Mostrar el registro sencillo del objeto digital
| dc.contributor.author | Camargo, Javier
|
|
| dc.contributor.author | Capulín, Félix
|
|
| dc.contributor.author | Castañeda-Alvarado, Enrique
|
|
| dc.contributor.author | Maya, David
|
|
| dc.date.accessioned | 2019-11-14T19:31:27Z | |
| dc.date.available | 2019-11-14T19:31:27Z | |
| dc.date.issued | 2019-05-28 | |
| dc.identifier.issn | 0166-8641 | |
| dc.identifier.uri | http://hdl.handle.net/20.500.11799/105012 | |
| dc.description | artículo de investigación | es |
| dc.description.abstract | A continuum is a compact connected metric space. A non-empty closed subset B of a continuum X does not block x ∈ X \B provided that the union of all subcontinua of X containing x and contained in X \B is a dense subset of X. The collection of all non-empty closed subsets B of X such that B does not block each element of X \B is denoted by NB(F_1(X). In this paper, we find conditions under NB(F_1(X)) and the hyperspace of non-weak cut sets NWC(X) coincide and we exhibit a dendroid X for which NWC(X) is a non-empty proper subset of NB(F_1(X)). Also, we present geometric models for NB(F_1(X)); particularly, some of them give examples for a question posed by Escobedo, López and Villanueva in 2012. Finally, we prove that there exists a family of continua X such that the collection of hyperspaces NB(F_1(X)) is an uncountable incomparable family of continua. | es |
| dc.description.sponsorship | UAEMex | es |
| dc.language.iso | eng | es |
| dc.publisher | Topology and its applications | es |
| dc.relation.ispartofseries | 262; | |
| dc.rights | embargoedAccess | es |
| dc.rights | No aplica | es |
| dc.rights | embargoedAccess | es |
| dc.rights | No aplica | es |
| dc.subject | nonblocker | es |
| dc.subject | continuum | es |
| dc.subject | hyperspace | es |
| dc.title | Continua whose hyperspace of nonblockers of F1(X) is a continuum | es |
| dc.type | Artículo | es |
| dc.provenance | Científica | es |
| dc.road | Dorada | es |
| dc.ambito | Internacional | es |
| dc.cve.CenCos | 21901 | es |