Please use this identifier to cite or link to this item: http://ri.uaemex.mx/handle20.500.11799/112245
Title: Optimization of the physic, optical and mechanical properties of a composite edible films of gelatin, whey protein and chitosan
Keywords: gelatin;whey protein;chitosan;surface response methodology;composite edible film;food packaging;info:eu-repo/classification/cti/2
Publisher: Lillian Barros, Ana Gomes and Taofiq Oludemi
Project: 27 
2022
https://doi.org/10.3390/molecules27030869 
Description: Artículo indizado
The aim of this work was to evaluate the effect of the concentration of gelatin (G) (3–6 g), whey protein (W) (2.5–7.5 g) and chitosan (C) (0.5–2.5 g) on the physical, optical and mechanical properties of composite edible films (CEFs) using the response surface methodology (RSM), as well as optimizing the formulation for the packaging of foods. The results of the study were evaluated via first‐ and second‐order multiple regression analysis to obtain the determination coefficient val‐ ues with a good fit (R ˃ 0.90) for each of the response variables, except for the values of solubility and b*. The individual linear effect of the independent variables (the concentrations of gelatin, whey protein and chitosan) significantly affected (p ≤ 0.05) the water vapor permeability (WVP), strength and solubility of the edible films. The WVP of the edible films varied from 0.90 to 1.62 × 10−11 g.m/Pa.s.m2, the resistance to traction varied from 0.47 MPa to 3.03 MPa and the solubility varied from 51.06% to 87%. The optimized values indicated that the CEF prepared with a quantity of 4 g, 5 g and 3 g of gelatin, whey protein and chitosan, respectively, provided the CEF with a smooth, continuous and transparent surface, with L values that resulted in a light‐yellow hue, a lower WVP, a maximum strength (resistance to traction) and a lower solubility. The results revealed that the optimized formulation of the CEF of G–W–C allowed a good validation of the prediction model and could be applied, in an effective manner, to the food packaging industry, which could help in miti‐ gating the environmental issues associated with synthetic packaging materials.
Consejo Nacional de Ciencia y Tecnología
URI: http://ri.uaemex.mx/handle20.500.11799/112245
Other Identifiers: http://hdl.handle.net/20.500.11799/112245
Rights: info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0
Appears in Collections:Producción

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.