Mostrar el registro sencillo del objeto digital

dc.contributor.author Jardón, Edgar
dc.contributor.author Romero, Marcelo
dc.contributor.author Marcial-Romero, José-Raymundo
dc.date.accessioned 2025-11-27T02:01:16Z
dc.date.available 2025-11-27T02:01:16Z
dc.date.issued 2025-06-18
dc.identifier.issn 2078-2489
dc.identifier.uri http://hdl.handle.net/20.500.11799/142970
dc.description.abstract Allocation models are essential tools for optimally distributing client requests across multiple services under defined restrictions and objective functions. This study evaluates several heuristics to address an allocation problem involving young individuals reaching voting age. A five-step methodology was implemented: defining variables, executing heuristics, compiling results, evaluating outcomes, and selecting the most effective heuristic. Using experimental data from the Mexican National Electoral Institute (INE), the study focuses on 88,107 individuals aged 17–18 in the 16 municipalities of the Toluca Valley, who can access any of the 10 INE service modules. Six heuristics were analyzed in sequence: genetic algorithm, ant colony optimization, local search, tabu search, simulated annealing, and greedy algorithm. The results indicate that genetic algorithm significantly reduces the processing time when used as the initial heuristic. Furthermore, given the current capacity of the 10 INE modules, serving the entire target population would require nine working days. These findings align with principles of spatial justice and highlight the practical efficiency of heuristic-based solutions in administrative resource allocation. The main contribution of this study is the development and evaluation of a hybrid heuristic framework for allocating INE modules, demonstrating that combining multiple heuristics—with a genetic algorithm as the initial phase—significantly improves solution quality and computational efficiency. es
dc.language.iso eng es
dc.publisher MDPI es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject allocation models es
dc.subject optimization problem es
dc.subject urban planning es
dc.subject.classification CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA es
dc.title Application of Optimization Algorithms in Voter Service Module Allocation es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Unidad Académica Profesional Tianguistenco es
dc.ambito Nacional es
dc.cve.CenCos 10201 es
dc.relation.vol 16
dc.validacion.itt No es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Application of Optimization Algorithms in Voter Service Module Allocation
  • Autor
  • Jardón, Edgar
  • Romero, Marcelo
  • Marcial-Romero, José-Raymundo
  • Fecha de publicación
  • 2025-06-18
  • Editor
  • MDPI
  • Tipo de documento
  • Artículo
  • Palabras clave
  • allocation models
  • optimization problem
  • urban planning
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas