Mostrar el registro sencillo del objeto digital

dc.contributor.author Cervantes, Jared
dc.contributor.author Luna, Dalia
dc.contributor.author Cervantes, Jair
dc.contributor.author Garcia Lamont, Farid
dc.date.accessioned 2023-02-11T03:26:21Z
dc.date.available 2023-02-11T03:26:21Z
dc.date.issued 2022-08-07
dc.identifier.isbn 978-3-031-13869-0
dc.identifier.uri http://hdl.handle.net/20.500.11799/137828
dc.description.abstract Vessel segmentation is an important task to extract helpful information from retinal images that can help make a retinopathy diagnosis. A good segmentation perfectly represents the structure and obtains patterns that diagnose retinal diseases. Most of the current methods require many parameters, and the final quality of vessel segmentation depends on these parameters, which increases the complexity of the methods. We propose a new Vessel segmentation algorithm to address these issues using genetic algorithms. The method uses several steps to segment the retinal images. However, each of the parameters used in the steps is optimized by the genetic algorithm. To evaluate the performance of the proposed method, we achieved experiments with two freely accessible datasets for vessel segmentation, digital retinal images for vessel extraction (Drive) and the Child Heart Health Study in England (Chase-db1). Experimental results show an acceptable performance of the proposed method using sensitivity (0.7941), specificity (0.9451), and accuracy (0.9578) performance metrics. es
dc.language.iso eng es
dc.publisher Springer International Publishing es
dc.rights embargoedAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject Vessel Segmentation es
dc.subject Genetic algorithm es
dc.subject optimal segmentation es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Optimization of Vessel Segmentation Using Genetic Algorithms es
dc.type Capítulo de Libro es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.cve.CenCos 30401 es
dc.relation.año 2022
dc.relation.doi https://doi.org/10.1007/978-3-031-13870-6_32


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Optimization of Vessel Segmentation Using Genetic Algorithms
  • Autor
  • Cervantes, Jared
  • Luna, Dalia
  • Cervantes, Jair
  • Garcia Lamont, Farid
  • Fecha de publicación
  • 2022-08-07
  • Editor
  • Springer International Publishing
  • Tipo de documento
  • Capítulo de Libro
  • Palabras clave
  • Vessel Segmentation
  • Genetic algorithm
  • optimal segmentation
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

embargoedAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo embargoedAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas