Mostrar el registro sencillo del objeto digital

dc.contributor.author García Lamont, Farid
dc.contributor.author Moreno Sánchez, Juan Carlos
dc.contributor.author Acosta Mesa, Héctor Gabriel
dc.contributor.author Trueba Espinosa, Adrián
dc.contributor.author Ruiz Castilla, José Sergio
dc.date.accessioned 2026-01-13T23:51:51Z
dc.date.available 2026-01-13T23:51:51Z
dc.date.issued 2025-01-29
dc.identifier.issn 100791
dc.identifier.uri http://hdl.handle.net/20.500.11799/143090
dc.description.abstract Plant breeding centers, in their relentless pursuit of more productive and resilient wheat varieties, have generated vast data repositories that are fundamental to ensuring global food security. This study uses these data to develop a wheat grain yield (GY) prediction model, using machine learning techniques such as Random Forest (RF), Support Vector Regression (SVR), and Extreme Gradient Boosting (XGBoost). The results obtained prove the potential of RF and XGBoost-based models to accurately predict wheat yield. One of the major challenges of this research was to find the most relevant variables for predicting wheat yield. Using clustering, feature selection, and variable combination techniques, particularly agronomic variables such as harvest index (HI) and biomass (BM), provided complementary information to the Normalized Difference Vegetation Index (NDVI). This combination, analyzed through the XGBoost model, resulted in an exceptional performance, with an RMSE of 28.5082 (grams/square meter) and an R² of 0.9156, showing the constructive collaboration between these indicators. After a thorough analysis, it was discovered that daily clustering and filtering of climatic variables, especially precipitation rate, were favorable in these types of models es
dc.language.iso eng es
dc.publisher Smart Agricultural Technology es
dc.rights openAccess es
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es
dc.subject Support vector regression es
dc.subject Random Forest es
dc.subject Extreme gradient boosting es
dc.subject Grain yield es
dc.subject Vegetation indices es
dc.subject climate data es
dc.subject.classification INGENIERÍA Y TECNOLOGÍA es
dc.title Improving wheat yield prediction through variable selection using Support Vector Regression, Random Forest, and Extreme Gradient Boosting es
dc.type Artículo es
dc.provenance Científica es
dc.road Dorada es
dc.organismo Centro Universitario UAEM Texcoco es
dc.ambito Internacional es
dc.cve.CenCos 30401 es
dc.cve.progEstudios 1009 es
dc.relation.vol 10
dc.validacion.itt Si es


Ficheros en el objeto digital

Este ítem aparece en la(s) siguiente(s) colección(ones)

Visualización del Documento

  • Título
  • Improving wheat yield prediction through variable selection using Support Vector Regression, Random Forest, and Extreme Gradient Boosting
  • Autor
  • García Lamont, Farid
  • Moreno Sánchez, Juan Carlos
  • Acosta Mesa, Héctor Gabriel
  • Trueba Espinosa, Adrián
  • Ruiz Castilla, José Sergio
  • Fecha de publicación
  • 2025-01-29
  • Editor
  • Smart Agricultural Technology
  • Tipo de documento
  • Artículo
  • Palabras clave
  • Support vector regression
  • Random Forest
  • Extreme gradient boosting
  • Grain yield
  • Vegetation indices
  • climate data
  • Los documentos depositados en el Repositorio Institucional de la Universidad Autónoma del Estado de México se encuentran a disposición en Acceso Abierto bajo la licencia Creative Commons: Atribución-NoComercial-SinDerivar 4.0 Internacional (CC BY-NC-ND 4.0)

Mostrar el registro sencillo del objeto digital

openAccess Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

Buscar en RI


Buscar en RI

Usuario

Estadísticas