano disuelto fugado pudo haber sido influenciado por diferentes variables de operación o parámetros de calidad del agua, tales como COVrem, conductividad y temperatura de operación. Para el caso de las dos primeras, estas fueron manipuladas de forma directa por el equipo de trabajo y, con respecto a la temperatura, esta fue ambiental, no fue manipulada. En la Tabla 8 se evaluaron las 3 variables mediante el análisis

estadístico de análisis de regresión múltiple (Excel, 2016). Como se ve, tanto la conductividad (β = -6.90) como la temperatura (β = -1.63) ejercen un efecto inversamente proporcional en la cuantificación de metano disuelto fugado.

Estavisticas de la regresión												
Coeficiente de determinación R ²	0.8535	Variable	β	N/A								
R ² ajustado	0.8266	COVrem	2.10	kg DQOs/m ³ d								
Error típico	9.4065	Conductividad	-6.90	μS/m								
Observaciones	51	Temperatura	-1.63	°C								
L/d metano disuelto fugado = 2.10 COVrem – 6.90 Conductividad - Temperatura 1.63												

Para conocer que variable ejerce mayor efecto sobre el metano disuelto fugado se estandarizaron los coeficientes beta (Excel, 2016). Con esto, se determinó cuál es la variable independiente que tiene mayor peso para la explicación del fenómeno. Los coeficientes estandarizados se muestran en la Figura 23. Tomando como absolutos los valores se observó que la variable que tuvo mayor efecto sobre el metano disuelto fugado fue la COVrem (0.503) seguida de la conductividad (0.400).

Para el caso de la COVrem esto de debió a que con el aumento de esta también se tuvo un incremento directamente proporcional en la producción de biogás, por lo consiguiente fue factible tener un incremento en el metano disuelto fugado en el efluente del RAFA. En cuestión de la conductividad, la adición de NaHCO₃ para el incremento de la alcalinidad en el sistema aumentó la concentración de sólidos disueltos en el agua que quitan espacio intermolecular a moléculas gaseosas y, por ende, disminuye la solubilidad del gas.

Para la temperatura, el método de regresión múltiple señaló que el efecto que ejerce esta variable no es significativo (P > 0.05) y por lo tanto estadísticamente se justificaría su omisión como variable independiente en la ecuación. Esto se debió a que la variación de temperatura durante toda la etapa experimental fue de 3 °C (17 – 20 °C), lo cual es muy poco si se toma en cuenta que investigaciones similares utilizaron variaciones de temperatura mayores a los 10 °C (Uemura y Harada., 1999; Hartley y Lant., 2006; Wasala et al., 2012). El valor negativo indica que el metano disuelto fugado disminuye al aumentar la temperatura de operación.

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Variable

Figura 23. Coeficientes estandarizados para COVrem, conductividad y temperatura con un intervalo de confianza del 95 %.

En la Tabla 9 se muestra la correlación entre el biogás disuelto fugado en la torre de desorción con respecto a la COVrem, bajo las condiciones del valle de Toluca (18 \pm 1.06 °C y 0.74 atm). El metano disuelto fugado promedio obtenido de las pendientes a distintas conductividades (1-2, 2-3 y 3-4 μ S/cm) fue de 3.24 \pm 0.44 L/ kg DQOs/m³. Si se divide entre el volumen del reactor (0.244 m³) se calcula en la torre de desorción aproximadamente 13 L metano disuelto fugado/kg DQOs removida. Los valores de biogás disuelto fugado obtenidos disminuyeron con respecto al incremento de la conductividad. Con esto, se demuestra que el incremento de la recuperación de biogás es directamente proporcional al aumento de la COVrem, y que la conductividad encontrada en el efluente tratado afectó en la cuantificación de biogás en la torre de desorción.

El concepto de que a mayor concentración de sólidos disueltos en una solución afecta de manera significativa se refuerza con la investigación de Al-Anezi et al. (2008). En dicho trabajo se concluye que la solubilidad del dióxido carbono, es menor en medios acuosos con sales disuelta que en agua pura.

. .

Tabla 9. Analisis de	abia 3. Anansis de regresión inteal simple												
Estadísticas de la regresión													
	Conductividad	Conductividad	Conductividad										
	1 – 2 µS/cm	2 – 3 µS/cm	3 – 4 µS/cm										
R ²	0.74	0.84	0.99										
Intercepto	N/A	N/A	N/A										
L CH₄/kg/m³	4.20	3.46	3.27										

En la Figura 24 se presentan las correlaciones de metano producido y, metano producido más el metano disuelto fugado en la torre ($25.41 \pm 7.95 \text{ L/d}$) con relación a la producción de metano teórico. Como se observa en las pendientes, la adición del metano recuperado por la torre de desorción aumentó en un 3 % en la pendiente. Dicho porcentaje equivale en promedio a los 25.41 L metano disuelto fugado/d.

El bajo porcentaje de recuperación podría deberse al diseño que actualmente tiene el RAFA, debido a su geometría rectangular, es posible que, parte del biogás producido no sea recolectado en el reservorio de almacenaje y este pueda fugarse en la parte superior del RAFA, mientras que otra parte pudiera ser cuantificada en la torre de desorción. El cálculo de la producción de biogás debe considerar la remoción de DQO particulada, pues en la ecuación propuesta solo se incluye la remoción de la DQOs. Esto con el objetivo de optimizar el balance de metano en el RAFA, así como en la torre de desorción.

Figura 24. Correlación entre el metano producido (L/d), metano producido más lo recuperado en relación con el producido (L/d).

Como se explicó anteriormente, la mala calidad del agua en los últimos lotes no permitió una buena producción de biogás y, por ende, tampoco se llevó a cabo una buena recuperación de biogás por parte de la torre. Sin embargo, se cree que es posible que al aumentar la producción de biogás se pueda dar un aumento proporcional en la recuperación, manteniéndose de este modo la pendiente obtenida constante (Figura 24). Para lograr que la pendiente incremente, se podrían emplear aireadores u otra tecnología que ayude a la colección de mayor cantidad de biogás a la que en esta investigación fue capaz de alcanzar.

A diferencia del método propuesto para determinar el metano disuelto fugado por DQO_T, el método por la torre desorción nos permite utilizar el metano disuelto fugado debido a que no es sometido a un proceso de oxidación química y a ni un cambio en la naturaleza del gas, lo que es una ventaja.

Por lo tanto, se aconseja optar por concentraciones cercanas a los 2000 mg DQOs/L ya que se ha demostrado que a esta concentración se ha obtenido un buen rendimiento en general en el RAFA

8. Conclusiones

El RAFA a escala piloto tratando agua residual industrial chocolatera, operado a baja temperatura (16.43 ± 3.3°C), a TRH corto (6.4 ± 0.50 h) y a COVapl altas (8.0 ± 2.63 kg DQOs/m³ d), presentó una eficiencia de remoción de 65.04 ± 14.5 % y una producción de biogás de 644.53 ± 179.60 L/d en los 255 días de operación.

El tratamiento anaerobio de agua residual industrial chocolatera, es factible para ser realizado en condiciones psicrofílicas, sin la necesidad de agregar una fuente de energía externa para el calentamiento del RAFA, salvo la energía producida por el biogás generado en el mismo en época invernal. Sin embargo, la variabilidad en cuanto a la concentración de DQOs y pH del agua hace necesario el uso de dilución en algunas etapas; en caso de una desestabilización en el reactor.

- El metano disuelto fugado en un efluente de un RAFA calculado utilizando el método colorimétrico de reflujo cerrado para analizar DQO_T fue de 19.64 ± 5.0 L CH₄/d. El valor obtenido en este trabajo de investigación fue inferior al valor teórico que fue de 34.24 ± 2.13 L CH₄/d.
- La medición del metano disuelto fugado en un efluente de un RAFA utilizando la torre de desorción fue de 25.47 ± 7.95 L CH₄/d y el valor teórico fue de 33.92 ± 0.72 L CH₄/d. Con ambos métodos se midió y cuantificó un valor de metano disuelto fugado en el efluente inferior al teórico.
- El método colorimétrico de reflujo cerrado para determinar la DQO_T no permitió cuantificar el metano disuelto fugado en el efluente de un RAFA que trató un agua residual de la industria chocolatera, debido a que se obtuvieron eficiencias del metano disuelto fugado en el efluente de 57 %, lo que correspondió, a una saturación de 0.57 veces al disuelto teórico. Por lo tanto, esta técnica no superó las expectativas formuladas.
- La torre de desorción permitió cuantificar el metano disuelto en el efluente de un RAFA que trató un agua residual de la industria chocolatera, debido a que se obtuvieron eficiencias del metano disuelto fugado en el efluente de 82 ± 27.21 %, lo

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

que correspondió, a una saturación de 0.82 veces al disuelto teórico. Por lo tanto, esta técnica superó las expectativas formuladas independientemente de que los valores medidos de metano disuelto fugado en el efluente no fueron cercanos a los valores teóricos. Cabe mencionar que a diferencia de los trabajos en los que se basó el diseño para la construcción de la torre, en la torre implementada en esta investigación no se le utilizó energía externa como aeración contra flujo para recuperación del biogás fugado, la cual podría ser una opción para potenciar la recuperación de este.

- La COVrem influenció directamente en el metano disuelto fugado en la torre, ya que el incremento del metano disuelto fugado fue proporcional al incremento en la COVrem en el reactor. Con respecto a la temperatura, esta no afectó el trabajo de la torre en cuanto la recuperación de metano disuelto fugado. Debido a que, bajo el rango de temperaturas en la cual se trabajó (17 – 20 °C), no es permitido observar diferencias significativas en la experimentación. La salinidad en el sistema si bien afecto el trabajo en la torre, esta no llego a ser significativa.
- La Comparación de los resultados obtenidos en esta investigación con los trabajos de otros autores resultó complejo. Las eficiencias obtenidas en esta investigación se calcularon con respecto a la ecuación de la ley de Henry (metano disuelto teórico), mientras que las eficiencias obtenidas en trabajos similares optaron por el uso de un cromatógrafo de gases, esto con el fin de obtener una medición real de la fuga de metano en el efluente y no una fuga teórica como la que se presentó en esta investigación.

9. Recomendaciones

- Caracterizar el agua residual de la industria chocolatera con relación a la presencia de compuestos orgánicos refractarios.
- Implementar la técnica de análisis de biogás por cromatografía de gases para realizar un balance del mismo en el reactor.
- Automatizar el RAFA para que la recolección de datos se lleve a cabo en un software.
- Optimizar la torre de desorción para aumentar la eficiencia de recuperación de metano disuelto fugado en el efluente, se sugiere variar la COVapl, la altura de la caída del efluente e implementar el uso de un sistema de aire a contra flujo.
- Probar alternativas para la recuperación del metano disuelto fugado en el efluente tales como membranas desgasificadoras, que permitirán ponderar sobre cual método es más efectivo y cual otorga el mayor costo – beneficio.
- La propuesta de una torre de desorción sin la inversión de energía para la captación de metano disuelto superó las expectativas previstas. Sin embargo, se sugiere la optimización para aumentar su eficiencia de recuperación. Variar la COVapl, la altura de la caída del efluente, ayudarán a la optimización de esta alternativa.
- Rediseñar el RAFA debido a que su geometría rectangular no permitió una óptima recolección del biogás. Se sugiere un diseño del reactor, los cálculos y consideraciones se encuentran en el anexo A1.

10. Referencias

- Avalos-Gómez, M. (2004). Panel Intergubernamental sobre el Cambio Climático, PICC En Martínez, J., Fernández-Bremauntz, A. (Comp.) Cambio Climático: Una visión desde México. México. Secretaría del Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología. 125-142.
- Al-Anezi, K., Somerfield, C., Mee, D., Hilal, N. (2008). Parameters affecting the solubility of carbon dioxide in seawater at the conditions encountered in MSF desalination plants. Desalination. 222. 548-571.
- Alcaraz-Ibarra, S. (2015). Efecto de temperatura y sustrato sobre la actividad metanogénica específica de un lodo anaerobio psicrofílico. Tesis de maestría CIRA. Facultad de ingeniería UAEM. México.
- Arzate, A.O. (2011). Tratamiento del agua residual de una industria chocolatera en un UASB psicrofílico a cargas altas y TRH corto. Tesis de Maestría CIRA. Facultad de Ingeniería, UAEM. México.
- APHA. (1992). Standard Methods for the Examination of Water and Wastewater. 20^a edición. Nueva York, E.U.A.
- Akila, G. y Chandra, T.S. (2007). Performance of an UASB reactor treating synthetic wastewater at low-temperature using cold-adapted seed slurry. Process Biochemistry, 42, 466 – 471.
- Ávila, J. A. (2015). Cuantificación de la actividad metanogénica específica y de la producción de metano de un reactor anaerobio operado a baja temperatura. Tesis de doctorado CIRA. Facultad de Ingeniería, UAEM. México.
- Esparza-Soto, M., Solís-Morelos, C., Hernández-Torres, J. J. (2011). Anaerobic treatment of a medium strength industrial wastewater at low temperature and short hydraulic retention time: a pilot-scale experience. Water Science and Technology. 64, 1629-1635.
- Esparza-Soto, M., Arzate-Archundia, O., Solís-Morelos, C., Fall, C. (2013). Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time. Water Science and Technology, 67, 1353-1361.
- Hyeongu, Y., Junyeong, A., Robertson, R., Rittman, B.E., Hyung-Sool, L. (2015). Contribution of liquid/gas mass-transfer limitations to dissolved methane oversaturation in anaerobic treatment of dilute wastewater. Environmental Science & Technology. 49, 10366 – 10373.

- Hartley, K., Lant P. (2006). Elimination non-renewable CO₂ emissions from sewage treatment: an anaerobic migrating bed reactor pilot plant study. Biotechnology and Bioengineering. 3, 384 398.
- Hatamoto, M., Miyauchi, T., Kindaichi, T., Ozaki, N., Ohashi, A. (2011). Dissolved methane oxidation and competition for oxygen in down flow hanging sponge reactor for post-treatment of anaerobic wastewater treatment. Bioresource Technology. 2011, 10299 10304.
- Hulshoff-Pol, L. W., Lens, P. N. L., Stams, A. J. M. & Lettinga, G. (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9, 213–224.
- James, C., Young, P.E. (2001). Extractos material del curso "Fundamentals & Design of Advanced Anaerobic Processes for Industrial Wastewater Treatment" University of Arkansas; Montevideo/Buenos Aires.
- Jewell, W.J. (1987) Anaerobic Sewage Treatment. Environ. Sci. Technol., 21, 14.
- Lettinga, G., Rebac, S., Zeeman G. (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology. 9, 3533 3540.
- Lettinga, G, Roersma, R, Grin, P. (1983). Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnol Bioeng 25:1701–1723.
- Lettinga, G., Hulshoff, pol, L.W., Zeeman, G. (1996). Biological wastewater treatment. PartI: Anaerobic Wastewater Treatment. Lecture Notes. Wageningen Agricultural University.
- Lettinga, G., Huishoff Pol, L.W. (1991). UASB process design for various types of waste water. Water Science and Technology, 24(8), 87-107.
- Lara-Domínguez, F.J. (2013). Recuperación y utilización del biogás producido por un reactor UASB para el incremento de su desempeño. Tesis de maestría CIRA. Facultad de ingeniería UAEM. México. Gloria, R. M., Souza C.L., Chernicharo C.A.L., Silva, P.V.O. (2016). Effectiveness of a Desorption Chamber for the Removal of Dissolved Gases from Anaerobic Effluents. Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais.
- Magaña-Rueda, V.O. (2004). El Cambio Climático Global: Comprender el Problema. En Martínez, J. & Fernández-Bremauntz, A. (Comp.) Cambio Climático: Una visión desde México. (pags.17-28). México. Instituto Nacional de Ecología.
- Matsuura, N., Hatamoto, M., Sumino, H., Syutsubo, K., Yamaguchi, T., Ohashi, A. (2015). Recovery and biological oxidation of dissolved methane in effluent from UASB

treatment of municipal sewage using a two-stage closed downflow hanging sponge system. Journal of Environmental management. 15, 200 – 209.

- Metcalf, Eddy. (2004). Wastewater engineering. Treatment and reuse. Fourth edition. New York. McGraw Hill. Estados Unidos de América.
- Nieto, J., Santamarta, J. (2003). Las emisiones de gases de efecto invernadero en España. CC.OO. Madrid.
- Pavlostathis SG and Giraldo-Gomez E (1991) Kinetics of anaerobic treatment. Water Sci Thechnology 24, 35-59
- Rebac, S., Ruskova, J., Gerbens, S., Van Lier, J.B., Stams A.J.M., Lettinga, Gazte. (1995).
 High-rate anaerobic treatment of wastewater under psychrophilic conditions. Journal of Fermentation and Bioengineering. 5, 499 506.
- Rittmann, B., McCarty, P. (2001). Biotecnología del medio ambiente: principios y aplicaciones. U.S.A: Mcgraw hil/ Interamericana de España.
- Rihye, Y., Jeonghwan, K., McCarty, P.L., Jaeho B. (2012). Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane biorreactor (SAF-MBR) system. Biosurce Technology. 120, 133 - 139.
- Smith, AL., Skerlos, S.J., Raskin, L. (2013). Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Research. 47, 1655 1665.
- Souza, C.L., Chernicharo, C.A.L., Aquino, S.F. (2011). Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Science & Technology. 64, 2259 – 2264.
- Souza, C.L., Chernicharo, C. L., Melo, C.B., 2012. Methane and hydrogen sulfide emissions in UASB reactors treating domestic wastewater. Water Sci. Technol. 65, 1229–37.
- Torkian, A., Eqbali, A., Hashemian, S.J. (2003). The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resources, Conservation and Recycling. 1, 1 11.
- Uemura, S. y Harada, H. (2000). Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Biosurce Technology. 72, 275 282.
- U.S. Environmental Protection Agency (USEPA), Global mitigation of non CO₂ greenhouse gases, 2006.
- Huete, A., de los Cobos-Vasconcelos, D., Gómez-Borraz, T., Morgan-Sagastume J.M., Noyola, A. (2016). Control of dissolved CH₄ in a UASB reactor effluent from municipal

wastewater treatment. Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM).

- Wasala, B., Satoh, H., Sasakawa, M., Yoshihito, N., Takahashi, M. y Okabe, S. (2011). Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-streng wastewater at low temperatura with degassing membrane. Water Research, 45, 3533 – 3540.
- Wasala, B., Tomorini, K., Hisashi, S., Manabu, S., Yoshihito, N., Masahiro, T., Satoshi O. (2012). Anaerobic treatment of municipal wastewater at ambient temperature: analysis of archaeal community structure and recovery of dissolved methane. Water Research. 46, 5756 – 5764.

ANEXOS

ANEXO A-1. Diseño de un Reactor Anaerobio de Flujo Ascendente (RAFA)

El análisis de los resultados de biogás de la presente investigación indica la importancia de considerar rehacer el diseño del RAFA, por lo que en este apartado se muestra la siguiente propuesta.

Los puntos por considerar en el diseño de un RAFA de acuerdo con Metcalf y Eddy (2004) para tratar un agua residual industrial son:

- (1) Tamaño y dimensiones del reactor.
- (2) Tiempo de retención hidráulico (TRH).
- (3) Tiempo de retención celular (TRC).
- (4) Concentración promedio de los SSV en la cama de lodos.
- (5) Producción de biogás (metano).
- (6) Energía disponible de la producción de metano.
- (7) Requerimiento de alcalinidad.
- (8) El agua residual es principalmente biodegradable (DQOs).
- (9) Se asume que el 50 % de la demanda química de oxígeno particulada (DQOp) y de los SSV es degradado.

Por experiencias pasadas como Alcaraz – Ibarra (2015) se espera una concentración aproximada de 400 mg/L SSV en el efluente.

Variable	Unidades	Valor				
Caudal	m³/d	0.4378				
DQOT	g/m³	6000				
DQOs	g/m ³	4500				
SST	g/m ³	300				
SSV	g/m ³	250				
Alcalinidad	g/m ³ como NaHCO ₃	821.8				
Temperatura	°C	20				

Tabla 1A. Características del agua residual a tratar en el RAFA.

Ciertos parámetros de diseño y coeficiente cinéticos se tomaron del Metcalf y Eddy (2004) y a continuación se muestran.

- 1. y = 0.08 g SSV/g DQO $k_d = 0.02 \text{ g SSV/g SSV d}$ $\mu_m = 0.20 \text{ g SSV/g SSV d}$
- 2. $F_d = 0.15$ g SSV inerte/ g SSV biomasa muerta
- 3. Producción de metano a 35 °C = 0.40 L CH₄/g DQO
- 4. Porcentaje de efectividad del reactor = 85 %
- 5. H_G = Altura de la campana colectora de biogás = 0.5 m

Cálculos realizados para el diseño del RAFA

1. Tomando en consideración un volumen de 0.110 m^3 y suponiendo un 85 % (E) de volumen efectivo (V_L).

$$V_{L} = \frac{V_{n}}{E} = \frac{0.110 \text{ m}^{3}}{0.85} = 0.128 \text{ m}^{3}$$

- 2. Determinar las dimensiones del reactor
 - a. Primero se calculó el área transversal (A) del reactor tomando en cuenta el caudal $(Q = 0.4378 \text{ m}^3/\text{d})$ y la velocidad de ascensión (v = 0.25 m/h).

$$A = \frac{Q}{v} = \frac{0.4378 \frac{m^3}{d}}{\left(0.25 \frac{m}{h}\right) \left(\frac{24 \text{ h}}{1 \text{ d}}\right)} = 0.07 \text{ m}^2$$
$$A = \frac{\pi D^2}{4} = 0.07 \text{ m}^2 \qquad D = 0.304 \text{ m}$$

b. Determinar la altura del líquido en el reactor (H_L).

$$H_L = \frac{V_L}{A} = \frac{0.128 \text{ m}^3}{0.07 \text{ m}^2} = 1.75 \text{ m}$$

c. Determinar la altura total (H_T) del reactor sumando la altura de la campana colectora de biogás.

$$H_T = H_L + H_G = 1.75 \text{ m} + 0.5 \text{ m} = 2.25 \text{ m}$$

- d. Dimensiones del reactor.Diámetro (m) 0.304Altura (m) 2.25
- 3. Determinar el tiempo de retención hidráulico (TRH).

TRH=
$$\frac{V_L}{Q} = \frac{(0.128 \text{ m}^3)}{0.4378 \frac{\text{m}^3}{\text{d}}} (\frac{24 \text{ h}}{1 \text{ d}}) = 7.029 \text{ h}$$

4. Determinar el tiempo de retención celular (TRS).

a. El TRS puede ser calculado asumiendo que todos los residuos sólidos biológicos se hayan en el efluente. Un diseño aproximado asume que en el efluente la concentración de SSV consiste en biomasa fugada. Así, la siguiente relación se aplica como

En donde el Q y la concentración de SSV del efluente (Xe) son conocidas. El valor de P_{XeSSV} es dada por la siguiente ecuación (No. de ecuación):

$$P_{XeSSV} = \frac{QY(S_0-S)}{1+(k_d)TRS} + \frac{f_d(k_d)Q(y)(S_0-S)TRS}{1+(k_d)TRS} + Q(nbSSV) - QX_e$$

Siendo.

 S_{O} = Concentración de materia orgánica como DQO_S en el influente (g/m³); S = Concentración de materia orgánica como DQO_S en el efluente (g/m³); TRS = tiempo de retención celular (d); nbSSV = concentración de solidos suspendidos volátiles no

biodegradables (g/m³); Xe = concentración de solidos suspendidos volátiles en el efluente.

b. Desarrollar la ecuación que se necesita para obtener la concentración de DQOs en el efluente, tomando en cuenta una remoción del 90 %

$$S = \left[4500 \frac{g}{m^3} \cdot \left(45000 \frac{g}{m^3} \cdot 0.9879\right)\right] 1000 = 54.45 \frac{g}{m^3}$$

Calcular la concentración de nbSSV suponiendo que el 50 % del SSV son degradados.

nbSSV=0.50
$$\left(\frac{250g}{m^3}\right) = \frac{125g}{m^3}$$

Calcular la concentración de DQO particulada (DQOp) suponiendo el 50 % de degradación.

$$DQO_{P} = \left[0.50 \left(6000 \frac{g}{m^{3}} - 4500 \frac{g}{m^{3}}\right)\right] = 750 \frac{g}{m^{3}}$$

Calcular la DQO_T degradable en el influente, S₀.

$$S_0 = (4500 + 750) \frac{g}{m^3} = 5250 \frac{g}{m^3}$$

c. Sustituir todos los parámetros calculados para resolver la ecuación propuesta para calcular el TRS.

$$\left(400\frac{g}{m^3}\right) \left(0.4378\frac{m^3}{d}\right) = \left(\frac{0.4378 m^3}{d}\right) \left(\frac{0.08 g SSV}{g SSV}\right) [5250-54.45)\frac{g}{m^3}]$$

$$+ \frac{\left(0.15\right) \left(0.08\frac{g SSV}{g DQO}\right) \left(0.03\frac{g}{d}\right) \left(0.4378\frac{m^3}{d}\right) [(5250-54.45)\frac{g}{m^3})]TRS}{[1 + [(\frac{0.03 g}{g SSV d})SRT] + \left(\frac{0.4378m^3}{d}\right) (\frac{125g}{m^3})]TRS}$$

TRS=22.045 d

 Estimar la concentración de la DQOs en el efluente para un tiempo de 22 días y a 20 °C y con los siguientes coeficientes.

$$S = \frac{k_{S}[1+(k_{d})TRS]}{TRS(YK-k_{d})-1}$$

$$K = \frac{\mu_{max}}{Y} = \frac{\frac{0.020g SSV}{g SSV d}}{\frac{0.08 g SSV}{g DQO}}$$

$$S = \frac{(900 \frac{g}{m^{3}})[(1+(\frac{0.03 g}{g d})(22.045 d))}{(22.045 d)[(\frac{0.08 g SSV}{g DQO})(\frac{0.25 g SSV}{g DQO})]} = \frac{544.16 g}{m^{3}}$$

6. Determinar si el TRS calculado es el adecuado.

Fracción de la DQOs del influente en el efluente=
$$\frac{544.16 \frac{g}{m^3}}{4500 \frac{g}{m^3}}$$
*100 = 12.092 % S

Debido a que el resultado anterior fue mayor que el 10 % propuesto anteriormente, se optaría por descartar el TRS calculado. Sin embargo, inmediatamente al RAFA, se encuentran lodos activados que ayudan a dar pulimiento al agua tratada y que, la concentración de 544.15 g/m³ como DQOs calculados es similar a la de un agua municipal. Lo que es idóneo para estos.

- 7. Determinar la concentración de X_{SST} en la zona de biomasa del reactor.
 - a. El valor de X_{SSV} puede ser estimada con la siguiente ecuación

$$TRS = \frac{V_n(X_{SSV})}{(Q-Q_W)X_e + (Q_w)(X_r)}$$

Se asume que los residuos sólidos se encuentran en el efluente. Entonces, $Q_W = 0$ y así poder estimar X_{SST}.

TRS*
$$\frac{(V_n)(X_{SSV})}{Q(X_e)}$$
 :: X_{SST} * $\frac{(Q)(X_e)(SRT)}{V_n}$

b. Resolver la siguiente ecuación para determinar la concentración X_{SSV}.

$$X_{SSV} = \frac{\left(\frac{0.4378m^3}{d}\right) \left(\frac{400g}{m^3}\right) (22.045d)}{0.128m^3} = \frac{30106.140g}{m^3}$$

c. Calcular X_{SST}.

$$X_{SST} = \frac{\frac{30106.140 \text{mg}}{\text{L}}}{0.85} = \frac{35418.988 \text{g}}{\text{m}^3}$$

- 8. Determinar la producción de gas metano y la energía producida.
 - a. Determinar la DQOs degradada.

DQOs degradado=(5250-54.45)
$$\frac{g}{m^3}$$
=5195.55 $\frac{g}{m^3}$

b. Determinar la producción de gas metano.

produccion de CH₄ a 20 °C=
$$\left(\frac{0.40I}{g}\right)\left(\frac{273.15+20°C}{273.15+35°C}\right)=0.380\frac{LCH_4}{g}$$

CH₄ producido por día= $\left(3.805 \times 10^{-4} \frac{m^3}{g}\right)\left(5195 \frac{g}{m^3}\right)\left(0.4378 \frac{m^3}{d}\right)=0.860 \frac{m^3}{d}$

Determinar el volumen de gas producido (usando 85 % metano).

$$\frac{0.860\frac{\text{m}^3}{\text{d}}}{0.85} = 1.0819\frac{\text{m}^3}{\text{d}}$$

9. Determinar la producción de energía del metano.

Para determinar la energía producida y la densidad del metano a 20 °C se utilizó el factor de 50.1 kJ/g CH₄ de Metcalf y Eddy (2004).

a. Determinar la densidad

Densidad a 35 °C=0.6346
$$\frac{g}{L}$$
 del anexo A-3

Densidad del CH₄ a 20 °C=
$$\frac{0.6346 \frac{g}{L}}{\left(\frac{273.15+20^{\circ}C}{273.15+35^{\circ}C}\right)}$$
= 0.613 $\frac{g}{L}$

b. Determinar la energía producida.

Energía producida=
$$\left(0.865 \frac{m^3}{d}\right) \left(\frac{1000L}{m^3}\right) \left(\frac{0.613g}{L}\right) \left(\frac{50.1kJ}{gCH_4}\right) = \frac{26611.2407kJ}{d}$$

10. Determinar los requerimientos de alcalinidad.

Del anexo A-2 la concentración estimada de alcalinidad que se requiere a 20 °C y 25 % de CO₂ en el biogás es de 2039 mg/L como CaCO₃. Debido a que se contempla una alcalinidad de aproximadamente 800 mg/L como CaCO₃. La cantidad necesaria por añadir es de.

Alcalinidad requerida=(2.039 - 0.821)
$$\frac{\text{kg}}{\text{m}^3} = \frac{1.22 \text{ kg CaCO}_3}{\text{m}^3} \equiv \frac{2.045 \text{ kg NaHCO}_3}{\text{m}^3}$$

Adición diaria=
$$\left(\frac{2.045 \text{ kg NaHCO}_3}{\text{m}^3}\right)\left(\frac{0.4378\text{m}^3}{\text{d}}\right) = \frac{0.8956 \text{ kg}}{\text{d}}$$

Allexo A-2. i orcentaje de 002 y la temperatura (0) para caculo de alcalinidad.												
Т (°С)	25 %		30 %		35 %	CO ₂	40 % CO ₂					
	CO₃ (mg/L)	HCO₃ (mg/L)	CO₃ (mg/L)	HCO₃ mg/L	CO₃ mg/L	HCO₃ mg/L	CO₃ mg/L	HCO₃ mg/L				
10	2246.10	2740.24	2695.31	3288.30	3144.54	3836.36	3593.76	4384.38				
15	2135.23	2605.00	2562.27	3126.00	2989.32	3647.00	3416.37	4168.00				
20	2039.57	2488.28	2447.49	2985.93	2855.40	3483.60	3263.31	3981.24				
25	1912.52	2333.28	2295.03	2799.94	2677.53	3266.59	3060.04	3733.25				
30	1760.16	2147.40	2112.20	2576.88	2464.23	3006.36	2816.26	3435.84				

Anexo A-2. Porcentaje de CO₂ y la temperatura (°C) para caculo de alcalinidad

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

35	1611.16	1965.62	1933.40	2358.74	2255.63	2751.87	2577.86	3145.00
40	1475.54	1800.16	1770.65	2160.19	2065.76	2520.22	2360.87	2880.26

Fuente: Modificado de Metcalf y Eddy (2004).

No	Fecha	DQOs	s (mg/L)	COV (kg DQ(O/m³ d)	Eficiencia de	р	H	Tempera	itura (°C)	Q	TRH	Biogás producido	Biogás Teórico
NO.	T echa	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	efl	(L/h)	(h)	(L/d)	(L/d)
1	02/08/2016	1670	342	6.0	1.2	4.8	79.5	6.96	6.9	18.3	18.3	37	6.667	532.667	698.67
2	03/08/2016	1592	342	5.7	1.2	4.5	78.5	6.93	6.85	18.3	18.4	36	6.697	504.000	654.64
3	04/08/2016	1592	342	5.9	1.3	4.7	78.5	6.96	7.03	18.3	18.7	38	6.452	530.667	679.56
4	05/08/2016	1592	381	5.7	1.4	4.3	76.1	6.90	7.02	18.3	18.3	36	6.703	471.333	633.63
5	06/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6	07/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
7	08/08/2016	1578	327	6.0	1.2	4.8	79.3	6.94	7.07	17.5	17.2	39	6.289	534.667	695.81
8	09/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
9	10/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10	11/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11	12/08/2016	1558	381	5.8	1.4	4.4	75.5	7.02	7.12	17.3	17.8	37.7	6.478	485.750	635.09
12	13/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
13	14/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
14	15/08/2016	2185	561.55	8.1	2.1	6.0	74.3	6.90	7.02	17.5	17.3	37.5	6.501	692.667	873.49
15	16/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16	17/08/2016	2074	299	7.2	1.0	6.2	85.6	6.44	6.55	17.8	17.7	35.5	6.867	757.603	905.07
17	18/08/2016	2606	550	9.2	2.0	7.3	78.9	6.05	6.68	17.3	15.8	36.1	6.765	795.103	1062.26
18	19/08/2016	2610	667	9.0	2.3	6.7	74.4	6.88	6.9	15.5	15.8	35	6.971	765.000	968.15
19	20/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	21/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21	22/08/2016	2316	581	8.7	2.2	6.6	74.9	6.88	6.95	15.3	15.3	38.4	6.354	754.000	947.83
22	23/08/2016	2286	801	8.7	3.0	5.7	65.0	6.50	6.7	17.5	17.8	38.7	6.305	647.500	823.83
23	24/08/2016	2282	761	8.2	2.7	5.4	66.7	6.65	6.73	17.3	17.3	36.4	6.703	634.544	793.11
24	25/08/2016	2442	771	9.0	2.8	6.2	68.4	6.69	6.73	18.4	18.5	37.5	6.507	768.467	901.05
25	26/08/2016	2200	591	8.1	2.2	5.9	7 <u>3</u> .1	6.74	6.84	18.5	18.5	37.5	6.507	644.993	867.92

Ane	xos A-3. Reg	istro de	e los par	ámetros	s del F	RAFA a	escala piloto d	e 244	L obte	enidos dui	rante el p	eriodo de	agosto 2	016 a mayo 2017 ((Continuación).
No	Focha	DQOs	s (mg/L)	COV (kg DQOs/m ³ d)			Eficiencia de	р	н	Tempera	tura (°C)	Q	TRH	Biogás producido	Biogás teórico
INU.	recha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(L/d)	(L/d)
26	27/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27	28/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28	29/08/2016	2556	749	10.0	2.9	7.1	70.7	6.73	6.86	17.4	17.9	39.9	6.11529	868.467	1033.199
29	30/08/2016	2078	341	7.9	1.3	6.6	83.6	6.66	6.83	15.6	15.4	38.7	6.30491	751.300	957.337
30	31/08/2016	1600	210	5.7	0.8	5.0	86.9	6.73	6.64	15.3	17.4	36.4	6.7033	541.396	719.811
31	01/08/2016	1658	338	6.3	1.3	5.1	79.6	7.37	7.4	16.4	16.7	38.9	6.27249	554.324	733.295
32	02/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
33	03/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
34	04/08/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
35	05/09/2016	2300	734	8.2	2.6	5.6	68.1	6.71	6.83	16.5	16.3	36.4	6.7033	665.042	814.327
36	06/09/2016	2666	782	10.0	2.9	7.1	70.7	6.96	6.74	17.4	16.8	38.175	6.39162	831.807	1030.654
37	07/09/2016	2472	875	9.6	3.4	6.2	64.6	6.84	6.62	16.6	16.3	39.325	6.2047	717.406	897.489
38	08/09/2016	2533	823	9.1	3.0	6.1	67.5	6.78	6.85	16.8	16.2	36.475	6.68951	647.9415	891.962
39	09/09/2016	2173	721	7.8	2.6	5.2	66.8	6.78	6.88	17.3	17.5	36.4	6.7033	557.566	757.131
40	10/09/2016	2139	669	7.6	2.4	5.2	68.7	6.93	7.04	17.6	16.4	35.95	6.7872	529.991	757.823
41	11/09/2016	2242	795	8.1	2.9	5.2	64.5	6.92	7.01	17.2	17	36.575	6.67122	558.1975	757.891
42	12/09/2016	2123	624	7.7	2.3	5.5	70.6	6.88	6.92	17.9	18.1	37.025	6.59014	590.054	796.703
43	13/09/2016	2131	671	8.0	2.5	5.5	68.5	6.83	6.94	18.3	18.5	38.35	6.36245	660.473	804.849
44	14/09/2016	2182	731	7.5	2.5	5.0	66.5	6.87	6.99	17.3	17.2	35.1	6.95157	563.774	729.588
45	15/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
46	16/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
47	17/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
48	18/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
49	19/09/2016	2193	754	7.7	2.6	5.0	65.6	7.13	7.17	17.4	17.6	35.65	6.84432	528.5795	735.145
50	20/09/2016	2224	628	8.4	2.4	6.0	71.7	7.34	7.5	17.3	17.5	38.33	6.36577	643.971	876.345

