Mostrar el registro sencillo del objeto digital

dc.contributor.author García-Robledo, Gabriela A.
dc.contributor.author Bravo, Maricela
dc.contributor.author Cuevas-Rasgado, Alma D.
dc.contributor.author Reyes-Ortiz, José A.,
dc.contributor.author Padilla-Cuevas, Josué
dc.date.accessioned 2025-11-21T23:57:11Z
dc.date.available 2025-11-21T23:57:11Z
dc.date.issued 2025-10-23
dc.identifier.issn 2076-3417
dc.identifier.uri http://hdl.handle.net/20.500.11799/142936
dc.description Un artículo derivado de la tesis de Doctorado en Ciencias de la Computación, en el CU Texcoco. Trata de la extracción de información de documentos de texto en español y conversión a un grafo de conocimiento sobre textos médicos. es
dc.description.abstract The extraction of relationships in natural language processing (NLP) is a task that consists of identifying interactions between entities within a text. This approach facilitates comprehension of context and meaning. In the medical field, this is of particular significance due to the substantial volume of information contained in scientific articles. This paper explores various training strategies for medical relationship extraction using large pre-trained language models. The findings indicate significant variations in performance between models trained with general domain data and those specialized in the medical domain. Furthermore, a methodology is proposed that utilizes language models for relation extraction with hyperparameter optimization techniques. This approach uses a triplet-based system. It provides a framework for the organization of relationships between entities and facilitates the development of medical knowledge graphs in the Spanish language. The training process was conducted using a dataset constructed and validated by medical experts. The dataset under consideration focused on relationships between entities, including anatomy, medications, and diseases. The final model demonstrated an 85.9% accuracy rate in the relationship classification task, thereby substantiating the efficacy of the proposed approach. es
dc.description.sponsorship BECA DE SECIHTI es
dc.language.iso eng es
dc.publisher MDPI es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by/4.0 es
dc.subject relation extraction es
dc.subject knowledge graph es
dc.subject deep learning es
dc.subject natural language processing es
dc.subject large language models es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Relation Extraction in Spanish Medical Texts Using Deep Learning Techniques for Medical Knowledge Representation es
dc.title.alternative relation extraction; knowledge graph; deep learning; natural language processing; large language models es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Nacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 1009 es
dc.relation.vol 15(21)
dc.validacion.itt Si es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Relation Extraction in Spanish Medical Texts Using Deep Learning Techniques for Medical Knowledge Representation
  • Autor
  • García-Robledo, Gabriela A.
  • Bravo, Maricela
  • Cuevas-Rasgado, Alma D.
  • Reyes-Ortiz, José A.,
  • Padilla-Cuevas, Josué
  • Fecha de publicación
  • 2025-10-23
  • Editor
  • MDPI
  • Tipo de documento
  • Artículo
  • Palabras clave
  • relation extraction
  • knowledge graph
  • deep learning
  • natural language processing
  • large language models
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe cómo openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas