Please use this identifier to cite or link to this item: http://ri.uaemex.mx/handle20.500.11799/99553
Title: TcVac1 vaccine delivery by intradermal electroporation enhances vaccine induced immune protection against Trypanosoma cruzi infection in mice
Keywords: Trypanosoma cruzi;TcVac1 vaccine;Intradermal electroporation;mice;Chagas disease;info:eu-repo/classification/cti/3
Publisher: Vaccine
Project: Vol.;37
No.;2
Description: Trabajo de investigación doctoral de Wael Hegazy Hassan Moustafa bajo la dirección de Juan Carlos Vázquez Chagoyán
The efforts for the development and testing of vaccines against Trypanosoma cruzi infection have increased during the past years. We have designed a TcVac series of vaccines composed of T. cruzi derived, GPI-anchored membrane antigens. The TcVac vaccines have been shown to elicit humoral and cellular mediated immune responses and provide significant (but not complete) control of experimental infection in mice and dogs. Herein, we aimed to test two immunization protocols for the delivery of DNA-prime/ DNA-boost vaccine (TcVac1) composed of TcG2 and TcG4 antigens in a BALB/c mouse model. Mice were immunized with TcVac1 through intradermal/electroporation (IDE) or intramuscular (IM) routes, challenged with T. cruzi, and evaluated during acute phase of infection. The humoral immune response was evaluated through the assessment of anti-TcG2 and anti-TcG4 IgG subtypes by using an ELISA. Cellular immune response was assessed through a lymphocyte proliferation assay. Finally, clinical and morphopathological aspects were evaluated for all experimental animals. Our results demonstrated that when comparing TcVac1 IDE delivery vs IM delivery, the former induced significantly higher level of antigen-specific antibody response (IgG2a + IgG2b > IgG1) and lymphocyte proliferation, which expanded in response to challenge infection. Histological evaluation after challenge infection showed infiltration of inflammatory cells (macrophages and lymphocytes) in the heart and skeletal tissue of all infected mice. However, the largest increase in inflammatory infiltrate was observed in TcVac1_IDE/Tc mice when compared with TcVac1_IM/Tc or non-vaccinated/infected mice. The extent of tissue inflammatory infiltrate was directly associated with the control of tissue amastigote nests in vaccinated/ infected (vs. non-vaccinated/infected) mice. Our results suggest that IDE delivery improves the protective efficacy of TcVac1 vaccine against T. cruzi infection in mice when compared with IM delivery of the vaccine.
Universidad Autónoma de Estado de México (proyecto No. 3326/2012C), Consejo Nacional de Ciencia y Tecnología (Proyecto No. 156701) . Beca CONACyT a M.Sc. Wael Hegazy Hassan Moustafa (Beca numero No. 518232/291117).
URI: http://ri.uaemex.mx/handle20.500.11799/99553
Other Identifiers: http://hdl.handle.net/20.500.11799/99553
Rights: info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0
Appears in Collections:Producción

Show full item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.