Ane	Anexos A-3. Registro de los parámetros del RAFA a escala piloto de 244 L obtenidos durante el periodo de agosto 2016 a mayo 2017 ((Continuación).					
No	Fecha	DQO	s (mg/L)	COV (k	kg DQC	Ds/m³ d)	Eficiencia de	р	Н	Tempera	itura (°C)	Q	TRH	Biogás producido	Biogás teórico
		Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(L/d)	(L/d)
51	21/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
52	22/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
53	23/09/2016	2361	718	9.0	2.7	6.2	69.6	7.2	7.28	17.6	17.3	38.665	6.31062	764.622	910.765
54	24/09/2016	2200	542	8.7	2.1	6.5	75.4	6.8	7.1	17	16.6	40.0375	6.09429	770.424	949.961
55	25/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
56	26/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
57	27/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
58	28/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
59	29/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
60	30/09/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
61	01/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
62	02/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
63	03/10/2016	2500	730	9.5	2.8	6.7	70.8	6.9	7	17.4	16.8	38.64	6.3147	716.081	980.084
64	04/10/2016	2300	536	9.3	2.2	7.1	76.7	7.3	7.3	17.3	16.7	41.1555	5.92873	838.640	1039.991
65	05/10/2016	2100	481	8.2	1.9	6.3	77.1	7.2	7.3	17.3	16.7	39.5778	6.16508	796.947	917.912
66	06/10/2016	2013	427	7.7	1.6	6.1	78.8	6.7	6.9	16.2	15.4	38.9813	6.25942	633.615	882.296
67	07/10/2016	2034	467	7.9	1.8	6.1	77.0	6.8	6.9	16.3	15.2	39.6848	6.14846	662.418	887.765
68	08/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
69	09/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
70	10/10/2016	2414	503	9.5	2.0	7.5	79.2	6.7	7.1	16	15.4	40.0263	6.096	865.325	1090.839
71	11/10/2016	2222	489	8.6	1.9	6.7	78.0	6.8	7.2	16.6	15.5	39.425	6.18897	734.395	976.395
72	12/10/2016	2671	643	10.1	2.4	7.6	75.9	6.6	6.8	16.9	15.4	38.2543	6.37838	880.035	1109.820
73	13/10/2016	2692	653	10.4	2.5	7.9	75.7	6.8	7.1	15.02	14.9	39.2958	6.20932	901.865	1138.790
74	14/10/2016	2502	599	9.6	2.3	7.3	76.1	6.8	7	15.3	15.2	38.8405	6.2821	886.788	1051.541
75	15/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Anex	Anexos A-3. Registro de los parámetros del RAFA a escala piloto de 244 L obtenidos durante el periodo de agosto 2016 a mayo 2017 (Continuación).														
No	No. Fecha	DQOs	s (mg/L)	COV (k	g DQC	Os/m³ d)	Eficiencia de	р	Н	Tempe	eratura	Q	TRH	Biogás producido	Biogás teórico
INO.	recha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(L/d)	(L/d)
76	16/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
77	17/10/2016	2580	581	10.3	2.3	8.0	77.5	6.7	6.9	15.6	14.6	40.563	6.01533	895.223	1154.773
78	18/10/2016	2300	502	9.2	2.0	7.2	78.2	7.3	7.1	15.3	14.8	40.7555	5.98692	842.055	1042.506
79	19/10/2016	2492	534	9.5	2.0	7.5	78.6	7.6	8.2	15.9	14.2	38.782	6.29158	891.177	1082.550
80	20/10/2016	2048	385	8.0	1.5	6.5	81.2	7.5	8.3	15.2	14.7	39.9395	6.10924	728.369	944.597
81	21/10/2016	2053	302	8.2	1.2	7.0	85.3	6.7	6.9	15.3	14.3	40.6415	6.00372	897.271	1012.414
82	22/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
83	23/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
84	24/10/2016	2020	311	7.6	1.2	6.5	84.6	6.6	6.8	15.4	14.4	38.4813	6.34075	726.582	935.932
85	25/10/2016	2099	302	8.3	1.2	7.1	85.6	6.7	7	15.3	14	40.1915	6.07094	869.899	1027.507
86	26/10/2016	2102	316	8.3	1.3	7.1	85.0	6.9	7.3	15.2	14.9	40.3278	6.05042	889.886	1024.324
87	27/10/2016	2095	329	8.1	1.3	6.8	84.3	6.8	7.2	15	14	39.155	6.23164	757.002	982.717
88	28/10/2016	2285	319	8.9	1.2	7.7	86.0	6.9	7.1	15	14	39.5788	6.16492	935.361	1105.850
89	29/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
90	30/10/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
91	31/10/2016	2201	314	8.8	1.3	7.6	85.7	6.6	6.7	15	14	40.7128	5.99321	890.864	1091.825
92	01/11/2016	2193	332	8.5	1.3	7.2	84.9	6.8	6.9	15	14	39.5355	6.17167	864.602	1045.645
93	02/11/2016	2025	281	8.0	1.1	6.9	86.1	7.2	7.4	15	14	40.08	6.08782	728.655	993.401
94	03/11/2016	2201	399	8.3	1.5	6.8	81.9	6.9	7.1	15	14	38.269	6.37592	730.779	980.059
95	04/11/2016	2530	492	10.1	2.0	8.1	80.6	6.8	7.3	14	13	40.524	6.02112	934.461	1169.653
96	05/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
97	06/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
98	07/11/2016	2503	509	9.9	2.0	7.9	79.7	6.7	7	14	13	40.1543	6.07657	921.926	1133.959
99	08/11/2016	2321	603	9.2	2.4	6.8	74.0	6.8	7.1	14	13	40.1943	6.07052	709.394	977.975
100	09/11/2016	2304	589	9.0	2.3	6.7	74.4	6.7	6.9	12	12	39.872	6.11958	724.469	961.695

Anexos A-3. Registro de los parámetros del RAFA a escala piloto de 244 L obtenidos durante el periodo de agosto 2016 a mayo 2017 (Conti													(Continuación).		
NI-	lo. Fecha	DQOs	s (mg/L)	COV (I	kg DQ(Os∕m³ d	Eficiencia de	р	Н	Tempera	itura (°C)	Q	TRH	Biogás producido	Biogás teórico
INO.	Fecha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(Ĺ/d)	(L/d)
101	10/11/2016	2301	573	9.0	2.3	6.8	75.1	7.2	7.3	12	12	39.9653	6.1053	757.77675	971.251
102	11/11/2016	2202	643	8.6	2.5	6.1	70.8	7	7.2	12	11	39.8278	6.12638	664.93825	873.247
103	12/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
104	13/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
105	14/11/2016	2240	659	8.9	2.6	6.3	70.6	6.8	7	12	11	40.4728	6.02875	636.60975	899.912
106	15/11/2016	2304	683	9.2	2.7	6.5	70.4	6.8	7	12	12	40.6548	6.00176	642.49225	926.829
107	16/11/2016	2302	693	9.1	2.7	6.4	69.9	6.6	6.8	10	10	40.2478	6.06245	733.30875	904.370
108	17/11/2016	2494	642	9.8	2.5	7.3	74.3	7.7	8.3	10	9	40.1203	6.08172	863.8895	1037.655
109	18/11/2016	2476	682	9.8	2.7	7.1	72.5	7.4	7.7	10	9	40.2475	6.06249	838.1925	1008.347
110	19/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
111	20/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
112	21/11/2016	2438	681	9.5	2.6	6.8	72.1	6.9	7.1	10	9	39.503	6.17675	716.925	969.282
113	22/11/2016	2572	702	10.4	2.8	7.5	72.7	7.1	7.4	10	9	41.0455	5.94462	856.84375	1071.903
114	23/11/2016	2563	722	9.9	2.8	7.1	71.8	7.1	7.3	9	9	39.4118	6.19105	841.006525	1009.698
115	24/11/2016	2393	672	9.3	2.6	6.7	71.9	7	7.2	9	8	39.5973	6.16204	728.9895	948.326
116	25/11/2016	2301	701	8.9	2.7	6.2	69.5	6.8	7.3	10	9	39.2435	6.21759	637.272	876.872
117	26/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
118	27/11/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
119	28/11/2016	2311	715	9.1	2.8	6.3	69.1	6.5	6.8	12	11	39.971	6.10443	660.22025	897.187
120	29/11/2016	2305	735	9.2	2.9	6.2	68.1	6.8	6.9	12	11	40.4635	6.03013	648.53025	893.446
121	30/11/2016	2373	846	9.5	3.4	6.1	64.3	6.4	6.7	10	10	40.7515	5.98751	632.00925	869.023
122	01/12/2016	2108	785	8.2	3.1	5.2	62.8	6.7	6.9	10	9	39.5795	6.16481	543.51925	731.271
123	02/12/2016	2114	777	8.4	3.1	5.3	63.2	6.8	7.1	9	8	40.1916	6.07092	539.006	747.788
124	03/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
125	04/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Ane	exos A-3. Registro de los parámetros del RAFA a escala piloto de 244 L obtenidos durante el periodo de agosto 2016 a mayo 2017 (Continuación).														
Nia	F aaba	DQOs	s (mg/L)	COV (I	kg DQ(Os/m³ d	Eficiencia de	р	Н	Temper	atura °C	Q	TRH	Biogás producido	Biogás teórico
INO.	Fecha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(Ĺ/d)	(L/d)
126	05/12/2016	2111	773	8.2	3.0	5.2	63.4	6.7	7.1	10	9	39.2555	6.21569	536.470	733.508
127	06/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
128	07/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
129	08/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
130	09/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
131	10/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
132	11/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
133	12/12/2016	2505	1703	9.9	6.7	3.2	32.0	6.9	7.3	9	8	40.2528	6.0617	217.038	449.244
134	13/12/2016	2082	409	6.3	1.2	5.0	80.4	7.3	7.4	21	19	30.595	7.97516	574.762	742.587
135	14/12/2016	2531	311	7.5	0.9	6.6	87.7	6.9	6.9	21	19	30.205	8.07813	763.662	972.820
136	15/12/2016	2531	357	7.3	1.0	6.3	85.9	7.1	7.2	21	19	29.3315	8.3187	752.235	925.113
137	16/12/2016	2367	302	7.0	0.9	6.1	87.2	6.7	6.9	21	18	30.0965	8.10725	780.898	901.648
138	17/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
139	18/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
140	19/12/2016	2349	323	7.1	1.0	6.2	86.2	6.7	6.9	20	18	30.9385	7.88661	775.898	906.276
141	20/12/2016	2723	402	8.1	1.2	6.9	85.2	6.6	7.1	21	19	30.4115	8.02328	867.896	1024.033
142	21/12/2016	2700	553	10.7	2.2	8.5	79.5	6.6	7.1	20	18	40.2955	6.05527	990.484	1250.865
143	22/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
144	23/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
145	24/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
146	25/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
147	26/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
148	27/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
149	28/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
150	29/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Ane	xos A-3. Reg	istro de	e los par	ámetros	s del R	AFA a	escala piloto d	e 244	L obte	enidos du	rante el p	eriodo de	agosto 2	016 a mayo 2017 (Continuación).
No	Foobo	DQOs	s (mg/L)	COV (k	ig DQC)s/m³ d)	Eficiencia de	р	Н	Tempera	tura (°C)	Q	TRH	Biogás producido	Biogás teórico
INO.	геспа	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(Ľ/d)	(L/d)
151	30/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
152	31/12/2016	-	-	-	-	-	-	-	-	-	-	-	-	-	-
153	01/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
154	02/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
155	03/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
156	04/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
157	05/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
158	06/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
159	07/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
160	08/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
161	09/01/2017	3270	740	11.0	2.5	8.5	77.4	6.6	7.1	20	18	34.2955	7.11464	918.544	1254.525
162	10/01/2017	3341	761	11.2	2.5	8.6	77.2	6.8	7	20	18	34.0155	7.1732	957.941	1268.874
163	11/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	_
164	12/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
165	13/01/2017	3169	691	10.7	2.3	8.4	78.2	6.4	6.8	21	20	34.3353	7.1064	957.941	1234.361
166	14/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
167	15/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
168	16/01/2017	3172	695	10.9	2.4	8.5	78.1	6.5	6.9	22	20	34.8953	6.99236	934.183	1258.250
169	17/01/2017	3534	803	11.2	2.6	8.7	77.3	6.9	7.1	20	19	32.3055	7.55289	976.747	1275.616
170	18/01/2017	4582	1303	15.3	4.4	11.0	71.6	6.7	6.9	22	21	33.9955	7.17742	1176.005	1622.697
171	19/01/2017	4402	2102	17.1	8.2	8.9	52.2	7.1	7	18	17	39.4955	6.17792	1158.900	1304.440
172	20/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
173	21/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
174	22/01/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
175	23/01/2017	4827	2092	18.7	8.1	10.6	56.7	6.9	7	19	17	39.4355	6.18732	1054.328	1554.113

Anexos A-3. Registro de los parámetros del RAFA a escala piloto de 244 L obtenidos durante el periodo de agosto 2016 a mayo 2017 (Continu													(Continuación).		
N	E. d.	DQOs	s (mg/L)	COV (k	g DQC	Os/m³ d)	Eficiencia de	р	Н	Tempera	itura (°C)	Q	TRH	Biogás producido	Biogás teórico
NO.	Fecha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(Ĺ/d)	(L/d)
176	24/01/2017	4827	2002	18.9	7.8	11.0	58.5	6.9	7	20	17	39.7035	6.14555	1115.107	1621.695
177	25/01/2017	4682	2105	18.3	8.2	10.1	55.0	6.9	7	19	17	39.7303	6.14142	1028.846	1475.277
178	26/01/2017	4572	1825	17.9	7.1	10.7	60.1	7.3	7.2	19	18	39.7418	6.13964	1085.710	1573.053
179	27/01/2017	2977	751	11.5	2.9	8.6	74.8	6.4	6.7	18	17	39.1763	6.22826	950.398	1252.266
180	28/01/2017	-	-	-	-	-	-	-	-	18	19	-	-	-	-
181	29/01/2017	-	-	-	-	-	-	-	-	18	18	-	-	-	-
182	30/01/2017	2834	703	10.9	2.7	8.2	75.2	6.4	6.7	19	18	39.1763	6.22826	936.988	1202.940
183	31/01/2017	2759	679	10.7	2.6	8.1	75.4	6.7	6.9	18	17	39.5708	6.16617	902.791	1181.915
184	01/02/2017	2726	627	10.3	2.4	7.9	77.0	6.7	7	19	17	38.457	6.34475	906.755	1163.123
185	02/02/2017	2293	593	9.0	2.3	6.6	74.1	6.5	6.8	18	17	39.7168	6.1435	746.298	969.553
186	03/02/2017	-	-	-	-	-	-	-	-	18	19	-	-	-	-
187	04/02/2017	-	-	-	-	-	-	-	-	18	19	-	-	-	-
188	05/02/2017	-	-	-	-	-	-	-	-	19	20	-	-	-	-
189	06/02/2017	2207	614	8.6	2.4	6.2	72.2	6.6	6.8	18	19	39.5455	6.17011	796.616	904.610
190	07/02/2017	2207	654	8.6	2.5	6.0	70.4	6.7	6.9	18	17	39.602	6.1613	651.524	883.156
191	08/02/2017	2428	1115	9.3	4.3	5.0	54.1	7.2	6.9	19	20	38.993	6.25753	559.362	737.716
192	09/02/2017	2428	1908	9.6	7.6	2.1	21.4	7.4	6.5	18	17	40.3818	6.04233	186.505	301.535
193	10/02/2017	1638	1442	6.4	5.7	0.8	12.0	7.2	6.4	18	19	39.9355	6.10985	79.578	112.399
194	11/02/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
195	12/02/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
196	13/02/2017	1598	1172	6.3	4.6	1.7	26.7	7.2	6.5	21	19	39.9355	6.10985	101.733	246.814
197	14/02/2017	1304	918	5.0	3.5	1.5	29.6	7.2	6.6	17	19	39.3045	6.20794	158.269	217.112
198	15/02/2017	1256	738	4.7	2.8	1.9	41.2	7.1	6.7	17	18	38.2513	6.37888	181.236	283.550
199	16/02/2017	1289	763	4.7	2.8	1.9	40.8	6.9	6.5	19	20	37.119	6.57345	183.050	281.332
200	17/02/2017	1341	802	4.9	2.9	2.0	40.2	7.2	6.8	18	19	37.1933	6.56033	181.602	287.873

Ane	exos A-3. Registro de los parámetros del RAFA a escala piloto de 244 L obtenidos durante el periodo de agosto 2016 a mayo 2017 (Continuación).														
No	Foobo	DQOs	s (mg/L)	COV (k	g DQC)s/m³ d)	Eficiencia de	р	н	Tempera	tura (°C)	Q	TRH	Biogás producido	Biogás Teórico
NO.	recha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(L/d)	(L/d)
201	18/02/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
202	19/02/2017	-	-	-	-	-	-	-	-	20	17	-	-	-	-
203	20/02/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
204	21/02/2017	1352	695	5.0	2.6	2.4	48.6	7.1	6.9	20	18	37.528	6.50181	218.99655	356.486
205	22/02/2017	1212	612	4.5	2.3	2.2	49.5	6.8	6.7	19	18	37.396	6.52476	210.271	323.306
206	23/02/2017	1339	682	5.0	2.6	2.5	49.1	6.8	6.6	18	17	38.065	6.41009	236.4195	359.120
207	24/02/2017	1502	738	5.5	2.7	2.8	50.9	6.90	6.50	18.00	17.00	37.4228	6.5201	298.354	410.561
208	25/02/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
209	26/02/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
210	27/02/2017	1792	782	6.8	3.0	3.8	56.4	7	7.2	18	19	38.6623	6.31107	448.06675	560.734
211	28/02/2017	1834	736	7.0	2.8	4.2	59.9	7	7.3	18	19	38.9263	6.26826	488.06675	613.753
212	01/03/2017	2014	644	7.5	2.4	5.1	68.0	6.8	7.1	18	19	37.943	6.4307	637.9035	746.450
213	02/03/2017	2025	653	7.5	2.4	5.1	67.8	6.7	7	19	17	37.6473	6.48122	626.49175	744.261
214	03/03/2017	2140	721	7.9	2.7	5.3	66.3	6.9	6.9	19	20	37.6773	6.47606	667.686	770.370
215	04/03/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
216	05/03/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
217	06/03/2017	2383	716	9.1	2.7	6.3	70.0	6.7	7.1	19	20	38.7008	6.30479	786.52875	929.593
218	07/03/2017	2355	689	9.0	2.6	6.4	70.7	6.7	6.9	18	19	38.8793	6.27584	783.59525	930.126
219	08/03/2017	2359	692	9.0	2.6	6.3	70.7	6.8	7.2	19	20	38.6663	6.31041	783.62975	928.764
220	09/03/2017	2401	632	9.0	2.4	6.6	73.7	6.9	7.1	20	20	38.1653	6.39325	715.48125	976.153
221	10/03/2017	2399	624	9.2	2.4	6.8	74.0	6.9	7.2	18	19	39.0573	6.24724	746.17675	995.517
222	11/03/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
223	12/03/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
224	13/03/2017	2413	721	9.3	2.8	6.5	70.1	7.1	7.3	20	20	39.0573	6.24724	796.28425	955.485
225	14/03/2017	2524	713	9.7	2.7	6.9	71.8	7.1	7.2	19	18	38.9645	6.26211	824.87175	1016.776

