Please use this identifier to cite or link to this item: http://ri.uaemex.mx/handle20.500.11799/67423
Title: Physicochemical behaviour of a dinuclear uranyl complex formed with an octaphosphinoylated para-tert-butylcalix[8]arene. Spectroscopic studies in solution and in the solid state
Keywords: Dinuclear calixarene complex;Uranyl calixarene complex;Uranyl luminescence;Molecular modelling;info:eu-repo/classification/cti/5
Publisher: Elsevier, Polyedron
Project: doi;http://dx.doi.org/10.1016/j.poly.2016.11.016 
Vol;123 
Description: Spectrophotometric titrations of an octaphosphinoylated para-tert-butylcalix[8]arene (B8bL8) by uranyl nitrate and vice versa in anhydrous ethanol indicate that the species with 2:1 (uranyl:calixarene) stoichiometry is the major complex in solution. Based on these results, a synthesis route was designed to isolate this complex. The latter is an orange, non-hygroscopic polycrystalline powder, with chemical formula [(UO2)2(NO3)4(B8bL8) 2H2O]2(H2O). (Compd. 1), as ascertained by elemental analysis. Spectroscopic characterization of Compd. 1 in the solid and liquid states suggests that a neutral dinuclear uranyl calixarene complex was formed. MIR and FIR spectra indicate that, four phosphinoyl arms of the calixarene and two monodentate nitrates are bound to each 6-coordinate uranyl ion in the complex because no vibrational frequencies from un-coordinated O@P groups or from ionic nitrates are present; in addition the spectra reveal that water molecules form intramolecular hydrogen bonding with monodentate nitrates. The de-convoluted luminescence and XPS spectra obtained in the solid state point to a similar chemical environment around each uranyl ion, as confirmed by the mono-exponential decay of the luminescence. The more rigid conformation acquired by the calixarene in the complex and the non-symmetrical arrangement of the coordinated nitrates result in a particular feature of the emission spectra at 77 K. No evidence of cation-cation interaction was found. A rough approach to the molecular structure of the complex by molecular modelling based on the experimental findings yielded a molecule that was useful for understanding the physicochemical behaviour of Compd. 1.
This work was supported by CONACYT [grant Nr. 36689-E], Mexico; and the Swiss National Science Foundation [grant SCOPES 2000–2002: No. 7BUPJ062293.00/1], Switzerland.
URI: http://ri.uaemex.mx/handle20.500.11799/67423
Other Identifiers: http://hdl.handle.net/20.500.11799/67423
Rights: info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0
Appears in Collections:Producción

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.