Please use this identifier to cite or link to this item: http://ri.uaemex.mx/handle20.500.11799/66034
Title: In vitro gas production of five rations of different maize silage and concentrate ratios influenced by increasing levels of chemically characterized extract of Salix babylonica
Keywords: silage;concentrate;in vitro fermentation;salix babylonica;info:eu-repo/classification/cti/6
Publisher: Turkish Journal of Veterinary and Animal Sciences
Project: Vol.;39
Description: Salix babylonica (SB) is a tree of the willow family with slender leaves, native to dry areas of northern China. Trees of SB are commonly found along moist places and are often planted or cultivated as an ornamental tree. SB often cultivated to make high-quality wood chips, a renewable and carbon-neutral energy source. It was introduced to Mexico and many other countries other than China (1). Most of the members of the genus Salix were analyzed for their flavonoid, terpenoid, and phenolic constituents with diverse and important biological activities of improving ruminal fermentation (2). SB naturally contains benzyl ester of gentisic acid 2′-O-acetyl β-d-glucoside, along with trichocarpin, salicin, kaempferol-7-O-glucoside, apigenin- 7-O-galactoside, and luteolin-4′-O-glucoside compounds and an ester of terephthalic acid (2). However, willows have phenolic glycosidic compounds based on the structure of salicin (3). Moreover, three flavonoids compounds were extracted from SB and identified as luteolin-7-O-β-Dglucopyranoside, luteolin, and chrysoeriol (2).
This study was carried out to assess the effect of the chemical substances of Salix babylonica (SB) extract on in vitro rumen fermentation of five mixed rations with different maize silage to concentrate ratios. Fifty-nine compounds were identified in SB extract using the retention time and mass spectral technique. Interactive effects were noted (P < 0.001) for the asymptotic gas production (GP) (b), the rate of production (c), the initial delay before GP begins (L), pH, dry matter digestibility, metabolizable energy (ME), organic matter digestibility (OMD), short chain fatty acids (SCFAs), gas yield at 24 h (GY24), microbial crude protein, and in vitro GP. Both 1.2 and 1.8 mL SB/g DM had the highest (P < 0.05) b and c values. Addition of 1.2 and 1.8 mL SB/g DM linearly improved (P < 0.001) ME, OMD, SCFAs, and GY24. It could be concluded that, based on the highly detected interaction effects between ration types and extract doses for fermentation parameters and GP, the most effective dose of SB varied between incubated total mixed rations. However, the ration of 25% silage and 75% concentrate had the highest nutritive value, especially at doses of 1.2 to 1.8 mL SB/g DM total mixed ration.
URI: http://ri.uaemex.mx/handle20.500.11799/66034
Other Identifiers: http://hdl.handle.net/20.500.11799/66034
Rights: info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0
Appears in Collections:Producción

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.