Anexos A-3. Registro de los parámetros del RAFA a escala piloto de 244 L obtenidos durante el periodo de agosto 2016 a mayo 2017 (Continuaci													(Continuación).		
		DQOs	s (mg/L)	COV (k	g DQC	Os/m³ d)	Eficiencia de	р	н	Tempera	atura (°C)	Q	TRH	Biogás producido	Biogás teórico
NO.	Fecha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(L/d)	(L/d)
226	15/03/2017	2723	742	10.4	2.8	7.6	72.8	6.8	7	18	17	38.8625	6.27855	975.005	1105.513
227	16/03/2017	2635	753	9.9	2.8	7.1	71.4	6.9	7.2	17	18	38.3813	6.35727	856.953	1033.697
228	17/03/2017	2013	322	7.6	1.2	6.4	84.0	6.7	6.9	18	20	38.29	6.37242	795.263	929.775
229	18/03/2017	-	-	-	-	-	-	-	-	18	19	-	-	-	-
230	19/03/2017	-	-	-	-	-	-	-	-	18	19	-	-	-	-
231	20/03/2017	1967	344	7.5	1.3	6.2	82.5	6.5	6.8	19	17	38.888	6.27443	765.263	909.436
232	21/03/2017	2201	272	8.4	1.0	7.3	87.6	6.8	7.2	17	18	38.6423	6.31433	890.995	1066.717
233	22/03/2017	2394	343	9.2	1.3	7.9	85.7	6.7	6.9	18	19	39.1575	6.23125	892.465	1153.266
234	19/06/2017	1800	1542	6.9	5.9	1.0	14.3	7.2	6.8	18	19	39.067	6.24568	109.551	144.737
235	20/06/2017	1805	1521	7.0	5.9	1.1	15.7	7.1	6.8	18	18	38.8325	6.21126	111.625	158.366
236	21/06/2017	1781	1505	6.8	5.7	1.1	15.5	7.3	7	17	18	39.2835	6.2834	111.616	155.158
237	22/06/2017	1923	1682	7.4	6.5	0.9	12.5	7.2	6.9	17	18	38.1298	6.21126	110.703	131.503
238	23/06/2017	1905	1673	7.3	6.4	0.9	12.2	7.4	6.9	19	20	38.999	6.25657	109.440	130.370
239	24/06/2017	-	-	-	-	-	-	-	-	20	20	39.0195	6.25328	-	-
240	25/06/2017	-	-	-	-	-	-	-	-	-	-	-	-	-	-
241	26/06/2017	2012	1801	7.8	6.9	0.8	10.5	7.3	7	18	18	39.216	6.22195	91.418	118.821
242	27/06/2017	2210	1800	5.6	4.6	1.0	18.6	7.2	7	18	19	25.8383	9.44336	134.156	152.123
243	28/06/2017	1974	1604	5.1	4.2	1.0	18.7	7	6.8	17	18	26.436	9.22984	113.804	139.975
244	29/06/2017	1953	1581	4.9	4.0	0.9	19.0	7.2	6.9	18	19	25.4695	9.58009	103.450	136.054
245	30/06/2017	1923	1512	4.6	3.6	3.6	1.0	21.4	7.1	19	20	24.331	10.028	101.71425	144.092
246	01/07/2017	-	-	-	-	-	-	-	-	19	20	26.555	9.2935	-	-
247	02/07/2017	-	-	-		-	-	-	-	-	-	-	-	-	-
248	03/07/2017	1534	1234	4.0	3.2	0.8	19.6	7.7	7.4	18	19	26.33	9.2672	99.246	113.426
249	04/07/2017	1439	1093	3.7	2.8	0.9	24.0	7.5	7.3	18	19	26.367	9.2539	93.38155	125.466
250	05/07/2017	1445	1087	3.7	2.8	0.9	24.0	7.5	7.3	18	20	26.083	9.3547	97.0855	134.089

Ane	kos A-3. Regi	istro de	e los par	ámetros	s del F	RAFA a	escala piloto d	e 244	L obte	enidos du	rante el p	eriodo de	agosto 2	016 a mayo 2017 ((Continuación).
No	Foobo	DQOs	s (mg/L)	COV (k	g DQC	Ds/m³ d)	Eficiencia de	р	Н	Tempera	tura (°C)	Q	TRH	Biogás producido	Biogás teórico
NO.	recha	Inf	Efl	Apl	Efl	Rem	remoción (%)	Inf	Efl	Inf	Efl	(L/h)	(h)	(L/d)	(L/d)
251	06/'07/2017	1402	1111	3.6	2.8	0.7	20.8	6.9	6.8	19	20	25.764	9.4706	95.8855	108.030
252	07/07/2017	1320	1001	3.6	2.7	0.9	24.2	6.9	6.8	18	18	27.39	8.9085	93.38155	125.466
253	08/07/2017	-	-	-		-	-	-	-	-	-	-	-	-	-
254	09/07/2017	-	-	-		-	-	-	-	-	-	-	-	-	-
255	10/07/2017	1052	821	2.8	2.2	0.6	22.0	7.1	6.7	19	19		9.0216	97.57525	90.023

- No se realizó la medición o el análisis del parámetro.

Anexos A-4. Registro del metano disuelto teórico,	disuelto fugado calculado por DQOT y disuelto fugado
medido en la torre de desorción.	

No.	Fecha	CH₄ disuelto teórico (L/d)	CH₄ medido DQO⊤ (L/d)	Saturación en DQO ⊤	Metano medido en torre (L/d)	Saturación en torre
1	02/08/2016	32.062	-	-	-	-
2	03/08/2016	31.916	-			
3	04/08/2016	33.131	-	-	-	-
4	05/08/2016	31.887	-	-	-	-
5	06/08/2016	-	-	-	-	-
6	07/08/2016	-	-	-	-	-
7	08/08/2016	33.989	-	-	-	-
8	09/08/2016	-	-	-	-	-
9	10/08/2016	-	-	-	-	-
10	11/08/2016	-	-	-	-	-
11	12/08/2016	32.997	-	-	-	-
12	13/08/2016	-	-	-	-	-
13	14/08/2016	-	-	-	-	-
14	15/08/2016	32.880	-	-	-	-
15	16/08/2016	-	-	-	-	-
16	17/08/2016	31.128	-	-	-	-
17	18/08/2016	31.595	-	-	-	-
18	19/08/2016	30.660	-	-	-	-
19	20/08/2016	-	-	-	-	-
20	21/08/2016	-	-	-	-	-
21	22/08/2016	33.639	-	-	-	-
22	23/08/2016	33.902	-	-	-	-
23	24/08/2016	31.887	-	-	-	-
24	25/08/2016	32.851	-	-	-	-
25	26/08/2016	32.851	-	-	-	-
26	27/08/2016	-	-	-	-	-
27	28/08/2016	-	-	-	-	-
28	29/08/2016	34.953	-	-	-	-
29	30/08/2016	33.902	-	-	-	-
30	31/08/2016	31.887	-	-	-	-
31	01/08/2016	34.077	-	-	-	-
32	02/08/2016	-	-	-	-	-
33	03/08/2016	-	-	-	-	-
34	04/08/2016	-	-	-	-	-
35	05/09/2016	31.887	-	-	-	-
36	06/09/2016	33.442	-	-	-	-
37	07/09/2016	34.449	-	-	-	-

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Anexos A-4. Registro del metano disuelto teórico, disuelto fugado calculado por DQO_T y disuelto fugado medido en la torre de desorción (Continuación).

No.	Fecha	CH ₄ disuelto teórico (L/d)	CH₄ medido DQO _T (L/d)	Saturación en DQO T	Metano medido en torre (L/d)	Saturación en torre
38	08/09/2016	31.953	-	-	-	-
39	09/09/2016	31.887	-	-	-	-
40	10/09/2016	31.493	-	-	-	-
41	11/09/2016	32.040	-	-	-	-
42	12/09/2016	32.434	-	-	-	-
43	13/09/2016	33.595	0.842	0.025	-	-
44	14/09/2016	30.748	1.134	0.037	-	-
45	15/09/2016	-	-	-	-	-
46	16/09/2016	-	-	-	-	-
47	17/09/2016	-	-	-	-	-
48	18/09/2016	-	-	-	-	-
49	19/09/2016	31.230	1.968	0.063	-	-
50	20/09/2016	33.578	1.493	0.044	-	-
51	21/09/2016	-	-	-	-	-
52	22/09/2016	-	-	-	-	-
53	23/09/2016	33.871	1.063	0.031	-	-
54	24/09/2016	35.073	1.136	0.032	-	-
55	25/09/2016	-	-	-	-	-
56	26/09/2016	-	-	-	-	-
57	27/09/2016	-	-	-	-	-
58	28/09/2016	-	-	-	-	-
59	29/09/2016	-	-	-	-	-
60	30/09/2016	-	-	-	-	-
61	01/10/2016	-	-	-	-	-
62	02/10/2016	-	-	-	-	-
63	03/10/2016	33.849	1.099	0.032	-	-
64	04/10/2016	36.053	1.178	0.033	-	-
65	05/10/2016	34.671	1.135	0.033	-	-
66	06/10/2016	34.148	1.123	0.033	-	-
67	07/10/2016	34.764	1.134	0.033	-	-
68	08/10/2016	-	-	-	-	-
69	09/10/2016	-	-	-	-	-
70	10/10/2016	35.064	-		-	-
71	11/10/2016	34.537	-	-	-	-
72	12/10/2016	33.511	1.633	0.049	-	-
73	13/10/2016	34.424	1.654	0.048	-	-
74	14/10/2016	34.025	1.862	0.055	-	-
75	15/10/2016	-	-	-	-	-
76	16/10/2016	-	-	-	-	-

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Anexos A-4. Registro del metano disuelto teórico, disuelto fugado calculado por DQO_T y disuelto fugado medido en la torre de desorción (Continuación).

		rie de desorcion	(Continuacion)			
No.	Fecha	CH ₄ disuelto teórico (L/d)	CH₄ medido DQO _T (L/d)	Saturación en DQO _T	Metano medido en torre (L/d)	Saturación en torre
77	17/10/2016	35.534	1.750	0.049	-	-
78	18/10/2016	35.702	2.303	0.065	-	-
79	19/10/2016	33.974	1.970	0.058	-	-
80	20/10/2016	34.988	-	-	-	-
81	21/10/2016	35.603	-	-	-	-
82	22/10/2016	-	-	-	-	-
83	23/10/2016	-	-	-	-	-
84	24/10/2016	33.710	1.576	0.047	-	-
85	25/10/2016	35.208	1.195	0.034	-	-
86	26/10/2016	35.328	1.772	0.050	-	-
87	27/10/2016	34.300	1.914	0.056	-	-
88	28/10/2016	34.672	-	-	-	-
89	29/10/2016	-	-	-	-	-
90	30/10/2016	-	-	-	-	-
91	31/10/2016	35.665	-	-	-	-
92	01/11/2016	34.634	-	-	-	-
93	02/11/2016	35.111	-	-	-	-
94	03/11/2016	33.524	-	-	-	-
95	04/11/2016	35.500	1.848	0.052	-	-
96	05/11/2016	-	-	-	-	-
97	06/11/2016	-	-	-	-	-
98	07/11/2016	35.176	1.964	0.056	-	-
99	08/11/2016	35.211	2.310	0.066	-	-
100	09/11/2016	34.928	1.211	0.035	-	-
101	10/11/2016	35.010	1.800	0.051	-	-
102	11/11/2016	34.890	-	-	-	-
103	12/11/2016	-	-	-	-	-
104	13/11/2016	-	-	-	-	-
105	14/11/2016	35.455	-	-	-	-
106	15/11/2016	35.614	1.602	0.045	-	-
107	16/11/2016	35.258	1.553	0.044	-	-
108	17/11/2016	35.146	1.957	0.056	-	-
109	18/11/2016	35.257	-	-	-	-
110	19/11/2016	-	-	-	-	-
111	20/11/2016	-	-	-	-	-
112	21/11/2016	34.605	-	-	-	-
113	22/11/2016	35.956	-	-	-	-
114	23/11/2016	34.525	-	-	-	-
115	24/11/2016	34.688	-	-	-	-

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Anexos A-4. Registro del metano disuelto teórico, disuelto fugado calculado por DQO_T y disuelto fugado medido en la torre de desorción (Continuación).

No.	Fecha	CH ₄ disuelto	CH ₄ medido	Saturación en	Metano medido en	Saturación en
116	25/11/2016	34 378	-	-	-	-
117	26/11/2016	-	_		-	-
118	27/11/2016	-	-	-	-	-
119	28/11/2016	35.015	-	-	-	-
120	29/11/2016	35.447	-	_	-	-
121	30/11/2016	35.699	-	_	-	-
122	01/12/2016	34.672	-	_	-	-
123	02/12/2016	35.208	-	-	-	-
124	03/12/2016	-	-	-	-	-
125	04/12/2016	-	-	-	-	-
126	05/12/2016	34.388	-	-	-	-
127	06/12/2016	-	-	-	-	-
128	07/12/2016	-	-	-	-	-
129	08/12/2016	-	-	-	-	-
130	09/12/2016	-	-	-	-	-
131	10/12/2016	-	-	-	-	-
132	11/12/2016	-	-	-	-	-
133	12/12/2016	35.262	-	-	-	-
134	13/12/2016	26.802	1.596	0.060	-	-
135	14/12/2016	26.460	0.838	0.032	-	-
136	15/12/2016	25.695	1.221	0.048	-	-
137	16/12/2016	26.365	-	-	-	-
138	17/12/2016	-	-		-	-
139	18/12/2016	-	-	-	-	-
140	19/12/2016	27.103	-	-	-	-
141	20/12/2016	26.641	-	-	-	-
142	21/12/2016	35.299	-	-	-	-
143	22/12/2016	-	-	-	-	-
144	23/12/2016	-	-	-	-	-
145	24/12/2016	-	-	-	-	-
146	25/12/2016	-	-	-	-	-
147	26/12/2016	-	-	-	-	-
148	27/12/2016	-	-	-	-	-
149	28/12/2016	-	-	-	-	-
150	29/12/2016	-	-	-	-	-
151	30/12/2016	-	-	-	-	-
152	31/12/2016	-	-	-	-	-
153	01/01/2017	-	-	-	-	-
154	02/01/2017	-	-	-	-	-

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Anexos A-4. Registro del metano disuelto teórico, disuelto fugado calculado por DQO⊤y disuelto fugado medido en la torre de desorción (Continuación).

		CH, disuelto	CH, medido	Saturación en	Metano medido en	Saturación en
No.	Fecha	teórico (L/d)	DQO _T (L/d)		torre (L/d)	torre
155	03/01/2017	-	-	-	-	-
156	04/01/2017	-	-	-	-	-
157	05/01/2017	-	-	-	-	-
158	06/01/2017	-	-	-	-	-
159	07/01/2017	-	-	-	-	-
160	08/01/2017	-	-	-	-	-
161	09/01/2017	30.043	-	-	-	-
162	10/01/2017	29.798	-	-	-	-
163	11/01/2017	-	-	-	-	-
164	12/01/2017	-	-	-	-	-
165	13/01/2017	30.078	-	-	-	-
166	14/01/2017	-	-	-	-	-
167	15/01/2017	-	-		-	-
168	16/01/2017	30.569	-	-	-	-
169	17/01/2017	28.300	-	-	-	-
170	18/01/2017	29.781	-	-	-	-
171	19/01/2017	34.599	-	-	-	-
172	20/01/2017	-	-	-	-	-
173	21/01/2017	-	-	-	-	-
174	22/01/2017	-	-	-	-	-
175	23/01/2017	34.546	-	-	-	-
176	24/01/2017	34.781	-	-	-	-
177	25/01/2017	34.804	-	-	38.400	1.103
178	26/01/2017	34.814	-	-	40.100	1.152
179	27/01/2017	34.319	-	-	40.684	1.185
180	28/01/2017	-	-	-	38.684	-
181	29/01/2017	-	-	-	41.140	-
182	30/01/2017	34.319	-	-	39.630	1.155
183	31/01/2017	34.665	-	-	39.230	1.132
184	01/02/2017	33.689	-	-	37.895	1.125
185	02/02/2017	34.792	-	-	38.400	1.104
186	03/02/2017	-	-	-	37.565	-
187	04/02/2017	-	-	-	39.635	-
188	05/02/2017	-	-	-	37.684	-
189	06/02/2017	34.642	-	-	36.743	1.061
190	07/02/2017	34.692	-	-	39.635	1.142
191	08/02/2017	34.158	-	-	37.694	1.104
192	09/02/2017	35.375	-	-	35.525	-
193	10/02/2017	34.984	-	-	36.423	-

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Anexos A-4. Registro del metano disuelto teórico, disuelto fugado calculado por DQO_T y disuelto fugado medido en la torre de desorción (Continuación).

No.	Fecha	CH ₄ disuelto teórico (L/d)	CH4 medido DQO _T (L/d)	Saturación en DQO _T	Metano medido en torre (L/d)	Saturación en torre
194	11/02/2017	-	-	-	-	-
195	12/02/2017	-	-	-	-	-
196	13/02/2017	34.984	-	-	33.523	-
197	14/02/2017	34.431	-	-	34.839	1.012
198	15/02/2017	33.509	-	-	34.560	-
199	16/02/2017	32.517	-	-	34.663	1.066
200	17/02/2017	32.582	-	-	34.634	1.063
201	18/02/2017	-	-	-	33.430	-
202	19/02/2017	-	-	-	-	-
203	20/02/2017	-	-	-	33.523	-
204	21/02/2017	32.875	-	-	32.000	0.973
205	22/02/2017	32.759	-	-	32.000	0.672
206	23/02/2017	33.345	-	-	22.000	0.442
207	24/02/2017	32.783	-	-	14.750	0.443
208	25/02/2017	-	-	-	14.530	-
209	26/02/2017	-	-	-	-	-
210	27/02/2017	33.869	-	-	13.500	0.377
211	28/02/2017	34.100	-	-	12.760	0.704
212	01/03/2017	33.239	-	-	24.000	0.488
213	02/03/2017	32.980	-	-	16.230	0.528
214	03/03/2017	33.006	-	-	17.400	0.485
215	04/03/2017	-	-	-	16.000	-
216	05/03/2017	-	-	-	-	-
217	06/03/2017	33.902	-	-	18.280	0.539
218	07/03/2017	34.059	-	-	19.640	0.577
219	08/03/2017	33.872	-	-	26.000	0.768
220	09/03/2017	33.433	-	-	25.300	0.757
221	10/03/2017	34.215	-	-	16.230	0.474
222	11/03/2017	-	-	-	-	-
223	12/03/2017	-	-	-	27.780	-
224	13/03/2017	34.215	-	-	26.800	0.783
225	14/03/2017	34.133	-	-	25.790	0.756
226	15/03/2017	34.044	-	-	22.350	0.657
227	16/03/2017	33.623	-	-	23.050	0.686
228	17/03/2017	33.543	-	-	19.530	0.582
229	18/03/2017	-	-	-	23.050	-
230	19/03/2017	-	-	-	16.380	-
231	20/03/2017	34.066	-	-	17.350	0.509
232	21/03/2017	33.851	-	-	29.840	0.882

Determinación del metano disuelto en el efluente de un RAFA por medio de DQO (método reflujo cerrado)

Anexos A-4. Registro del metano disuelto teórico, disuelto fugado calculado por DQOT y disuelto fugado medido en la torre de desorción (Continuación).

No.	Fecha	CH ₄ disuelto	CH ₄ medido	Saturación en DQO -	Metano medido en torre (L/d)	Saturación en torre
233	22/03/2017	34.303	-	-	28.870	0.842
234	19/06/2017	34.223	-	-	1.300	0.038
235	20/06/2017	34.413	-	-	1.230	0.036
236	21/06/2017	34.018	-	-	1.520	0.045
237	22/06/2017	34.413	-	-	1.460	0.042
238	23/06/2017	34.164	-	-	1.330	0.039
239	24/06/2017	34.182	-	-	1.480	0.043
240	25/06/2017	-	-	-	-	-
241	26/06/2017	34.354	-	-	1.210	0.035
242	27/06/2017	22.635	-	-	1.330	0.059
243	28/06/2017	23.158	-	-	2.130	0.092
244	29/06/2017	22.312	-	-	1.870	0.084
245	30/06/2017	21.314	-	-	1.890	0.089
246	01/07/2017	23.000	-	-	1.760	0.077
247	02/07/2017	-	-	-		-
248	03/07/2017	23.065	-	-	1.530	0.066
249	04/07/2017	23.098	-	-	1.450	0.063
250	05/07/2017	22.849	-	-	1.790	0.078
251	06/07/2017	22.570	-	-	1.640	0.073
252	07/07/2017	23.994	-	-	1.630	0.068
253	08/07/2017	-	-	-	-	-
254	09/07/2017	-	-	-	-	-
255	10/07/2017	23.693	-	-	1.540	0.065

- No se realizó la medición o el análisis del parámetro.